research communications
H-pyrrol-2-yl)diphenylphosphine oxide
of (3,5-dimethyl-1aDepartment of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
*Correspondence e-mail: kson@cnu.ac.kr
The title compound, C18H18NOP, was obtained during a search for new P,N-containing ligands with the potential to generate precatalysts with chromium(III) for selective ethylene In the crystal, mutual pairs of N—H⋯O=P hydrogen bonds link two molecules into a dimer with individual molecules related by a twofold rotation axis. The P=O bond length of 1.4740 (15) Å is not elongated although the O atom is involved in hydrogen bonding. The is further stabilized by van der Waals interactions between the dimers, linking the molecules into a three-dimensional network structure.
Keywords: crystal structure; pyrrole; phosphine oxide; catalysis.
CCDC reference: 1564683
1. Chemical context
Mixed bi- and tridentate ligands containing phosphorus and nitrogen atoms are highly useful in chromium(III)-catalysed selective ethylene et al., 2016). Several variations of the ligands introduced by chemical modifications can tune the steric and electronic properties of the catalysts, affecting the catalytic behavior in ethylene (Agapie, 2011; McGuinness, 2011). In search of new P,N-containing ligands, we obtained the title compound from the reaction of 2,4-dimethylpyrrole and chlorodiphenylphosphine. Herein we present the synthesis and the of the title compound, (3,5-dimethyl-1H-pyrrol-2-yl)diphenylphosphine oxide, C18H18NOP, that was obtained by an accidental oxidation reaction.
(Fliedel2. Structural commentary
The molecular structure of the title compound, (I), is shown in Fig. 1. The P=O bond length of 1.4740 (15) Å is virtually identical to that of triphenylphosphine oxide [1.479 (2) Å; Al-Farhan, 1992], which is not involved in hydrogen bonding as is the case in the structure of (I). In general, the P=O bond appears to be elongated when involved in hydrogen-bonding interactions (Kunz et al., 2011). In the pyrrole heterocyclic ring of (I), the C15—C16 [1.388 (2) Å] and C17—C18 [1.363 (3) Å] bonds are shorter than the C16—C17 [1.404 (3) Å] bond, even though the pyrrole ring has a delocalized π-system. The bond length of P1—C15 [1.767 (2) Å] to the pyrrole moiety is shorter than those of P1—C3 [1.801 (2) Å] and P1—C9 [1.806 (2) Å] to the C atoms of phenyl rings. Such a slight difference is also observed in the of a compound containing the same entity as in (I) (Vélez del Burgo et al., 2016). The dihedral angle between the O2/P1/C15 plane and the pyrrole ring in (I) is small, 3.89 (5)°.
3. Supramolecular features
Two mutual intermolecular N19—H19⋯O2i [symmetry code; (i) –x + 1, y, −z + ] hydrogen bonds between the amino group and the O=P group link two molecules into a dimer (Fig. 2, Table 1). The two molecules of the dimer are related by a twofold rotation axis. Apart from van der Waals interactions between dimers, there are no other intermolecular interactions that stabilize the three-dimensional crystal packing of (I) (Fig. 3).
4. Database survey
A search of the Cambridge Structural Database (Version 5.38, update February 2017; Groom et al., 2016) for compounds containing the (3,5-dimethyl-1H-pyrrol-2-yl)diphenylphosphine oxide skeleton revealed only one structure, viz. AVPL146MP (Vélez del Burgo et al., 2016).
5. Synthesis and crystallization
The title compound was prepared by salt elimination after 2,4-dimethylpyrrole was treated with trimethylamine and then chlorodiphenylphosphine (Moloy & Petersen, 1995). The ease of in situ oxidation of the resulting pyrrolephosphine derivative led to the formation of the corresponding phosphine oxide ligand (Nyamato et al., 2015). This new compound was characterized by single crystal X-ray analysis as well as 1H, 13C, 31P NMR, high resolution and infrared spectroscopy (see supplementary Figs. S1-S5).
