research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[N-(2-hy­dr­oxy­eth­yl)-N-methyl­di­thio­carbamato-κ2S,S′](pyridine)­zinc(II) pyridine monosolvate and its N-ethyl analogue

aChemical Abstracts Service, 2540 Olentangy River Rd, Columbus, Ohio 43202, USA, and bCentre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by M. Weil, Vienna University of Technology, Austria (Received 13 July 2017; accepted 17 July 2017; online 21 July 2017)

The common structural feature of the title compounds, [Zn(C4H8NOS2)2(C5H5N)]·C5H5N (I) and [Zn(C5H10NOS2)2(C5H5N)]·C5H5N (II), which differ by having di­thio­carbamate N-bound methyl (I) and ethyl (II) groups, is the coordination of each ZnII atom by two non-symmetrically chelating di­thio­carbamate ligands and by a pyridine ligand; in each case, the non-coordinating pyridine mol­ecule is connected to the Zn-containing mol­ecule via a (hy­droxy)O—H⋯N(pyridine) hydrogen bond. The resulting NS4 coordination geometry is closer to a square-pyramid than a trigonal bipyramid in the case of (I), but almost inter­mediate between the two extremes in (II). The mol­ecular packing features (hy­droxy)O—H⋯O(hy­droxy) hydrogen bonds, leading to supra­molecular chains with a zigzag arrangement along [10-1] (I) or a helical arrangement along [010] (II). In (I), ππ [inter-centroid distances = 3.4738 (10) and 3.4848 (10) Å] between coordinating and non-coordinating pyridine mol­ecules lead to stacks comprising alternating rings along the a axis. In (II), weaker ππ contacts occur between centrosymmetrically related pairs of coordinating pyridine mol­ecules [inter-centroid separation = 3.9815 (14) Å]. Further inter­actions, including C—H⋯π(chelate) inter­actions in (I), lead to a three-dimensional architecture in each case.

1. Chemical context

Potentially multidentate ligands such as di­thio­carbamate, S2CNRR′, di­thio­carbonate (xanthate), S2COR, and di­thio­phosphate, S2P(OR)(OR′), all belong to the 1,1-di­thiol­ate class of ligands. While many similarities are apparent in their coordination propensities (Hogarth, 2005[Hogarth, G. (2005). Prog. Inorg. Chem. 53, 71-561.]; Heard, 2005[Heard, P. J. (2005). Prog. Inorg. Chem. 53, 1-69.]; Tiekink & Haiduc, 2005[Tiekink, E. R. T. & Haiduc, I. (2005). Prog. Inorg. Chem. 54, 127-319.]; Haiduc & Sowerby, 1996[Haiduc, I. & Sowerby, D. B. (1996). Polyhedron, 15, 2469-2521.]), stark differences sometimes occur. As a case in point are species formed with the potentially bidentate ligand trans-1,2-bis­(4-pyrid­yl)ethyl­ene (bpe). With Zn(S2COEt)2, a 1:1 compound can be prepared which crystallography shows to be a one-dimensional coordination polymer with a zigzag arrangement (Kang et al., 2010[Kang, J.-G., Shin, J.-S., Cho, D.-H., Jeong, Y.-K., Park, C., Soh, S. F., Lai, C. S. & Tiekink, E. R. T. (2010). Cryst. Growth Des. 10, 1247-1256.]). A similar structure is found for the R = n-Bu species, but in the case of a bulky cyclo­hexyl (Cy) group only the dimeric aggregate [Zn(S2COCy)2]2(bpe) could be isolated (Kang et al., 2010[Kang, J.-G., Shin, J.-S., Cho, D.-H., Jeong, Y.-K., Park, C., Soh, S. F., Lai, C. S. & Tiekink, E. R. T. (2010). Cryst. Growth Des. 10, 1247-1256.]). Such steric control over supra­molecular aggregation is well established in the structural chemistry of main group 1,1-di­thiol­ate compounds (Tiekink, 2003[Tiekink, E. R. T. (2003). CrystEngComm, 5, 101-113.], 2006[Tiekink, E. R. T. (2006). CrystEngComm, 8, 104-118.]). A similar situation to the above occurs for zinc(II) di­thio­phosphates, Zn[S2P(OR)2]2, in that 1:1 one-dimensional coordination polymers can be formed with bpe when R = i-Pr (Welte & Tiekink, 2007[Welte, W. B. & Tiekink, E. R. T. (2007). Acta Cryst. E63, m790-m792.]), R = i-Bu (Welte & Tiekink, 2006[Welte, W. B. & Tiekink, E. R. T. (2006). Acta Cryst. E62, m2070-m2072.]) and R = Cy (Lai et al., 2004[Lai, C. S., Liu, S. & Tiekink, E. R. T. (2004). CrystEngComm, 6, 221-226.]). Inter­estingly, when R is small, a zigzag chain is formed in the crystal but larger groups, i.e. R = Cy, lead to linear chains. The situation changes for zinc(II) di­thio­carbamates of bpe, where only binuclear species, [Zn(S2CNR2)2]2(bpe), have been isolated, e.g. R = Me (Poplaukhin & Tiekink, 2009[Poplaukhin, P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m1474.]), R = Et (Arman et al., 2009b[Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2009b). Acta Cryst. E65, m1475.]) and i-Pr (Arman et al., 2009a[Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2009a). Acta Cryst. E65, m1472-m1473.]). When an excess of bpe is introduced into the reaction with R = Et, the dimeric aggregate is again isolated and an additional mol­ecule of bpe is incorporated into the crystal (Lai & Tiekink, 2003[Lai, C. S. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 251-252.]). This contrasting behaviour can be explained in terms of an effective chelating mode of the di­thio­carabmate ligand owing to a 40% contribution of the 2−S2C=N+RRcanonical form to the overall electronic structure. This reduces the Lewis acidity of the zinc cation and results in an inability to increase its coordination number beyond five in these systems.

[Scheme 1]

In order to overcome the reluctance of zinc(II) di­thio­carbamates to generate extended supra­molecular architectures, the di­thio­carbamate ligands can be functionalized with hydrogen-bonding potential, i.e. S2CN(R)CH2CH2OH (Howie et al., 2008[Howie, R. A., de Lima, G. M., Menezes, D. C., Wardell, J. L., Wardell, S. M. S. V., Young, D. J. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 1626-1637.]), and systematic studies conducted. This influence is nicely seen in the crystal of the binary species, Zn[S2N(CH2CH2OH)2]2, where the dimeric aggregate, mediated by Zn—S bridges, self-assembles into a three-dimensional architecture based on hydrogen bonding (Benson et al., 2007[Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930-941.]). Studies have shown that binuclear aggregates with 4,4′-bi­pyridine (bipy) bridges can be formed with these function­alized di­thio­carbamate ligands, consistent with the above, but extended arrays result, being stabilized via hydrogen bonding (Benson et al., 2007[Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930-941.]), e.g. an open supra­molecular layer in the case of {Zn[S2CN(Me)CH2CH2OH]2}2(bipy), which allows for the construction of a doubly inter­penetrated architecture. When the bridge is pyrazine, the three-dimensional architecture is sustained by (hy­droxy)O—H⋯O(hy­droxy) hydrogen bonding exclusively (Jotani et al., 2017[Jotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2017). Z. Kristallogr. 232, 287-298.]). When the bridge is significantly longer, e.g. (3-pyrid­yl)CH2N(H)C(=O)C(=O)N(H)CH2(3-pyrid­yl), i.e. LH2, the dimeric {Zn[S2CN(Me)CH2CH2OH)2]2}2(LH2) aggregates are inter­woven into supra­molecular chains sustained by hydrogen bonding (Poplaukhin & Tiekink, 2010[Poplaukhin, P. & Tiekink, E. R. T. (2010). CrystEngComm, 12, 1302-1306.]). In a continuation of these structural studies, herein the crystal and mol­ecular structures of two pyridine adducts are described, namely {Zn[S2CN(R)CH2CH2OH]2(pyridine)·pyridine} for R = Me (I)[link] and Et (II)[link].