2,4-Dimethylpyrrole (0.2 ml, 2 mmol), triethylamine (0.34 ml, 3 mmol), and 5 ml of diethyl ether were charged into a Schlenk flask under inert atmosphere. To this solution, chlorodiphenylphosphine (0.18 ml, 1 mmol) in 1 ml diethyl ether was added dropwise at 273 K. A colorless precipitate formed immediately. The reaction mixture was then stirred for 10 min at 273 K and heated under reflux for a further 24 h. The precipitate that formed was removed by filtration, and the filtrate was evaporated to dryness under vacuum. The resulting oil was re-dissolved in hexane and filtered. The solvent was removed under vacuum to give the product as a red solid (0.21 g, 0.72 mmol, yield 72%). Single crystals of the title compound were obtained by slow diffusion of hexane into a concentrated solution of the product in tetrahydrofuran at room temperature. 1H NMR (300 MHz, CDCl3): δ = 2.17 (s, 3H), 2.18 (s, 3H), 5.86 (s, 1H), 7.27–7.35 (m, 11H). 13C NMR (150 MHz, CDCl3): δ = 12.25 (d, J = 10.2 Hz), 13.34 (s), 110.08 (d, J = 5.6 Hz), 117.32 (d, J = 13.5 Hz), 128.40 (s), 128.70 (d, J = 6.5 Hz), 132.39 (s), 132.83 (d, J = 18.5 Hz), 138.03 (d, J = 8.8 Hz). 31P NMR (242 MHz, CDCl3): δ = −35.08 (s). HRMS (ESI) calculated for C18H19ONP ([M + H]+): 296.12043, found: 296.1228. Melting point: 352 K.
6. Refinement
Crystal data, data collection and structure . The H atom of the NH group was located in a difference-Fourier map and refined freely. The C-bound H atoms were positioned geometrically and refined using a riding model, with d(C—H) = 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C) for aromatic-H and 1.5Ueq(C) for methyl-H atoms, respectively.
details are summarized in Table 2Supporting information
CCDC reference: 1564683
https://doi.org/10.1107/S2056989017010994/wm5405sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017010994/wm5405Isup2.hkl
spectroscopic analysis of the title compound. DOI: https://doi.org/10.1107/S2056989017010994/wm5405sup3.pdf
Supporting information file. DOI: https://doi.org/10.1107/S2056989017010994/wm5405Isup4.cml
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).C18H18NOP | F(000) = 1248 |
Mr = 295.30 | Dx = 1.214 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.656 (6) Å | Cell parameters from 6973 reflections |
b = 14.765 (8) Å | θ = 2.4–28.0° |
c = 20.757 (11) Å | µ = 0.17 mm−1 |
β = 98.378 (8)° | T = 296 K |
V = 3231 (3) Å3 | Block, orange |
Z = 8 | 0.29 × 0.27 × 0.25 mm |