2. Structural commentary

The mol­ecular structures of {Zn[S2CN(R)CH2CH2OH]2(pyridine)·.pyridine}, for R = Me (I)[link] and Et (II)[link], are shown in Fig. 1[link], and selected geometric parameters are given in Table 1[link]. In (I)[link], the di­thio­carbamate ligands coordinate with non-symmetric Zn—S bond lengths which is conveniently qu­anti­fied by ΔZn—S = Zn—Slong - Zn—Sshort. For the S1-di­thio­carbamate ligand, ΔZn—S = 0.23 Å, but this decreases to 0.17 Å for the S3-ligand. From the data in Table 1[link], there is a tendency for the sulfur atoms forming the shorter Zn—S bonds to be involved in the longer C—S bonds. The pyridine-N atom occupies the fifth position in the five-coordinate zinc cation and forms N—Zn—S angles in the range 99.96 (4) to 111.99 (3)°. Further, the pyridine ring is almost orthogonal to the planes through each of the chelate rings, Table 1[link]. The value of τ, which ranges from 0.0 to 1.0° for ideal square-pyramidal to trigonal-bipyramidal, respectively (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]), computes to 0.34, suggesting a distortion towards a square-pyramidal geometry. If this was the case, the basal plane comprises the four sulfur atoms (r.m.s. deviation = 0.1841 Å) and the zinc cation lies 0.6877 (3) Å out of the plane in the direction of the pyridine-N3 atom. The asymmetric unit of (I)[link] is completed by a second pyridine mol­ecule that is connected to the (hy­droxy)O2—H atom via a hydrogen bond, Table 2[link].

Table 1
Geometric data (Å, °) for (I)[link] and (II)

Parameter (I); n = 5 (II); n = 6
Zn—S1 2.3618 (5) 2.3414 (6)
Zn—S2 2.5902 (5) 2.6140 (6)
Zn—S3 2.3678 (5) 2.3666 (6)
Zn—S4 2.5436 (5) 2.5627 (6)
Zn—N3 2.0504 (13) 2.0611 (16)
C1—S1, S2 1.7331 (15), 1.7176 (15) 1.7357 (18), 1.7168 (19)
C(n)—S3, S4 1.7309 (15), 1.7171 (15) 1.7388 (18), 1.7195 (19)
S1—Zn—S2 73.012 (16) 72.621 (17)
S3—Zn—S4 73.765 (16) 73.534 (16)
S1—Zn—S3 136.711 (17) 132.86 (2)
S1—Zn—S4 98.906 (17) 98.846 (19)
S2—Zn—S3 97.326 (17) 104.146 (17)
S2—Zn—S4 157.363 (16) 166.375 (19)
S1—Zn—N3 111.99 (3) 116.78 (5)
S2—Zn—N3 99.96 (4) 93.26 (5)
S3—Zn—N3 111.23 (3) 110.34 (5)
S4—Zn—N3 102.66 (4) 100.14 (5)
S1,S2,C1/S3,S4,C(n) 46.16 (2) 49.06 (5)
S1,S2,C1/pyrid­yl 83.78 (5) 78.21 (7)
S3,S4,C(n)/pyrid­yl 84.93 (4) 88.39 (5)

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 and Cg2 are the centroids of the Zn/S1/S2/C1 and Zn/S3/S4/C5 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2i 0.84 (2) 1.88 (2) 2.7008 (18) 164 (2)
O2—H2O⋯N4 0.85 (2) 1.87 (2) 2.713 (2) 178 (2)
C8—H8C⋯O1ii 0.98 2.56 3.418 (2) 146
C11—H11⋯Cg1iii 0.95 2.87 3.7324 (18) 151
C11—H11⋯Cg2iii 0.95 2.98 3.7772 (18) 142
Symmetry codes: (i) [x-{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structures of (a) (I)[link] and (b) (II)[link], showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

To a first approximation the structure of (II)[link] resembles that of (I)[link]. The values of ΔZn—S, at 0.27 and 0.19 Å for the S1- and S3-di­thio­carbamate ligands, respectively, are slightly greater than the equivalent values in (I)[link], and this is also seen in the greater disparity in the associated C—S bond lengths, Table 1[link]. The range of N—Zn—S bond angles is also broader, at 93.26 (5)–116.78 (5) Å and there is a disparity in the CS2/pyridine dihedral angles of 10.2°, cf. 1.1° for (I)[link]. The value of τ is 0.56, indicating a small tendency towards trigonal–bipyramidal, certainly when compared with the coordination geometry for (I)[link]. The widest angle subtended at the zinc cation is by the two less tightly held sulfur atoms, i.e. 166.375 (19)°. As for (I)[link], distortions in the coordination geometry can be traced to the tight chelate angles, disparity in donor sets, bond lengths, etc. The solvent mol­ecule in (II)[link] is also associated with the O2-hy­droxy group via a hydrogen bond.

Despite the relatively close agreement between the coord­ination geometries of the Zn[S2CN(R)CH2CH2OH]2 mol­ecules in (I)[link] and (II)[link], the overlay diagram shown in Fig. 2[link] emphasizes the differences in the relative orientations of the less symmetrically coordinating di­thio­carbamate ligands and the coordinating pyridine mol­ecules. More striking are the opposite orientations adopted by the hy­droxy groups of the more symmetrically coordinating di­thio­carbamate ligands and therefore, the pyridine mol­ecules to which they are connected. This impacts significantly upon the mol­ecular packing as described in the next Section.

[Figure 2]
Figure 2
Overlay diagram of the asymmetric units of (I)[link], red image, and (II)[link]. The mol­ecules have been overlapped so the more symmetrically coordinating di­thio­carbamate ligands are coincident.

3. Supra­molecular features

The key geometric parameters characterizing the inter­molecular inter­actions operating in the crystals of (I)[link] and (II)[link] are collated in Tables 2[link] and 3[link], respectively. In the mol­ecular packing of (I)[link], (hy­droxy)O—H⋯O(hy­droxy) hydrogen bonding between the two independent hy­droxy groups leads to a supra­molecular zigzag chain aligned along [10[\overline{1}]] with the solvent pyridine mol­ecules associated with the chain via (hy­droxy)O—H⋯N(pyridine) hydrogen bonding, Fig. 3[link]a. While the hy­droxy-O2 atom is involved in two conventional hydrogen bonds, the hy­droxy-O1 atom is not. Rather, it participates in a (meth­yl)C—H⋯O(hy­droxy) inter­action, Table 2[link]. Globally, mol­ecules stack along the a axis with solvent pyridine mol­ecules inter­spersed between coordinating pyridine mol­ecules to form columns connected by π(coordinating pyridine)—π(solvent pyridine) inter­actions so that each ring forms two contacts. The separations between the ring centroids are 3.4738 (10) and 3.4848 (10) Å for an angle of inclination = 0.28 (7)°; symmetry operations: 2 − x, 1 − y, −z and 1 − x, 1 − y, −z. Further connections between the constituent mol­ecules are of the type (solvent pyridine)C—H⋯π(chelate ring). As seen from Fig. 3[link]a, the solvent pyridine mol­ecules are located in a position proximate to the chelate rings enabling such inter­actions to form. A view of the unit-cell contents is shown in Fig. 3[link]b.

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2i 0.84 (2) 1.99 (2) 2.817 (2) 167 (3)
O2—H2O⋯N4 0.84 (3) 1.93 (3) 2.753 (3) 167 (3)
C2—H2B⋯S3ii 0.99 2.84 3.773 (2) 157
C14—H14⋯S2iii 0.95 2.69 3.443 (2) 137
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+1.
[Figure 3]
Figure 3
Mol­ecular packing in (I)[link]: (a) supra­molecular zigzag chain aligned along [10[\overline{1}]] and sustained by O—H⋯O hydrogen bonding, with the solvent pyridine mol­ecules attached via O—H⋯N hydrogen bonding, (b) a view of the unit-cell contents in projection down the a axis and (c) supra­molecular chain along the b axis sustained by (pyridine)C—H⋯π(chelate ring) inter­actions. The O—H⋯O, O—H⋯N, C—H⋯O, ππ and C—H⋯π(chelate ring) inter­actions are shown as orange, blue, brown, purple and pink dashed lines, respectively.

The result of the aforementioned (solvent pyridine)C—H⋯π(chelate ring) inter­actions is a supra­molecular chain aligned along the b axis as shown in Fig. 3[link]c. Such inter­actions are well known in the supra­molecular chemistry of metal 1,1-di­thiol­ates in general and di­thio­carbamates in particular owing to significant delocalization of π-electron density over the chelate rings relative to other 1,1-di­thiol­ate ligands such as those cited above (Tiekink & Zukerman-Schpector, 2011[Tiekink, E. R. T. & Zukerman-Schpector, J. (2011). Chem. Commun. 47, 6623-6625.]; Tiekink, 2017[Tiekink, E. R. T. (2017). Coord. Chem. Rev. 345, 209-228.]). The unusual feature in the present case is that the (pyridine)C—H hydrogen bond forming the inter­action is bifurcated (Tan et al., 2016[Tan, Y. S., Halim, S. N. A., Molloy, K. C., Sudlow, A. L., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2016). CrystEngComm, 18, 1105-1117.]), Table 3[link]. Finally, for completeness, it is noted that analogous but intra­molecular (coordinating pyridine)C—H⋯π(chelate ring) inter­actions also occur, Fig. 3[link]c, with (pyridine)C—H⋯ring centroid separations of 2 x 2.90 Å and C—H⋯ring centroid angles of 113°. These inter­actions might account for the symmetric disposition of the coordinating pyridine mol­ecule with respect to the ZnS4 arrangement.

In the crystal of (II)[link], (hy­droxy)O—H⋯O(hy­droxy) hydrogen bonds between the two independent hy­droxy groups are also formed but, in this case, leading to a supra­molecular helical chain aligned along [010] and again with the solvent pyridine mol­ecules associated via (hy­droxy)O—H⋯N(pyridine) hydrogen bonding, Fig. 4[link]a. Connections between the chains are of the type (coordinating pyridine)- and (methyl­ene)C—H⋯S inter­actions as well as weak ππ contacts between centrosymmetrically related coordinating pyridine mol­ecules [inter-centroid separation = 3.9815 (14) Å for symmetry operation 1 − x, 1 − y, 1 − z]. A view of the unit-cell contents is shown in Fig. 4[link]b. As for (I)[link], it is noted that intra­molecular coordinating (pyridine)C—H⋯π(chelate ring) inter­actions occur [(pyridine)C—H⋯ring centroid separations are 2.93 and 2.90 Å, and C—H⋯ring centroid angles are 110 and 112°].

[Figure 4]
Figure 4
Mol­ecular packing in (II)[link]: (a) supra­molecular helical chain aligned along [010] and sustained by O—H⋯O hydrogen bonding, with the solvent pyridine mol­ecules attached via O—H⋯N hydrogen bonding, and (b) a view of the unit-cell contents in projection down the a axis. The O—H⋯S, O—H⋯N, C—H⋯S and ππ inter­actions are shown as orange, blue, pink and purple dashed lines, respectively.

4. Database survey

As a result of encouraging biological activities, e.g. as anti-cancer agents (Cvek et al., 2008[Cvek, B., Milacic, V., Taraba, J. & Dou, Q. P. (2008). J. Med. Chem. 51, 6256-6258.]; Tan et al., 2015[Tan, Y. S., Ooi, K. K., Ang, K. P., Akim, A. Md., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2015). J. Inorg. Biochem. 150, 48-62.]) and for applications in tropical diseases (Manar et al., 2017[Manar, K. K., Yadav, C. L., Tiwari, N., Singh, R. K., Kumar, A., Drew, M. G. B. & Singh, N. (2017). CrystEngComm, 19, 2660-2672.]), as well as their utility as single-source precursors for the deposition of ZnS nanomaterials (Hrubaru et al., 2016[Hrubaru, M., Onwudiwe, D. C. & Hosten, E. (2016). J. Sulfur Chem. 37, 37-47.]; Manar et al., 2017[Manar, K. K., Yadav, C. L., Tiwari, N., Singh, R. K., Kumar, A., Drew, M. G. B. & Singh, N. (2017). CrystEngComm, 19, 2660-2672.]), zinc di­thio­carbamates continue to be well studied. The compounds are generally binuclear as there are equal numbers of chelating and tridentate, μ2-bridging ligands, leading to distorted square-pyramidal coordination spheres (Tiekink, 2003[Tiekink, E. R. T. (2003). CrystEngComm, 5, 101-113.]). The structures of the precursor mol­ecules are readily disrupted by the addition of small donor mol­ecules such as in the present report with pyridine. Indeed, one of the first pyridine adducts of a zinc di­thio­carbamate to be described was that of Zn(S2CNEt2)2(pyridine), which was motivated by the desire to destroy the binuclear structure observed for the binary di­thio­carbamate compound to form a lighter (i.e. lower mol­ecular weight) species to facilitate chemical vapour deposition studies (Malik et al., 1999[Malik, M. A., Motevalli, M. & O'Brien, P. (1999). Polyhedron, 18, 1259-1264.]). A search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals over 25 `hits' for related Zn(S2CNRR')2(pyridine) species. More sophisticated monodentate nitro­gen-donor adducts are also known, such as substituted pyridines, e.g. 3-hy­droxy­pyridine (Jotani et al., 2016[Jotani, M. M., Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1700-1709.]), and non-aromatic donors such as piperidine (Zaeva et al., 2011[Zaeva, A. S., Rodina, T. A., Ivanov, A. V. & Gerasimenko, A. V. (2011). Russ. J. Coord. Chem. 56, 1318-1323.]) and urotropine (hexa­methyl­ene­tetra­mine; Câmpian et al., 2016[Câmpian, M. V., Azizuddin, A. D., Haiduc, I. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 737-747.]). All of the adducts reveal similar mononuclear structures with NS4 coordination geometries, similar to those described above for (I)[link] and (II)[link]. Finally, it is inter­esting to note that the aforementioned Zn(S2CNEt2)2(pyridine) adduct has also been characterized as a mono-pyridine solvate (Ivanov et al., 1998[Ivanov, A. V., Kritikos, M., Antsutkin, O. N., Lund, A. & Mitrofanova, V. I. (1998). Russ. J. Coord. Chem. 24, 645-654.]), indicating that hydrogen bonding of the type observed in (I)[link] and (II)[link] is not a prerequisite for incorporation of solvent pyridine in the crystal.

5. Synthesis and crystallization

The Zn[S2CN(R)CH2CH2OH]2, R = Me and Et, precursors were prepared as per established procedures (Benson et al., 2007[Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930-941.]). Crystals were of (I)[link] were prepared in the following manner. In a typical experiment, Zn[S2CN(R)CH2CH2OH]2, R = Me and Et (50 mg), was dissolved in pyridine (10 ml) and carefully layered with hexa­nes (10 ml). Crystals were harvested directly from solution and mounted immediately onto the diffractometer to avoid loss of pyridine.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. For each of (I)[link] and (II)[link], carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The O-bound H atoms were located in difference-Fourier maps but were refined with a distance restraint of O—H = 0.84±0.01 Å, and with Uiso(H) set to 1.5Ueq(O). For (I)[link], the maximum and minimum residual electron density peaks of 0.70 and 1.48 e Å−3, respectively, were located 1.03 and 1.02 Å from the Zn atom. For (II)[link], the maximum and minimum residual electron density peaks of 0.92 and 1.61 e Å−3, respectively, were located 1.02 and 0.61 Å from the Zn atom.