Bruker SMART CCD area-detector diffractometer | 3196 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.027 |
ω scans | θmax = 28.4°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −14→14 |
Tmin = 0.943, Tmax = 0.967 | k = −19→19 |
14781 measured reflections | l = −27→27 |
3961 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.046 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.136 | w = 1/[σ2(Fo2) + (0.069P)2 + 1.3679P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
3961 reflections | Δρmax = 0.32 e Å−3 |
196 parameters | Δρmin = −0.24 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.71878 (4) | 0.57612 (3) | 0.33110 (2) | 0.03972 (14) | |
O2 | 0.65623 (12) | 0.55565 (10) | 0.26460 (6) | 0.0621 (4) | |
C3 | 0.82519 (14) | 0.48606 (10) | 0.36150 (8) | 0.0429 (4) | |
C4 | 0.7970 (2) | 0.42449 (12) | 0.40734 (11) | 0.0602 (5) | |
H4 | 0.7259 | 0.4330 | 0.4278 | 0.072* | |
C5 | 0.8752 (2) | 0.34969 (14) | 0.42287 (13) | 0.0780 (7) | |
H5 | 0.8565 | 0.3088 | 0.4542 | 0.094* | |
C6 | 0.9787 (2) | 0.33576 (14) | 0.39253 (13) | 0.0744 (7) | |
H6 | 1.0294 | 0.2850 | 0.4025 | 0.089* | |
C7 | 1.0074 (2) | 0.39616 (16) | 0.34775 (14) | 0.0796 (7) | |
H7 | 1.0786 | 0.3871 | 0.3274 | 0.096* | |
C8 | 0.93109 (19) | 0.47160 (14) | 0.33202 (11) | 0.0655 (5) | |
H8 | 0.9518 | 0.5127 | 0.3013 | 0.079* | |
C9 | 0.81251 (15) | 0.67828 (11) | 0.33328 (8) | 0.0451 (4) | |
C10 | 0.92531 (18) | 0.69087 (13) | 0.37448 (11) | 0.0597 (5) | |
H10 | 0.9568 | 0.6453 | 0.4033 | 0.072* | |
C11 | 0.9917 (2) | 0.77160 (16) | 0.37289 (14) | 0.0814 (7) | |
H11 | 1.0678 | 0.7798 | 0.4005 | 0.098* | |
C12 | 0.9455 (3) | 0.83877 (15) | 0.33103 (17) | 0.0933 (9) | |
H12 | 0.9906 | 0.8926 | 0.3301 | 0.112* | |
C13 | 0.8345 (3) | 0.82778 (15) | 0.29083 (15) | 0.0909 (9) | |
H13 | 0.8031 | 0.8744 | 0.2630 | 0.109* | |
C14 | 0.7680 (2) | 0.74766 (14) | 0.29101 (11) | 0.0688 (6) | |
H14 | 0.6927 | 0.7401 | 0.2626 | 0.083* | |
C15 | 0.60482 (15) | 0.58994 (10) | 0.38423 (8) | 0.0400 (3) | |
C16 | 0.60900 (17) | 0.60509 (11) | 0.45053 (8) | 0.0468 (4) | |
C17 | 0.48236 (18) | 0.60914 (13) | 0.46181 (9) | 0.0558 (5) | |
H17 | 0.4559 | 0.6182 | 0.5021 | 0.067* | |
C18 | 0.40454 (17) | 0.59763 (12) | 0.40420 (10) | 0.0516 (4) | |
N19 | 0.47866 (13) | 0.58591 (9) | 0.35719 (8) | 0.0435 (3) | |
H19 | 0.4501 (18) | 0.5756 (12) | 0.3169 (10) | 0.049 (5)* | |
C20 | 0.7239 (2) | 0.61602 (16) | 0.50077 (10) | 0.0675 (5) | |