Table 4
Experimental details

  (I) (II)
Crystal data
Chemical formula [Zn(C4H8NOS2)2(C5H5N)]·C5H5N [Zn(C5H10NOS2)2(C5H5N)]·C5H5N
Mr 524.06 552.09
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 98 98
a, b, c (Å) 6.9457 (9), 17.638 (2), 18.552 (3) 11.2961 (16), 8.6514 (12), 25.716 (4)
β (°) 91.619 (2) 98.265 (3)
V3) 2271.9 (5) 2487.0 (6)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.47 1.35
Crystal size (mm) 0.40 × 0.30 × 0.25 0.30 × 0.15 × 0.10
 
Data collection
Diffractometer AFC12K/SATURN724 AFC12K/SATURN724
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.766, 1.000 0.823, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 25102, 13197, 11207 38694, 15181, 12445
Rint 0.031 0.044
(sin θ/λ)max−1) 0.918 0.920
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.140, 1.09 0.067, 0.167, 1.12
No. of reflections 13197 15181
No. of parameters 270 288
No. of restraints 2 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.70, −1.48 0.92, −1.61
Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[N-(2-hydroxyethyl)-N-methyldithiocarbamato-κ2S,S'](pyridine)zinc(II) pyridine monosolvate (I) top
Crystal data top
[Zn(C4H8NOS2)2(C5H5N)]·C5H5NF(000) = 1088
Mr = 524.06Dx = 1.532 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
a = 6.9457 (9) ÅCell parameters from 14301 reflections
b = 17.638 (2) Åθ = 2.3–40.7°
c = 18.552 (3) ŵ = 1.47 mm1
β = 91.619 (2)°T = 98 K
V = 2271.9 (5) Å3Prism, colourless
Z = 40.40 × 0.30 × 0.25 mm
Data collection top
AFC12K/SATURN724
diffractometer
13197 independent reflections
Radiation source: fine-focus sealed tube11207 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 40.7°, θmin = 2.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 126
Tmin = 0.766, Tmax = 1.000k = 3224
25102 measured reflectionsl = 2433
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.053P)2 + 1.0614P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
13197 reflectionsΔρmax = 0.70 e Å3
270 parametersΔρmin = 1.48 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.76451 (3)0.48081 (2)0.24723 (2)0.01870 (5)
S11.01537 (5)0.53140 (2)0.32115 (2)0.02020 (7)
S20.62546 (6)0.50167 (2)0.37379 (2)0.02190 (7)
S30.49806 (5)0.52874 (2)0.17907 (2)0.01974 (7)
S40.89209 (6)0.51679 (2)0.12469 (2)0.02174 (7)
O10.74031 (18)0.71648 (7)0.50152 (7)0.0249 (2)
H1O0.673 (3)0.7534 (10)0.4870 (14)0.037*
O20.96838 (19)0.68555 (7)0.04784 (7)0.0271 (2)
H2O0.912 (3)0.6949 (15)0.0879 (8)0.041*
N10.59677 (19)0.57633 (7)0.04818 (7)0.0197 (2)
N20.90043 (19)0.57235 (7)0.45207 (7)0.0195 (2)
N30.77129 (17)0.36463 (7)0.24459 (6)0.01762 (19)
N40.7983 (2)0.71567 (9)0.17816 (8)0.0242 (2)
C10.8516 (2)0.53850 (8)0.38962 (7)0.0178 (2)
C20.7607 (2)0.58086 (8)0.50946 (8)0.0212 (2)
H2A0.83120.58630.55630.025*
H2B0.68130.53440.51170.025*
C30.6293 (2)0.64871 (9)0.49820 (9)0.0235 (3)
H3A0.56170.64490.45060.028*
H3B0.53130.64960.53590.028*
C41.0894 (2)0.60795 (9)0.46490 (9)0.0240 (3)
H4A1.18260.58590.43220.036*
H4B1.13260.59910.51490.036*
H4C1.07920.66260.45610.036*
C50.6568 (2)0.54396 (8)0.11027 (7)0.0177 (2)
C60.7319 (2)0.59353 (8)0.00895 (8)0.0208 (2)
H6A0.66290.59230.05640.025*
H6B0.83430.55450.00920.025*
C70.8224 (3)0.67163 (9)0.00288 (9)0.0262 (3)
H7A0.72150.71110.00210.031*
H7B0.87900.67470.05240.031*
C80.3984 (2)0.60330 (9)0.03608 (9)0.0239 (3)
H8A0.31400.57880.07050.036*
H8B0.35470.59070.01320.036*
H8C0.39410.65840.04280.036*
C90.8304 (2)0.32452 (8)0.30251 (8)0.0195 (2)
H90.87100.35090.34490.023*
C100.8342 (2)0.24592 (9)0.30270 (9)0.0230 (3)
H100.87700.21890.34450.028*
C110.7742 (2)0.20738 (9)0.24053 (10)0.0244 (3)
H110.77530.15350.23920.029*
C120.7130 (2)0.24853 (9)0.18064 (9)0.0227 (3)
H120.67080.22350.13770.027*
C130.7145 (2)0.32700 (8)0.18455 (8)0.0200 (2)
H130.67390.35530.14330.024*
C140.7583 (2)0.65504 (10)0.21958 (10)0.0254 (3)
H140.77870.60600.19970.030*
C150.6883 (2)0.66082 (10)0.29017 (10)0.0266 (3)
H150.66250.61670.31810.032*
C160.6568 (2)0.73237 (11)0.31896 (9)0.0266 (3)
H160.60910.73810.36720.032*
C170.6958 (2)0.79563 (10)0.27655 (9)0.0251 (3)
H170.67420.84530.29490.030*
C180.7671 (2)0.78459 (10)0.20678 (9)0.0242 (3)
H180.79520.82790.17790.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.02335 (9)0.01525 (7)0.01732 (8)0.00012 (5)0.00244 (6)0.00023 (5)
S10.02114 (15)0.02096 (14)0.01852 (14)0.00256 (11)0.00097 (12)0.00106 (11)
S20.02227 (16)0.02518 (16)0.01831 (14)0.00572 (12)0.00155 (12)0.00305 (12)
S30.02062 (15)0.02014 (14)0.01851 (14)0.00136 (11)0.00147 (12)0.00278 (11)
S40.02038 (15)0.02581 (16)0.01907 (15)0.00265 (12)0.00130 (12)0.00458 (11)
O10.0293 (6)0.0186 (4)0.0266 (5)0.0002 (4)0.0016 (4)0.0008 (4)
O20.0313 (6)0.0283 (5)0.0217 (5)0.0070 (4)0.0008 (4)0.0036 (4)
N10.0234 (5)0.0184 (5)0.0173 (5)0.0002 (4)0.0007 (4)0.0023 (4)
N20.0236 (5)0.0177 (4)0.0170 (5)0.0017 (4)0.0012 (4)0.0007 (4)
N30.0192 (5)0.0162 (4)0.0174 (5)0.0002 (3)0.0005 (4)0.0006 (3)
N40.0208 (5)0.0307 (6)0.0210 (5)0.0014 (5)0.0015 (4)0.0012 (5)
C10.0218 (6)0.0152 (5)0.0163 (5)0.0018 (4)0.0009 (4)0.0008 (4)