H20A | 0.7544 | 0.5574 | 0.5158 | 0.101* | |
H20B | 0.7020 | 0.6504 | 0.5368 | 0.101* | |
H20C | 0.7888 | 0.6472 | 0.4820 | 0.101* | |
C21 | 0.26291 (19) | 0.59778 (19) | 0.38760 (13) | 0.0812 (7) | |
H21A | 0.2255 | 0.6017 | 0.4269 | 0.122* | |
H21B | 0.2357 | 0.5429 | 0.3650 | 0.122* | |
H21C | 0.2367 | 0.6489 | 0.3603 | 0.122* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0339 (2) | 0.0405 (2) | 0.0439 (3) | 0.00439 (15) | 0.00249 (17) | −0.00102 (16) |
O2 | 0.0492 (7) | 0.0831 (9) | 0.0507 (7) | 0.0116 (6) | −0.0035 (6) | −0.0094 (6) |
C3 | 0.0362 (8) | 0.0360 (7) | 0.0547 (9) | 0.0020 (6) | 0.0006 (7) | −0.0045 (6) |
C4 | 0.0564 (11) | 0.0451 (9) | 0.0800 (14) | 0.0051 (8) | 0.0132 (10) | 0.0097 (9) |
C5 | 0.0836 (15) | 0.0466 (10) | 0.1029 (18) | 0.0115 (10) | 0.0107 (14) | 0.0217 (11) |
C6 | 0.0588 (12) | 0.0449 (10) | 0.1140 (19) | 0.0165 (9) | −0.0059 (12) | 0.0015 (11) |
C7 | 0.0557 (12) | 0.0658 (13) | 0.121 (2) | 0.0215 (10) | 0.0242 (13) | −0.0065 (13) |
C8 | 0.0590 (11) | 0.0559 (11) | 0.0861 (14) | 0.0154 (9) | 0.0255 (11) | 0.0074 (10) |
C9 | 0.0429 (8) | 0.0394 (8) | 0.0549 (10) | 0.0045 (6) | 0.0142 (7) | 0.0037 (7) |
C10 | 0.0547 (11) | 0.0456 (9) | 0.0776 (13) | −0.0055 (8) | 0.0049 (10) | −0.0012 (9) |
C11 | 0.0661 (13) | 0.0582 (13) | 0.122 (2) | −0.0174 (11) | 0.0226 (14) | −0.0215 (13) |
C12 | 0.0905 (18) | 0.0440 (11) | 0.159 (3) | −0.0099 (12) | 0.0644 (19) | −0.0032 (14) |
C13 | 0.0995 (19) | 0.0523 (12) | 0.131 (2) | 0.0178 (12) | 0.0516 (18) | 0.0377 (13) |
C14 | 0.0633 (12) | 0.0595 (12) | 0.0867 (15) | 0.0154 (10) | 0.0213 (11) | 0.0258 (10) |
C15 | 0.0353 (8) | 0.0376 (7) | 0.0462 (8) | 0.0033 (6) | 0.0024 (7) | 0.0008 (6) |
C16 | 0.0515 (10) | 0.0433 (8) | 0.0449 (9) | 0.0027 (7) | 0.0048 (7) | 0.0043 (7) |
C17 | 0.0603 (11) | 0.0588 (11) | 0.0517 (10) | 0.0065 (9) | 0.0198 (9) | 0.0071 (8) |
C18 | 0.0433 (9) | 0.0500 (9) | 0.0641 (11) | 0.0036 (7) | 0.0165 (8) | 0.0097 (8) |
N19 | 0.0361 (7) | 0.0444 (7) | 0.0493 (8) | 0.0015 (5) | 0.0038 (6) | −0.0002 (6) |
C20 | 0.0699 (13) | 0.0776 (14) | 0.0510 (11) | 0.0019 (11) | −0.0045 (10) | −0.0015 (9) |
C21 | 0.0436 (11) | 0.1053 (18) | 0.0982 (18) | 0.0040 (11) | 0.0225 (11) | 0.0118 (14) |
P1—O2 | 1.4740 (15) | C12—C13 | 1.354 (4) |
P1—C15 | 1.7672 (18) | C12—H12 | 0.9300 |
P1—C3 | 1.8011 (17) | C13—C14 | 1.380 (3) |
P1—C9 | 1.8059 (18) | C13—H13 | 0.9300 |
C3—C8 | 1.377 (3) | C14—H14 | 0.9300 |