C20.0281 (7)0.0193 (5)0.0162 (5)0.0008 (5)0.0003 (5)0.0002 (4)
C30.0271 (7)0.0205 (6)0.0228 (6)0.0002 (5)0.0011 (5)0.0023 (5)
C40.0257 (7)0.0206 (6)0.0255 (7)0.0040 (5)0.0050 (6)0.0011 (5)
C50.0211 (5)0.0153 (5)0.0168 (5)0.0000 (4)0.0011 (4)0.0000 (4)
C60.0269 (6)0.0195 (5)0.0159 (5)0.0015 (5)0.0003 (5)0.0008 (4)
C70.0373 (8)0.0205 (6)0.0211 (6)0.0052 (5)0.0038 (6)0.0005 (5)
C80.0245 (6)0.0243 (6)0.0226 (6)0.0025 (5)0.0044 (5)0.0023 (5)
C90.0205 (6)0.0186 (5)0.0193 (5)0.0001 (4)0.0010 (4)0.0027 (4)
C100.0222 (6)0.0195 (5)0.0273 (7)0.0013 (5)0.0020 (5)0.0065 (5)
C110.0232 (6)0.0166 (5)0.0336 (8)0.0009 (4)0.0036 (6)0.0008 (5)
C120.0226 (6)0.0197 (6)0.0258 (7)0.0018 (5)0.0012 (5)0.0048 (5)
C130.0215 (6)0.0192 (5)0.0192 (5)0.0004 (4)0.0005 (5)0.0009 (4)
C140.0217 (6)0.0255 (7)0.0292 (7)0.0020 (5)0.0053 (5)0.0015 (5)
C150.0222 (6)0.0298 (7)0.0280 (7)0.0044 (5)0.0031 (6)0.0072 (6)
C160.0215 (6)0.0376 (8)0.0205 (6)0.0012 (6)0.0002 (5)0.0023 (6)
C170.0236 (6)0.0277 (7)0.0240 (6)0.0036 (5)0.0031 (5)0.0020 (5)
C180.0213 (6)0.0274 (7)0.0241 (6)0.0008 (5)0.0024 (5)0.0029 (5)
Geometric parameters (Å, º) top
Zn—N32.0504 (13)C4—H4B0.9800
Zn—S12.3618 (5)C4—H4C0.9800
Zn—S32.3678 (5)C6—C71.528 (2)
Zn—S42.5436 (5)C6—H6A0.9900
Zn—S22.5902 (5)C6—H6B0.9900
S1—C11.7331 (15)C7—H7A0.9900
S2—C11.7176 (15)C7—H7B0.9900
S3—C51.7309 (15)C8—H8A0.9800
S4—C51.7171 (15)C8—H8B0.9800
O1—C31.423 (2)C8—H8C0.9800
O1—H1O0.840 (9)C9—C101.387 (2)
O2—C71.424 (2)C9—H90.9500
O2—H2O0.847 (9)C10—C111.392 (2)
N1—C51.3412 (19)C10—H100.9500
N1—C61.467 (2)C11—C121.384 (2)
N1—C81.469 (2)C11—H110.9500
N2—C11.3385 (18)C12—C131.386 (2)
N2—C21.469 (2)C12—H120.9500
N2—C41.469 (2)C13—H130.9500
N3—C91.3410 (18)C14—C151.388 (3)
N3—C131.3462 (19)C14—H140.9500
N4—C141.341 (2)C15—C161.385 (3)
N4—C181.342 (2)C15—H150.9500
C2—C31.516 (2)C16—C171.388 (2)
C2—H2A0.9900C16—H160.9500
C2—H2B0.9900C17—C181.386 (3)
C3—H3A0.9900C17—H170.9500
C3—H3B0.9900C18—H180.9500
C4—H4A0.9800
N3—Zn—S1111.99 (3)S4—C5—S3117.71 (8)
N3—Zn—S3111.23 (3)N1—C6—C7110.61 (12)
S1—Zn—S3136.711 (17)N1—C6—H6A109.5
N3—Zn—S4102.66 (4)C7—C6—H6A109.5
S1—Zn—S498.906 (17)N1—C6—H6B109.5
S3—Zn—S473.765 (16)C7—C6—H6B109.5
N3—Zn—S299.96 (4)H6A—C6—H6B108.1
S1—Zn—S273.012 (16)O2—C7—C6111.01 (13)
S3—Zn—S297.326 (17)O2—C7—H7A109.4
S4—Zn—S2157.363 (16)C6—C7—H7A109.4
C1—S1—Zn87.95 (5)O2—C7—H7B109.4
C1—S2—Zn81.14 (5)C6—C7—H7B109.4
C5—S3—Zn86.84 (5)H7A—C7—H7B108.0
C5—S4—Zn81.65 (5)N1—C8—H8A109.5
C3—O1—H1O110.0 (18)N1—C8—H8B109.5
C7—O2—H2O107.1 (19)H8A—C8—H8B109.5
C5—N1—C6121.26 (13)N1—C8—H8C109.5
C5—N1—C8122.44 (13)H8A—C8—H8C109.5
C6—N1—C8116.04 (12)H8B—C8—H8C109.5
C1—N2—C2121.13 (13)N3—C9—C10122.33 (14)
C1—N2—C4122.30 (13)N3—C9—H9118.8
C2—N2—C4116.41 (12)C10—C9—H9118.8
C9—N3—C13118.61 (13)C9—C10—C11118.73 (14)
C9—N3—Zn120.98 (10)C9—C10—H10120.6
C13—N3—Zn120.40 (10)C11—C10—H10120.6
C14—N4—C18117.84 (15)C12—C11—C10119.15 (15)
N2—C1—S2121.64 (11)C12—C11—H11120.4
N2—C1—S1120.75 (11)C10—C11—H11120.4
S2—C1—S1117.60 (8)C11—C12—C13118.69 (15)
N2—C2—C3112.86 (12)C11—C12—H12120.7
N2—C2—H2A109.0C13—C12—H12120.7
C3—C2—H2A109.0N3—C13—C12122.49 (14)
N2—C2—H2B109.0N3—C13—H13118.8
C3—C2—H2B109.0C12—C13—H13118.8
H2A—C2—H2B107.8N4—C14—C15122.92 (16)
O1—C3—C2109.50 (13)N4—C14—H14118.5
O1—C3—H3A109.8C15—C14—H14118.5
C2—C3—H3A109.8C16—C15—C14118.56 (15)
O1—C3—H3B109.8C16—C15—H15120.7
C2—C3—H3B109.8C14—C15—H15120.7
H3A—C3—H3B108.2C15—C16—C17119.20 (16)
N2—C4—H4A109.5C15—C16—H16120.4
N2—C4—H4B109.5C17—C16—H16120.4
H4A—C4—H4B109.5C18—C17—C16118.38 (15)
N2—C4—H4C109.5C18—C17—H17120.8
H4A—C4—H4C109.5C16—C17—H17120.8
H4B—C4—H4C109.5N4—C18—C17123.10 (15)
N1—C5—S4121.59 (11)N4—C18—H18118.5
N1—C5—S3120.70 (11)C17—C18—H18118.5
C2—N2—C1—S21.26 (19)Zn—S3—C5—S41.93 (7)
C4—N2—C1—S2176.42 (11)C5—N1—C6—C787.22 (17)
C2—N2—C1—S1177.95 (10)C8—N1—C6—C787.01 (16)
C4—N2—C1—S12.79 (19)N1—C6—C7—O2173.90 (13)
Zn—S2—C1—N2174.33 (12)C13—N3—C9—C100.2 (2)
Zn—S2—C1—S14.90 (7)Zn—N3—C9—C10179.15 (11)
Zn—S1—C1—N2173.92 (12)N3—C9—C10—C110.1 (2)
Zn—S1—C1—S25.32 (8)C9—C10—C11—C120.1 (2)
C1—N2—C2—C382.38 (17)C10—C11—C12—C130.3 (2)
C4—N2—C2—C393.05 (16)C9—N3—C13—C120.7 (2)
N2—C2—C3—O164.00 (16)Zn—N3—C13—C12178.73 (12)
C6—N1—C5—S43.14 (19)C11—C12—C13—N30.7 (2)
C8—N1—C5—S4177.00 (11)C18—N4—C14—C150.6 (2)
C6—N1—C5—S3176.46 (10)N4—C14—C15—C160.6 (3)
C8—N1—C5—S32.6 (2)C14—C15—C16—C170.1 (2)
Zn—S4—C5—N1177.80 (12)C15—C16—C17—C180.7 (2)
Zn—S4—C5—S31.81 (7)C14—N4—C18—C170.1 (2)
Zn—S3—C5—N1177.69 (12)C16—C17—C18—N40.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the Zn/S1/S2/C1 and Zn/S3/S4/C5 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.84 (2)1.88 (2)2.7008 (18)164 (2)
O2—H2O···N40.85 (2)1.87 (2)2.713 (2)178 (2)
C8—H8C···O1ii0.982.563.418 (2)146
C11—H11···Cg1iii0.952.873.7324 (18)151
C11—H11···Cg2iii0.952.983.7772 (18)142
Symmetry codes: (i) x3/2, y+1/2, z1/2; (ii) x3/2, y+1/2, z3/2; (iii) x+3/2, y1/2, z+1/2.
Bis[N-ethyl-N-(2-hydroxyethyl)dithiocarbamato-κ2S,S'](pyridine)zinc(II) pyridine monosolvate (II) top
Crystal data top
[Zn(C5H10NOS2)2(C5H5N)]·C5H5NF(000) = 1152