C3—C4 | 1.380 (3) | C15—N19 | 1.381 (2) |
C4—C5 | 1.392 (3) | C15—C16 | 1.388 (2) |
C4—H4 | 0.9300 | C16—C17 | 1.404 (3) |
C5—C6 | 1.363 (3) | C16—C20 | 1.497 (3) |
C5—H5 | 0.9300 | C17—C18 | 1.363 (3) |
C6—C7 | 1.355 (4) | C17—H17 | 0.9300 |
C6—H6 | 0.9300 | C18—N19 | 1.353 (2) |
C7—C8 | 1.390 (3) | C18—C21 | 1.498 (3) |
C7—H7 | 0.9300 | N19—H19 | 0.862 (19) |
C8—H8 | 0.9300 | C20—H20A | 0.9600 |
C9—C10 | 1.383 (3) | C20—H20B | 0.9600 |
C9—C14 | 1.387 (2) | C20—H20C | 0.9600 |
C10—C11 | 1.389 (3) | C21—H21A | 0.9600 |
C10—H10 | 0.9300 | C21—H21B | 0.9600 |
C11—C12 | 1.362 (4) | C21—H21C | 0.9600 |
C11—H11 | 0.9300 | ||
O2—P1—C15 | 110.49 (9) | C11—C12—H12 | 119.8 |
O2—P1—C3 | 110.63 (8) | C12—C13—C14 | 120.3 (2) |
C15—P1—C3 | 108.75 (8) | C12—C13—H13 | 119.9 |
O2—P1—C9 | 111.57 (9) | C14—C13—H13 | 119.9 |
C15—P1—C9 | 108.41 (8) | C13—C14—C9 | 120.4 (2) |
C3—P1—C9 | 106.87 (8) | C13—C14—H14 | 119.8 |
C8—C3—C4 | 118.62 (16) | C9—C14—H14 | 119.8 |
C8—C3—P1 | 118.29 (14) | N19—C15—C16 | 107.38 (15) |
C4—C3—P1 | 122.60 (14) | N19—C15—P1 | 117.27 (13) |
C3—C4—C5 | 120.0 (2) | C16—C15—P1 | 135.35 (13) |
C3—C4—H4 | 120.0 | C15—C16—C17 | 106.22 (15) |
C5—C4—H4 | 120.0 | C15—C16—C20 | 127.80 (17) |
C6—C5—C4 | 120.6 (2) | C17—C16—C20 | 125.97 (17) |
C6—C5—H5 | 119.7 | C18—C17—C16 | 108.97 (16) |
C4—C5—H5 | 119.7 | C18—C17—H17 | 125.5 |
C7—C6—C5 | 119.78 (18) | C16—C17—H17 | 125.5 |
C7—C6—H6 | 120.1 | N19—C18—C17 | 107.71 (16) |
C5—C6—H6 | 120.1 | N19—C18—C21 | 120.57 (19) |
C6—C7—C8 | 120.4 (2) | C17—C18—C21 | 131.71 (19) |
C6—C7—H7 | 119.8 | C18—N19—C15 | 109.72 (16) |
C8—C7—H7 | 119.8 | C18—N19—H19 | 124.2 (13) |
C3—C8—C7 | 120.6 (2) | C15—N19—H19 | 126.0 (13) |
C3—C8—H8 | 119.7 | C16—C20—H20A | 109.5 |
C7—C8—H8 | 119.7 | C16—C20—H20B | 109.5 |
C10—C9—C14 | 118.60 (18) | H20A—C20—H20B | 109.5 |
C10—C9—P1 | 123.76 (13) | C16—C20—H20C | 109.5 |
C14—C9—P1 | 117.65 (15) | H20A—C20—H20C | 109.5 |
C9—C10—C11 | 120.0 (2) | H20B—C20—H20C | 109.5 |
C9—C10—H10 | 120.0 | C18—C21—H21A | 109.5 |
C11—C10—H10 | 120.0 | C18—C21—H21B | 109.5 |
C12—C11—C10 | 120.2 (2) | H21A—C21—H21B | 109.5 |
C12—C11—H11 | 119.9 | C18—C21—H21C | 109.5 |
C10—C11—H11 | 119.9 | H21A—C21—H21C | 109.5 |
C13—C12—C11 | 120.5 (2) | H21B—C21—H21C | 109.5 |
C13—C12—H12 | 119.8 | ||
O2—P1—C3—C8 | 66.62 (17) | C10—C11—C12—C13 | 0.3 (4) |
C15—P1—C3—C8 | −171.86 (15) | C11—C12—C13—C14 | −1.1 (4) |
C9—P1—C3—C8 | −55.02 (17) | C12—C13—C14—C9 | 1.4 (4) |