Mr = 552.09Dx = 1.474 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
a = 11.2961 (16) ÅCell parameters from 12656 reflections
b = 8.6514 (12) Åθ = 2.4–40.8°
c = 25.716 (4) ŵ = 1.35 mm1
β = 98.265 (3)°T = 98 K
V = 2487.0 (6) Å3Prism, colourless
Z = 40.30 × 0.15 × 0.10 mm
Data collection top
AFC12K/SATURN724
diffractometer
15181 independent reflections
Radiation source: fine-focus sealed tube12445 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 40.8°, θmin = 2.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2020
Tmin = 0.823, Tmax = 1.000k = 1415
38694 measured reflectionsl = 4434
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.0606P)2 + 2.0316P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.003
15181 reflectionsΔρmax = 0.92 e Å3
288 parametersΔρmin = 1.61 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.47427 (2)0.44028 (3)0.64271 (2)0.01851 (5)
S10.55997 (4)0.55454 (6)0.72177 (2)0.01876 (8)
S20.70555 (4)0.44837 (5)0.64257 (2)0.01879 (8)
S30.42049 (4)0.18271 (5)0.61898 (2)0.01930 (8)
S40.26154 (4)0.40105 (6)0.66400 (2)0.02107 (9)
O10.78229 (14)0.4876 (2)0.88352 (6)0.0266 (3)
H1O0.7169 (18)0.521 (4)0.8910 (14)0.040*
O20.04706 (14)0.05941 (19)0.60039 (7)0.0250 (3)
H2O0.019 (3)0.082 (4)0.5728 (9)0.038*
N10.79784 (14)0.52998 (19)0.74066 (7)0.0192 (3)
N20.21137 (14)0.10140 (19)0.64833 (7)0.0191 (3)
N30.43968 (14)0.58368 (19)0.57831 (6)0.0187 (2)
N40.03600 (19)0.1826 (3)0.51379 (8)0.0305 (4)
C10.70026 (15)0.5128 (2)0.70533 (7)0.0174 (3)
C20.79109 (17)0.5804 (2)0.79481 (7)0.0205 (3)
H2A0.72520.65600.79460.025*
H2B0.86670.63230.80940.025*
C30.7695 (2)0.4432 (2)0.82968 (8)0.0254 (4)
H3A0.68790.40210.81880.030*
H3B0.82740.36000.82520.030*
C40.91884 (16)0.4924 (2)0.72956 (8)0.0221 (3)
H4A0.91210.42660.69780.027*
H4B0.96100.43190.75930.027*
C50.9930 (2)0.6340 (3)0.72107 (10)0.0293 (4)
H5A0.95300.69310.69110.044*
H5B1.07230.60160.71400.044*
H5C1.00150.69890.75260.044*
C60.28789 (15)0.2160 (2)0.64413 (7)0.0177 (3)
C70.10530 (17)0.1225 (2)0.67473 (8)0.0225 (3)
H7A0.12380.20000.70310.027*
H7B0.08690.02360.69120.027*
C80.00393 (18)0.1750 (2)0.63788 (9)0.0245 (3)
H8A0.06810.20230.65870.029*
H8B0.01630.26910.61910.029*
C90.23077 (18)0.0579 (2)0.63059 (8)0.0218 (3)
H9A0.27900.05440.60140.026*
H9B0.15250.10500.61710.026*
C100.2944 (2)0.1585 (3)0.67444 (11)0.0345 (5)
H10A0.37660.12160.68420.052*
H10B0.29570.26580.66230.052*
H10C0.25190.15290.70500.052*
C110.4984 (2)0.7171 (2)0.57605 (8)0.0261 (4)
H110.55250.74930.60580.031*
C120.4829 (2)0.8101 (3)0.53160 (10)0.0308 (4)
H120.52550.90460.53110.037*
C130.4043 (2)0.7634 (3)0.48801 (9)0.0264 (4)
H130.39180.82530.45720.032*
C140.34453 (19)0.6245 (3)0.49038 (8)0.0247 (3)
H140.29100.58870.46100.030*
C150.36386 (18)0.5381 (2)0.53632 (8)0.0223 (3)
H150.32190.44350.53800.027*
C160.1423 (2)0.1930 (3)0.49671 (11)0.0329 (5)
H160.20750.13550.51440.039*
C170.1613 (2)0.2840 (3)0.45431 (11)0.0331 (5)
H170.23760.28750.44300.040*
C180.0669 (3)0.3698 (3)0.42880 (10)0.0333 (5)
H180.07760.43420.39990.040*
C190.0426 (3)0.3600 (3)0.44606 (11)0.0363 (5)
H190.10910.41750.42940.044*
C200.0536 (2)0.2647 (3)0.48810 (11)0.0345 (5)
H200.12980.25710.49940.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.01866 (9)0.01800 (9)0.01757 (10)0.00288 (6)0.00185 (7)0.00161 (6)
S10.01561 (16)0.02345 (19)0.01692 (18)0.00013 (13)0.00130 (13)0.00153 (14)
S20.01858 (17)0.02160 (19)0.01603 (18)0.00044 (13)0.00187 (13)0.00093 (13)
S30.01541 (16)0.01877 (17)0.0240 (2)0.00086 (13)0.00388 (14)0.00173 (14)
S40.01822 (17)0.01765 (18)0.0277 (2)0.00105 (13)0.00452 (15)0.00333 (15)
O10.0226 (6)0.0376 (8)0.0186 (6)0.0032 (6)0.0002 (5)0.0005 (6)
O20.0206 (6)0.0278 (7)0.0269 (7)0.0051 (5)0.0040 (5)0.0044 (5)
N10.0155 (5)0.0211 (6)0.0201 (7)0.0018 (5)0.0001 (5)0.0021 (5)
N20.0168 (6)0.0185 (6)0.0223 (7)0.0018 (4)0.0039 (5)0.0020 (5)
N30.0173 (6)0.0200 (6)0.0179 (6)0.0015 (5)0.0009 (5)0.0008 (5)
N40.0324 (9)0.0331 (10)0.0265 (9)0.0055 (7)0.0055 (7)0.0009 (7)
C10.0170 (6)0.0171 (6)0.0179 (7)0.0001 (5)0.0021 (5)0.0005 (5)
C20.0203 (7)0.0219 (7)0.0182 (7)0.0001 (5)0.0016 (5)0.0037 (6)
C30.0305 (9)0.0247 (9)0.0195 (8)0.0015 (7)0.0011 (7)0.0007 (6)
C40.0173 (7)0.0228 (8)0.0257 (8)0.0030 (6)0.0010 (6)0.0034 (6)
C50.0244 (9)0.0304 (10)0.0343 (11)0.0031 (7)0.0081 (8)0.0063 (8)
C60.0152 (6)0.0183 (6)0.0191 (7)0.0004 (5)0.0006 (5)0.0004 (5)
C70.0209 (7)0.0244 (8)0.0230 (8)0.0042 (6)0.0059 (6)0.0039 (6)
C80.0184 (7)0.0237 (8)0.0320 (10)0.0030 (6)0.0058 (7)0.0053 (7)
C90.0209 (7)0.0183 (7)0.0259 (9)0.0030 (5)0.0028 (6)0.0027 (6)
C100.0365 (12)0.0214 (9)0.0426 (13)0.0023 (8)0.0043 (10)0.0032 (8)
C110.0302 (9)0.0223 (8)0.0231 (9)0.0048 (7)0.0050 (7)0.0024 (6)
C120.0340 (11)0.0256 (9)0.0310 (11)0.0052 (8)0.0019 (8)0.0084 (8)
C130.0276 (9)0.0293 (9)0.0222 (9)0.0031 (7)0.0034 (7)0.0060 (7)
C140.0252 (8)0.0312 (9)0.0165 (7)0.0003 (7)0.0006 (6)0.0002 (6)
C150.0216 (7)0.0252 (8)0.0191 (8)0.0037 (6)0.0001 (6)0.0002 (6)
C160.0294 (10)0.0324 (11)0.0360 (12)0.0016 (8)0.0013 (9)0.0034 (9)
C170.0310 (10)0.0351 (11)0.0354 (12)0.0064 (9)0.0124 (9)0.0079 (9)
C180.0419 (13)0.0323 (11)0.0257 (10)0.0095 (9)0.0050 (9)0.0009 (8)
C190.0340 (12)0.0349 (12)0.0383 (13)0.0018 (9)0.0006 (10)0.0013 (10)
C200.0258 (10)0.0403 (13)0.0384 (13)0.0036 (9)0.0079 (9)0.0017 (10)
Geometric parameters (Å, º) top
Zn—N32.0611 (16)C5—H5B0.9800
Zn—S12.3414 (6)C5—H5C0.9800
Zn—S32.3666 (6)C7—C81.513 (3)
Zn—S42.5627 (6)C7—H7A0.9900
Zn—S22.6140 (6)C7—H7B0.9900
S1—C11.7357 (18)C8—H8A0.9900
S2—C11.7168 (19)C8—H8B0.9900
S3—C61.7388 (18)C9—C101.521 (3)
S4—C61.7195 (19)C9—H9A0.9900
O1—C31.424 (3)C9—H9B0.9900
O1—H1O0.841 (10)C10—H10A0.9800
O2—C81.425 (3)C10—H10B0.9800
O2—H2O0.839 (10)C10—H10C0.9800
N1—C11.332 (2)C11—C121.388 (3)
N1—C21.472 (2)C11—H110.9500
N1—C41.472 (2)C12—C131.386 (3)
N2—C61.330 (2)C12—H120.9500
N2—C71.471 (2)C13—C141.384 (3)
N2—C91.478 (2)C13—H130.9500
N3—C111.337 (3)C14—C151.388 (3)
N3—C151.338 (2)C14—H140.9500
N4—C201.331 (4)C15—H150.9500
N4—C161.339 (3)C16—C171.387 (4)
C2—C31.528 (3)C16—H160.9500
C2—H2A0.9900C17—C181.384 (4)
C2—H2B0.9900C17—H170.9500
C3—H3A0.9900C18—C191.376 (4)
C3—H3B0.9900C18—H180.9500
C4—C51.518 (3)C19—C201.379 (4)
C4—H4A0.9900C19—H190.9500
C4—H4B0.9900C20—H200.9500
C5—H5A0.9800
N3—Zn—S1116.78 (5)S4—C6—S3117.38 (10)
N3—Zn—S3110.34 (5)N2—C7—C8113.14 (17)
S1—Zn—S3132.86 (2)N2—C7—H7A109.0
N3—Zn—S4100.14 (5)C8—C7—H7A109.0
S1—Zn—S498.846 (19)N2—C7—H7B109.0
S3—Zn—S473.534 (16)C8—C7—H7B109.0
N3—Zn—S293.26 (5)H7A—C7—H7B107.8
S1—Zn—S272.621 (17)O2—C8—C7112.46 (17)
S3—Zn—S2104.146 (17)O2—C8—H8A109.1
S4—Zn—S2166.375 (19)C7—C8—H8A109.1
C1—S1—Zn88.79 (6)O2—C8—H8B109.1
C1—S2—Zn80.65 (6)C7—C8—H8B109.1
C6—S3—Zn87.20 (6)H8A—C8—H8B107.8
C6—S4—Zn81.50 (6)N2—C9—C10112.35 (18)
C3—O1—H1O110 (2)N2—C9—H9A109.1
C8—O2—H2O106 (3)C10—C9—H9A109.1
C1—N1—C2121.87 (16)N2—C9—H9B109.1
C1—N1—C4122.92 (16)C10—C9—H9B109.1
C2—N1—C4115.14 (15)H9A—C9—H9B107.9
C6—N2—C7121.79 (16)C9—C10—H10A109.5
C6—N2—C9122.90 (15)C9—C10—H10B109.5
C7—N2—C9115.16 (15)H10A—C10—H10B109.5
C11—N3—C15118.92 (17)C9—C10—H10C109.5
C11—N3—Zn121.12 (13)H10A—C10—H10C109.5
C15—N3—Zn119.77 (13)H10B—C10—H10C109.5
C20—N4—C16117.0 (2)N3—C11—C12122.10 (19)
N1—C1—S2122.69 (14)N3—C11—H11119.0
N1—C1—S1120.38 (14)C12—C11—H11119.0
S2—C1—S1116.93 (10)C13—C12—C11119.2 (2)
N1—C2—C3111.04 (16)C13—C12—H12120.4
N1—C2—H2A109.4C11—C12—H12120.4
C3—C2—H2A109.4C12—C13—C14118.50 (19)
N1—C2—H2B109.4C12—C13—H13120.8
C3—C2—H2B109.4C14—C13—H13120.8
H2A—C2—H2B108.0C13—C14—C15119.14 (19)
O1—C3—C2111.00 (17)C13—C14—H14120.4
O1—C3—H3A109.4C15—C14—H14120.4
C2—C3—H3A109.4N3—C15—C14122.16 (19)
O1—C3—H3B109.4N3—C15—H15118.9
C2—C3—H3B109.4C14—C15—H15118.9
H3A—C3—H3B108.0N4—C16—C17122.9 (2)
N1—C4—C5113.35 (17)N4—C16—H16118.5
N1—C4—H4A108.9C17—C16—H16118.5
C5—C4—H4A108.9C18—C17—C16118.8 (2)
N1—C4—H4B108.9C18—C17—H17120.6
C5—C4—H4B108.9C16—C17—H17120.6
H4A—C4—H4B107.7C19—C18—C17118.8 (2)
C4—C5—H5A109.5C19—C18—H18120.6
C4—C5—H5B109.5C17—C18—H18120.6
H5A—C5—H5B109.5C18—C19—C20118.4 (3)
C4—C5—H5C109.5C18—C19—H19120.8
H5A—C5—H5C109.5C20—C19—H19120.8
H5B—C5—H5C109.5N4—C20—C19124.1 (2)
N2—C6—S4121.85 (14)N4—C20—H20117.9
N2—C6—S3120.76 (14)C19—C20—H20117.9
C2—N1—C1—S2177.90 (14)Zn—S3—C6—S46.11 (10)
C4—N1—C1—S21.3 (3)C6—N2—C7—C890.0 (2)
C2—N1—C1—S11.6 (2)C9—N2—C7—C894.3 (2)
C4—N1—C1—S1178.23 (14)N2—C7—C8—O267.3 (2)
Zn—S2—C1—N1170.49 (16)C6—N2—C9—C1092.7 (2)
Zn—S2—C1—S19.02 (9)C7—N2—C9—C1082.9 (2)
Zn—S1—C1—N1169.57 (15)C15—N3—C11—C120.3 (3)
Zn—S1—C1—S29.94 (10)Zn—N3—C11—C12175.27 (19)
C1—N1—C2—C385.5 (2)N3—C11—C12—C130.2 (4)
C4—N1—C2—C391.4 (2)C11—C12—C13—C140.4 (4)
N1—C2—C3—O1170.55 (16)C12—C13—C14—C150.9 (3)
C1—N1—C4—C5104.7 (2)C11—N3—C15—C140.3 (3)
C2—N1—C4—C578.4 (2)Zn—N3—C15—C14174.80 (16)
C7—N2—C6—S45.9 (3)C13—C14—C15—N30.8 (3)
C9—N2—C6—S4178.76 (15)C20—N4—C16—C170.0 (4)
C7—N2—C6—S3173.16 (15)N4—C16—C17—C180.9 (4)
C9—N2—C6—S32.2 (3)C16—C17—C18—C190.8 (4)
Zn—S4—C6—N2173.37 (16)C17—C18—C19—C200.1 (4)
Zn—S4—C6—S35.69 (9)C16—N4—C20—C191.0 (4)
Zn—S3—C6—N2172.97 (15)C18—C19—C20—N41.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.84 (2)1.99 (2)2.817 (2)167 (3)
O2—H2O···N40.84 (3)1.93 (3)2.753 (3)167 (3)
C2—H2B···S3ii0.992.843.773 (2)157
C14—H14···S2iii0.952.693.443 (2)137
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+3/2, y+1/2, z+3/2; (iii) x+1, y+1, z+1.
Geometric data (Å, °) for (I) and (II) top
Parameter(I); n = 5(II); n = 6
Zn—S12.3618 (5)2.3414 (6)
Zn—S22.5902 (5)2.6140 (6)
Zn—S32.3678 (5)2.3666 (6)
Zn—S42.5436 (5)2.5627 (6)
Zn—N32.0504 (13)2.0611 (16)
C1—S1, S21.7331 (15), 1.7176 (15)1.7357 (18), 1.7168 (19)
C(n)—S3, S41.7309 (15), 1.7171 (15)1.7388 (18), 1.7195 (19)
S1—Zn—S273.012 (16)72.621 (17)
S3—Zn—S473.765 (16)73.534 (16)
S1—Zn—S3136.711 (17)132.86 (2)
S1—Zn—S498.906 (17)98.846 (19)
S2—Zn—S397.326 (17)104.146 (17)
S2—Zn—S4157.363 (16)166.375 (19)
S1—Zn—N3111.99 (3)116.78 (5)
S2—Zn—N399.96 (4)93.26 (5)
S3—Zn—N3111.23 (3)110.34 (5)
S4—Zn—N3102.66 (4)100.14 (5)
S1,S2,C1/S3,S4,C(n)46.16 (2)49.06 (5)
S1,S2,C1/pyridyl83.78 (5)78.21 (7)
S3,S4,C(n)/pyridyl84.93 (4)88.39 (5)
 