O2—P1—C3—C4 | −105.19 (17) | C10—C9—C14—C13 | −0.7 (3) |
C15—P1—C3—C4 | 16.33 (17) | P1—C9—C14—C13 | 179.28 (17) |
C9—P1—C3—C4 | 133.17 (16) | O2—P1—C15—N19 | −3.94 (14) |
C8—C3—C4—C5 | 0.0 (3) | C3—P1—C15—N19 | −125.55 (12) |
P1—C3—C4—C5 | 171.80 (16) | C9—P1—C15—N19 | 118.61 (12) |
C3—C4—C5—C6 | −0.9 (3) | O2—P1—C15—C16 | 176.30 (16) |
C4—C5—C6—C7 | 1.3 (4) | C3—P1—C15—C16 | 54.69 (18) |
C5—C6—C7—C8 | −0.8 (4) | C9—P1—C15—C16 | −61.15 (18) |
C4—C3—C8—C7 | 0.5 (3) | N19—C15—C16—C17 | 0.45 (18) |
P1—C3—C8—C7 | −171.64 (18) | P1—C15—C16—C17 | −179.78 (14) |
C6—C7—C8—C3 | −0.1 (4) | N19—C15—C16—C20 | −179.03 (18) |
O2—P1—C9—C10 | −145.38 (16) | P1—C15—C16—C20 | 0.7 (3) |
C15—P1—C9—C10 | 92.73 (17) | C15—C16—C17—C18 | −0.5 (2) |
C3—P1—C9—C10 | −24.33 (18) | C20—C16—C17—C18 | 178.98 (18) |
O2—P1—C9—C14 | 34.61 (17) | C16—C17—C18—N19 | 0.4 (2) |
C15—P1—C9—C14 | −87.28 (16) | C16—C17—C18—C21 | −178.5 (2) |
C3—P1—C9—C14 | 155.66 (14) | C17—C18—N19—C15 | −0.10 (19) |
C14—C9—C10—C11 | −0.1 (3) | C21—C18—N19—C15 | 178.96 (18) |
P1—C9—C10—C11 | 179.85 (16) | C16—C15—N19—C18 | −0.23 (18) |
C9—C10—C11—C12 | 0.4 (3) | P1—C15—N19—C18 | 179.95 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N19—H19···O2i | 0.862 (19) | 1.92 (2) | 2.757 (2) | 164.7 (18) |
Symmetry code: (i) −x+1, y, −z+1/2. |
Funding information
Funding for this research was provided by: Chungnam National University .
References
Agapie, T. (2011). Coord. Chem. Rev. 255, 861–880. CrossRef CAS Google Scholar
Al-Farhan, K. (1992). J. Crystallogr. Spectrosc. Res. 22, 687–689. CAS Google Scholar
Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fliedel, C. R., Ghisolfi, A. & Braunstein, P. (2016). Chem. Rev. 116, 9237–9304. CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kunz, P. C., Huber, W. & Spingler, B. (2011). J. Chem. Crystallogr. 41, 105–110. Web of Science CSD CrossRef CAS Google Scholar
McGuinness, D. S. (2011). Chem. Rev. 111, 2321–2341. CrossRef CAS PubMed Google Scholar
Moloy, K. G. & Petersen, J. L. (1995). J. Am. Chem. Soc. 117, 7696–7710. CSD CrossRef CAS Web of Science Google Scholar
Nyamato, G. S., Alam, M. G., Ojwach, S. O. & Akerman, M. P. (2015). J. Organomet. Chem. 783, 64–72. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Vélez Del Burgo, A., Ochoa de Retana, A. M., de Los Santos, J. M. & Palacios, F. (2016). J. Org. Chem. 81, 100–108. PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.