Acknowledgements

Sunway University is thanked for support of biological and crystal engineering studies of metal di­thio­carbamates.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationArman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2009a). Acta Cryst. E65, m1472–m1473.  CSD CrossRef IUCr Journals Google Scholar
First citationArman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2009b). Acta Cryst. E65, m1475.  CSD CrossRef IUCr Journals Google Scholar
First citationBenson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–941.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCâmpian, M. V., Azizuddin, A. D., Haiduc, I. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 737–747.  Google Scholar
First citationCvek, B., Milacic, V., Taraba, J. & Dou, Q. P. (2008). J. Med. Chem. 51, 6256–6258.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHaiduc, I. & Sowerby, D. B. (1996). Polyhedron, 15, 2469–2521.  CrossRef CAS Google Scholar
First citationHeard, P. J. (2005). Prog. Inorg. Chem. 53, 1–69.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHogarth, G. (2005). Prog. Inorg. Chem. 53, 71–561.  Web of Science CrossRef CAS Google Scholar
First citationHowie, R. A., de Lima, G. M., Menezes, D. C., Wardell, J. L., Wardell, S. M. S. V., Young, D. J. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 1626–1637.  Web of Science CSD CrossRef CAS Google Scholar
First citationHrubaru, M., Onwudiwe, D. C. & Hosten, E. (2016). J. Sulfur Chem. 37, 37–47.  CrossRef CAS Google Scholar
First citationIvanov, A. V., Kritikos, M., Antsutkin, O. N., Lund, A. & Mitrofanova, V. I. (1998). Russ. J. Coord. Chem. 24, 645–654.  CAS Google Scholar
First citationJotani, M. M., Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1700–1709.  CSD CrossRef IUCr Journals Google Scholar
First citationJotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2017). Z. Kristallogr. 232, 287–298.  CAS Google Scholar
First citationKang, J.-G., Shin, J.-S., Cho, D.-H., Jeong, Y.-K., Park, C., Soh, S. F., Lai, C. S. & Tiekink, E. R. T. (2010). Cryst. Growth Des. 10, 1247–1256.  Web of Science CSD CrossRef CAS Google Scholar
First citationLai, C. S., Liu, S. & Tiekink, E. R. T. (2004). CrystEngComm, 6, 221–226.  Web of Science CSD CrossRef CAS Google Scholar
First citationLai, C. S. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 251–252.  Web of Science CSD CrossRef CAS Google Scholar
First citationMalik, M. A., Motevalli, M. & O'Brien, P. (1999). Polyhedron, 18, 1259–1264.  CSD CrossRef CAS Google Scholar
First citationManar, K. K., Yadav, C. L., Tiwari, N., Singh, R. K., Kumar, A., Drew, M. G. B. & Singh, N. (2017). CrystEngComm, 19, 2660–2672.  CSD CrossRef CAS Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationPoplaukhin, P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m1474.  CSD CrossRef IUCr Journals Google Scholar
First citationPoplaukhin, P. & Tiekink, E. R. T. (2010). CrystEngComm, 12, 1302–1306.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, Y. S., Halim, S. N. A., Molloy, K. C., Sudlow, A. L., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2016). CrystEngComm, 18, 1105–1117.  CSD CrossRef CAS Google Scholar
First citationTan, Y. S., Ooi, K. K., Ang, K. P., Akim, A. Md., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2015). J. Inorg. Biochem. 150, 48–62.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTiekink, E. R. T. (2003). CrystEngComm, 5, 101–113.  Web of Science CrossRef CAS Google Scholar
First citationTiekink, E. R. T. (2006). CrystEngComm, 8, 104–118.  Web of Science CrossRef CAS Google Scholar
First citationTiekink, E. R. T. (2017). Coord. Chem. Rev. 345, 209–228.  Web of Science CrossRef CAS Google Scholar
First citationTiekink, E. R. T. & Haiduc, I. (2005). Prog. Inorg. Chem. 54, 127–319.  Web of Science CrossRef CAS Google Scholar
First citationTiekink, E. R. T. & Zukerman-Schpector, J. (2011). Chem. Commun. 47, 6623–6625.  Web of Science CrossRef CAS Google Scholar
First citationWelte, W. B. & Tiekink, E. R. T. (2006). Acta Cryst. E62, m2070–m2072.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWelte, W. B. & Tiekink, E. R. T. (2007). Acta Cryst. E63, m790–m792.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaeva, A. S., Rodina, T. A., Ivanov, A. V. & Gerasimenko, A. V. (2011). Russ. J. Coord. Chem. 56, 1318–1323.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds