research communications
κ2O,O′)diaqua[1-(pyridin-2-ylmethylidene-κN)-2-(pyridin-2-yl-κN)hydrazine-κN1]terbium(III) nitrate monohydrate
of bis(acetato-aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bDépartement de Chimie, Faculté des Sciences, Université de Nouakchott, Nouakchott, Mauritania, and cCentre de Recherche e Gif, Institut de Chimie des Substances Naturelles, CNRS–UPR2301, 1 Avenue la Terasse, 91198 Gif sur Yvette, France
*Correspondence e-mail: mlgayeastou@yahoo.fr
In the title compound, [Tb(C2H3O2)2(C11H10N4)(H2O)2]NO3·H2O, the Tb3+ ion is nine-coordinated in a distorted tricapped trigonal-prismatic geometry by the three N atoms of the tridentate 1-(pyridin-2-ylmethylidene)-2-(pyridin-2-yl)hydrazine ligand, four carboxylate O atoms of two chelating acetate groups and two O atoms of the coordinating water molecules. The organic hydrazine ligand is disordered over two orientations with a refined occupancy ratio of 0.52 (3):0.48 (3). All bond lengths in the coordination environment of the Tb3+ ion are slightly larger than those observed in the isostructural Y3+ and Er3+ complexes. In the crystal, the complex cations are linked by pairs of O—H⋯O hydrogen bonds into dimers. These dimers, nitrate anions and non-coordinating water molecules are joined by O—H⋯O and N—H⋯O hydrogen bonds into a three-dimensional structure.
Keywords: crystal structure; terbium complex; complex; Schiff base; hydrazide; hydrogen bonds.
CCDC reference: 1511899
1. Chemical context
As a result of their various architectures and numerous applications (Binnemans, 2005), lanthanide complexes have attracted significant attention, and the synthesis of new complexes of this type has became relevant. Both mononuclear and polynuclear lanthanide complexes reveal specific properties as molecular magnets (Cristóvão & Hnatejko, 2015), luminescence materials (Lahoud et al., 2016) and preparates for medical biology (Zhang et al., 2014). Used as ligands, together with carboxylate anions display large versatility in forming coordination compounds with metal ions and can generate a wide variety of coordination types. Considerable interest is afforded to the development of polydentate ligands containing different (hard and soft) N, O or S binding sites, designed to yield special topological structures (Binnemans, 2005). By appropriate design, the molecular structure of the ligand can be modified in order to coordinate metal ions in diverse modes resulting in specific architectures. The coordination mode also depends on the adopted synthetic procedures. In this context, for synthesis of the terbium(III) complex, the Schiff base 1-(pyridin-2-ylmethylidene)-2-(pyridin-2-yl)hydrazine (HL), which provides three soft-donating N atoms from two pyridine rings and the imino function, was used together with acetate anions, which provide hard-donating O atoms, as co-ligands (Neves et al., 1992; Schwingel et al., 1996; Gregório et al., 2015). The ligand HL and acetate groups were used in our previous attempts to prepare new mono- and binuclear lanthanide(III) complexes (Ndiaye-Gueye, Dieng, Thiam, Sow et al., 2017; Ndiaye-Gueye, Dieng, Thiam, Lo et al., 2017; Ndiaye-Gueye, Dieng, Lo et al., 2017). In the present study, mixing of the HL ligand, sodium acetate and hexahydrated terbium nitrate yields a nine-coordinated mononuclear complex of Tb3+.
2. Structural commentary
The crystallographic study shows a 1:1:2 ratio of HL/Tb/acetate in the resulting cationic complex when these components were mixed at room temperature in ethanol with a 1:1:3 ratio. The 3+ ion coordinated by one tridentate HL ligand, two chelating acetate ions, two coordinating water molecules, one non-coordinating nitrate anion and one non-coordinating water molecule (Fig. 1). The Schiff base acts as a tridentate ligand with three donating N atoms, forming two five-membered chelate rings (TbNCCN and TbNNCN). The Tb3+ ion is nine-coordinated and its environment can be described as a distorted tricapped trigonal prism with slanted base faces N1, N2, O2 and O3, O5W, O6W. The Tb—O(Ac) bond lengths lie within the range 2.401 (3)–2.476 (3) Å (Table 1) and are comparable to the average value of 2.46 (6) Å for analogous structures from the Cambridge Structural Database (CSD Version 5.38, November 2016; Groom et al., 2016). The Tb—OW bond lengths involving O atoms of the coordinating water molecules of 2.357 (3) and 2.362 (3) Å are also well comparable with the known values [average 2.41 (5) Å from CSD]. In the title structure, the bonds Tb—N differ in length: the distance involving the imino N atom is shorter than those involving the pyridine N atoms: 2.542 (4) Å vs 2.574 (4) and 2.588 (4) Å (Table 1). The same relations between the Tb—N(imine) and Tb—N(Py) bond lengths were observed in the structures of {N,N′-cyclohexane-1,2-diylbis[1-(pyridin-2-yl)methanimine]}-tris(nitrato)terbium (Chen et al., 2013) and {(2,9-diformylphenanthroline)bis[(2-pyridyl)hydrazone]}bis(nitrato)terbium nitrate (Carcelli et al., 2005), though the absolute values of Tb—N distances of the same kind in these three structures are different. The distances Tb—O(Ac), Tb—OW and Tb—N in the title structure are slightly larger (by 0.03–0.04 Å) than the corresponding distances observed in isostructural Y3+ and Er3+ complexes we recently reported (Ndiaye-Gueye, Dieng, Lo et al., 2017). These observations can be correlated with the decrease in the unit-cell volume: 1060.5 (2) Å3 for Tb3+ vs 1051.3 (2) Å3 for Y3+ and 1049.6 (2) Å3 for Er3+. The bond lengths in the disordered chain C—CH=N—NH—C bridging two pyridine rings are 1.484 (14) and 1.513 (17) Å for C—C, 1.293 (17) and 1.319 (13) Å for C=N, 1.393 (13) and 1.396 (13) Å for N—N and 1.411 (13) and 1.417 (12) Å for N—C. These bonds are slightly longer than observed for this ligand in other complexes. This may be related to the disorder detected for this chain. The dihedral angle formed by the planes of two terminal pyridine rings is 11.0 (4)°.
comprises a Tb
|
3. Supramolecular features
The ). The complex cations are linked into centrosymmetric dimers by pairs of O—H⋯O hydrogen bonds between one of two coordinating water molecules (O5W) and the acetate O1 atom in an R22(8) manner. The second coordinating water molecule (O6W) acts as hydrogen-atom donor, forming hydrogen bonds with the non-coordinating water molecule and the nitrate anion, as shown in Fig. 1. The acetate O atoms act as acceptors in the hydrogen bonds with the HN groups of adjacent complex cation. Furthermore, the non-coordinating water molecule forms hydrogen bonds to the nitrate anions. There are also some C—H⋯O contacts, which contribute to the crystal architecture and may be considered as weak hydrogen bonds (Fig. 2, Table 2).
is stabilized by hydrogen bonds giving rise to a three-dimensional network (Table 24. Database survey
The ligand 1-(pyridin-2-ylmethylidene)-2-(pyridin-2-yl)hydrazine has been widely used in coordination chemistry. The current release of the CSD (Version 5.38, November 2016 + 1 update; Groom et al., 2016) gave 16 hits. Six examples of complexes of the above ligand with f-block metal ions are known from the literature (Baraniak et al., 1976; Ndiaye-Gueye, Dieng, Thiam, Sow et al., 2017; Ndiaye-Gueye, Dieng, Thiam, Lo et al., 2017; Ndiaye-Gueye, Dieng, Lo et al., 2017). The other entries are related to complexes with p- and d-block metal ions. Structures are available for Ca2+ (Vantomme et al., 2014), Cu2+ (Mesa et al., 1988, 1989; Rojo et al., 1988; Ainscough et al., 1996; Chowdhury et al., 2009; Mukherjee et al., 2010; Chang et al., 2011), Co2+ (Gerloch et al., 1966), Ni2+ (Chiumia et al., 1999) and Zn2+ (Dumitru et al., 2005). In 15 cases, the ligand acts in a tridentate mode through the soft nitrogen atoms of two pyridine rings and the imino function. The hard protonated nitrogen atom remains non-coordinating in all known complexes.
5. Synthesis and crystallization
A mixture of 2-hydrazinopyridine (1 mmol) and 2-pyridinecarbaldehyde (1 mmol) in ethanol (15 mL) was stirred under reflux during 30 min. A mixture of sodium acetate (3 mmol) and Tb(NO3)3·6H2O (1 mmol) in ethanol (10 mL) was added to the solution. The mixture was stirred for 30 min and the resulting yellow solution was filtered and the filtrate was kept at 298 K. A yellow powder appeared after one day and was collected by filtration. [C15H20TbN4O6]NO3·H2O. Yield 62%. Analysis calculated C, 30.47; H, 3.75; N, 11.84. Found: C, 30.42; H, 3.69; N, 11.89%. μeff (μB): 2.51. ΛM (S cm2 mol−1): 90. IR (cm−1): 3225, 1588, 1575, 1558, 1445,1365, 820. δH (250 MHz, DMSO-d6) 11.21 (H, s, H-N-N); 8.54 (1H, s, H-Py); 8.16 (1H, H-Py); 8.10 (1H, s, H—C=N); 8.01 (1H, d, J = 7.50 Hz, H-Py); 7.81 (1H, d, J = 8 Hz, H-Py); 7.69 (1H, d, J = 8Hz, H-Py); 7.35 (2H, d, J = 8 Hz, H-Py); 6.83 (1H, s, H-Py); 4.722 (s, broad, H2O). δC (250 MHz, DMSO-d6): 106.526 (C-8), 115.559 (C-10), 118.845 (C-4), 122.912 (C-2), 136.465 (C-3), 138.015 (C-9), 139.171 (C-6), 147.804 (C-11).
6. Refinement
Crystal data, data collection and structure . H atoms of the water molecules were located in difference-Fourier maps. The O—H distances involving the O5W and O7W water molecules were restrained to 0.82 (2) Å, those involving O6W were constrained using the AFIX 7 instruction. Other H atoms (CH and CH3 groups) were positioned geometrically and refined using a riding model with Uiso(H) = 1.2Ueq(C) (1.5 for CH3 groups). The chain bridging the two pyridine rings was found to be disordered. This disorder may be explained by the fact that the sequence of atoms C(py)—CH=N—NH—C(py) overlaps with the sequence C(py)—NH—N=CH—C(py), meaning two orientations for the ligand. For the we assumed that the C atom of CH group from one chain is situated nearby the N atom of NH group from the second chain, and the same relates inversely, whereas the imino N atoms of both chains occupy the same position. The occupancy factors were refined to a 0.52 (3):0.48 (3) ratio.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1511899
https://doi.org/10.1107/S2056989017009653/yk2107sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017009653/yk2107Isup2.hkl
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).[Tb(C2H3O2)2(C11H10N4)(H2O)2]NO3·H2O | Z = 2 |
Mr = 591.29 | F(000) = 584 |
Triclinic, P1 | Dx = 1.852 Mg m−3 |
a = 7.9184 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.7686 (10) Å | Cell parameters from 9920 reflections |
c = 12.5196 (10) Å | θ = 2.4–28.6° |
α = 78.981 (7)° | µ = 3.40 mm−1 |
β = 73.965 (7)° | T = 293 K |
γ = 72.222 (8)° | Prismatic, yellow |
V = 1060.45 (16) Å3 | 0.08 × 0.07 × 0.05 mm |
Bruker Kappa APEXII CCD diffractometer | 5172 independent reflections |
Radiation source: fine-focus sealed tube | 4355 reflections with I > 2σ(I) |
Detector resolution: 9 pixels mm-1 | Rint = 0.069 |
CCD scans | θmax = 30.1°, θmin = 4.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −10→11 |
Tmin = 0.230, Tmax = 1.000 | k = −16→14 |
15646 measured reflections | l = −17→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.083 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.97 | w = 1/[σ2(Fo2) + (0.0354P)2] where P = (Fo2 + 2Fc2)/3 |
5172 reflections | (Δ/σ)max = 0.002 |
314 parameters | Δρmax = 1.12 e Å−3 |
7 restraints | Δρmin = −1.58 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Tb1 | 0.57850 (2) | 0.62098 (2) | 0.74087 (2) | 0.02775 (8) | |
O1 | 0.3829 (4) | 0.5115 (3) | 0.8860 (2) | 0.0386 (7) | |
O2 | 0.3445 (4) | 0.5452 (3) | 0.7157 (3) | 0.0425 (7) | |
O3 | 0.6931 (4) | 0.7991 (3) | 0.7223 (3) | 0.0440 (7) | |
O4 | 0.8873 (4) | 0.6407 (3) | 0.6551 (3) | 0.0497 (8) | |
O5W | 0.6728 (5) | 0.6114 (3) | 0.9059 (3) | 0.0431 (7) | |
H5WA | 0.650 (8) | 0.577 (4) | 0.969 (2) | 0.065* | |
H5WB | 0.705 (7) | 0.670 (3) | 0.903 (4) | 0.065* | |
O6W | 0.3256 (4) | 0.7749 (3) | 0.8163 (3) | 0.0473 (8) | |
H6WA | 0.359185 | 0.817289 | 0.851388 | 0.071* | |
H6WB | 0.243852 | 0.743930 | 0.862435 | 0.071* | |
O7W | 0.3776 (6) | 0.9555 (4) | 0.8901 (4) | 0.0793 (14) | |
H7WA | 0.308 (7) | 0.988 (7) | 0.944 (4) | 0.119* | |
H7WB | 0.480 (5) | 0.925 (7) | 0.901 (6) | 0.119* | |
O8 | −0.0192 (5) | 0.7371 (3) | 0.8970 (4) | 0.0629 (10) | |
O9 | −0.2955 (5) | 0.8218 (4) | 0.9709 (4) | 0.0666 (11) | |
O10 | −0.0942 (6) | 0.9208 (4) | 0.9267 (4) | 0.0735 (12) | |
N1 | 0.7632 (5) | 0.3976 (3) | 0.7525 (3) | 0.0368 (8) | |
N2 | 0.7066 (6) | 0.5259 (4) | 0.5591 (3) | 0.0547 (11) | |
N3 | 0.4996 (5) | 0.7501 (3) | 0.5616 (3) | 0.0362 (8) | |
N4 | 0.858 (3) | 0.4265 (11) | 0.5572 (9) | 0.043 (4) | 0.48 (3) |
H4N | 0.946967 | 0.413835 | 0.499405 | 0.051* | 0.48 (3) |
N5 | −0.1358 (5) | 0.8281 (4) | 0.9303 (4) | 0.0440 (9) | |
C1 | 0.7881 (6) | 0.3285 (4) | 0.8487 (4) | 0.0437 (10) | |
H1 | 0.726961 | 0.361070 | 0.915405 | 0.052* | |
C2 | 0.8978 (8) | 0.2133 (5) | 0.8545 (5) | 0.0564 (13) | |
H2 | 0.906526 | 0.168655 | 0.923565 | 0.068* | |
C3 | 0.9929 (10) | 0.1656 (6) | 0.7589 (6) | 0.081 (2) | |
H3 | 1.071840 | 0.088663 | 0.760515 | 0.097* | |
C4 | 0.9705 (12) | 0.2330 (6) | 0.6591 (6) | 0.112 (3) | |
H4 | 1.034318 | 0.201991 | 0.591967 | 0.134* | |
C5 | 0.8520 (8) | 0.3480 (5) | 0.6585 (4) | 0.0620 (15) | |
C6 | 0.712 (3) | 0.5933 (16) | 0.4644 (13) | 0.041 (3) | 0.48 (3) |
H6 | 0.804961 | 0.573789 | 0.401055 | 0.049* | 0.48 (3) |
C7 | 0.5569 (8) | 0.7066 (5) | 0.4646 (4) | 0.0549 (13) | |
C8 | 0.5096 (12) | 0.7717 (7) | 0.3673 (5) | 0.095 (3) | |
H8 | 0.548346 | 0.736391 | 0.301208 | 0.114* | |
C9 | 0.4057 (9) | 0.8881 (6) | 0.3695 (6) | 0.0730 (18) | |
H9 | 0.375238 | 0.933981 | 0.304892 | 0.088* | |
C10 | 0.3486 (9) | 0.9347 (5) | 0.4675 (6) | 0.0726 (17) | |
H10 | 0.276887 | 1.013352 | 0.472204 | 0.087* | |
C11 | 0.3980 (9) | 0.8641 (5) | 0.5604 (5) | 0.0653 (16) | |
H11 | 0.357923 | 0.897893 | 0.627291 | 0.078* | |
C12 | 0.8521 (5) | 0.7497 (4) | 0.6718 (4) | 0.0337 (9) | |
C13 | 0.9806 (7) | 0.8089 (5) | 0.6350 (5) | 0.0532 (13) | |
H13A | 0.925944 | 0.891305 | 0.611002 | 0.080* | |
H13B | 1.070322 | 0.772725 | 0.573214 | 0.080* | |
H13C | 1.038015 | 0.805322 | 0.694267 | 0.080* | |
C14 | 0.2996 (6) | 0.5032 (4) | 0.8165 (4) | 0.0358 (9) | |
C15 | 0.1467 (7) | 0.4436 (5) | 0.8522 (5) | 0.0532 (13) | |
H15A | 0.053392 | 0.483710 | 0.910406 | 0.080* | |
H15B | 0.192431 | 0.360901 | 0.879482 | 0.080* | |
H15C | 0.096670 | 0.448175 | 0.789338 | 0.080* | |
C6A | 0.782 (3) | 0.4094 (12) | 0.5581 (11) | 0.039 (3) | 0.52 (3) |
H6A | 0.790310 | 0.368827 | 0.499134 | 0.046* | 0.52 (3) |
N4A | 0.638 (3) | 0.5818 (11) | 0.4654 (10) | 0.043 (4) | 0.52 (3) |
H4NA | 0.643634 | 0.543027 | 0.412190 | 0.052* | 0.52 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Tb1 | 0.02887 (12) | 0.03134 (13) | 0.02209 (11) | −0.00834 (8) | −0.00363 (8) | −0.00384 (8) |
O1 | 0.0436 (16) | 0.0513 (19) | 0.0251 (15) | −0.0198 (14) | −0.0081 (13) | −0.0027 (14) |
O2 | 0.0512 (18) | 0.057 (2) | 0.0283 (16) | −0.0294 (16) | −0.0129 (14) | 0.0028 (15) |
O3 | 0.0420 (17) | 0.0430 (18) | 0.046 (2) | −0.0133 (14) | −0.0061 (15) | −0.0061 (15) |
O4 | 0.0369 (17) | 0.052 (2) | 0.051 (2) | −0.0125 (15) | 0.0051 (15) | −0.0068 (17) |
O5W | 0.061 (2) | 0.051 (2) | 0.0276 (16) | −0.0307 (16) | −0.0136 (15) | 0.0012 (14) |
O6W | 0.0379 (16) | 0.0488 (19) | 0.052 (2) | −0.0117 (14) | 0.0042 (15) | −0.0190 (17) |
O7W | 0.063 (3) | 0.073 (3) | 0.102 (4) | 0.002 (2) | −0.016 (3) | −0.049 (3) |
O8 | 0.055 (2) | 0.049 (2) | 0.075 (3) | −0.0056 (18) | 0.0004 (19) | −0.020 (2) |
O9 | 0.042 (2) | 0.073 (3) | 0.082 (3) | −0.0155 (19) | −0.0052 (19) | −0.016 (2) |
O10 | 0.084 (3) | 0.051 (2) | 0.093 (3) | −0.029 (2) | −0.017 (2) | −0.012 (2) |
N1 | 0.0383 (19) | 0.038 (2) | 0.032 (2) | −0.0072 (16) | −0.0093 (15) | −0.0028 (16) |
N2 | 0.077 (3) | 0.042 (2) | 0.025 (2) | 0.009 (2) | −0.008 (2) | −0.0065 (18) |
N3 | 0.0401 (19) | 0.0336 (19) | 0.033 (2) | −0.0116 (16) | −0.0075 (16) | 0.0009 (16) |
N4 | 0.049 (8) | 0.037 (6) | 0.028 (5) | −0.005 (5) | 0.009 (5) | −0.005 (4) |
N5 | 0.046 (2) | 0.042 (2) | 0.046 (2) | −0.0120 (19) | −0.0131 (18) | −0.0086 (19) |
C1 | 0.053 (3) | 0.042 (3) | 0.036 (3) | −0.016 (2) | −0.010 (2) | 0.003 (2) |
C2 | 0.071 (3) | 0.046 (3) | 0.052 (3) | −0.014 (3) | −0.027 (3) | 0.011 (3) |
C3 | 0.097 (5) | 0.049 (3) | 0.067 (4) | 0.024 (3) | −0.023 (4) | −0.002 (3) |
C4 | 0.152 (7) | 0.065 (4) | 0.055 (4) | 0.056 (5) | −0.011 (4) | −0.015 (3) |
C5 | 0.082 (4) | 0.047 (3) | 0.032 (3) | 0.014 (3) | −0.007 (3) | −0.007 (2) |
C6 | 0.045 (8) | 0.046 (7) | 0.026 (6) | −0.002 (7) | −0.005 (6) | −0.010 (5) |
C7 | 0.074 (4) | 0.050 (3) | 0.032 (3) | −0.005 (3) | −0.017 (2) | 0.003 (2) |
C8 | 0.153 (7) | 0.074 (4) | 0.036 (3) | 0.014 (5) | −0.040 (4) | −0.003 (3) |
C9 | 0.094 (5) | 0.064 (4) | 0.058 (4) | −0.011 (3) | −0.041 (4) | 0.016 (3) |
C10 | 0.089 (4) | 0.046 (3) | 0.067 (4) | −0.001 (3) | −0.024 (3) | 0.013 (3) |
C11 | 0.085 (4) | 0.044 (3) | 0.048 (3) | 0.004 (3) | −0.011 (3) | −0.002 (3) |
C12 | 0.031 (2) | 0.044 (2) | 0.024 (2) | −0.0123 (18) | −0.0048 (17) | 0.0010 (18) |
C13 | 0.055 (3) | 0.055 (3) | 0.045 (3) | −0.027 (3) | 0.001 (2) | 0.006 (2) |
C14 | 0.039 (2) | 0.039 (2) | 0.030 (2) | −0.0115 (19) | −0.0073 (18) | −0.0023 (19) |
C15 | 0.049 (3) | 0.069 (4) | 0.049 (3) | −0.031 (3) | −0.013 (2) | 0.002 (3) |
C6A | 0.046 (7) | 0.037 (6) | 0.032 (5) | −0.012 (5) | −0.001 (5) | −0.013 (4) |
N4A | 0.067 (10) | 0.039 (5) | 0.029 (5) | −0.009 (6) | −0.026 (6) | −0.006 (4) |
Tb1—O5W | 2.357 (3) | N4—C5 | 1.417 (12) |
Tb1—O6W | 2.362 (3) | N4—H4N | 0.8600 |
Tb1—O2 | 2.401 (3) | C1—C2 | 1.370 (7) |
Tb1—O4 | 2.447 (3) | C1—H1 | 0.9300 |
Tb1—O3 | 2.476 (3) | C2—C3 | 1.349 (9) |
Tb1—O1 | 2.476 (3) | C2—H2 | 0.9300 |
Tb1—N2 | 2.542 (4) | C3—C4 | 1.371 (10) |
Tb1—N3 | 2.574 (4) | C3—H3 | 0.9300 |
Tb1—N1 | 2.588 (4) | C4—C5 | 1.392 (8) |
Tb1—C14 | 2.812 (4) | C4—H4 | 0.9300 |
Tb1—C12 | 2.865 (4) | C5—C6A | 1.484 (14) |
Tb1—Tb1i | 6.5113 (7) | C6—C7 | 1.513 (17) |
O1—C14 | 1.261 (5) | C6—H6 | 0.9300 |
O2—C14 | 1.259 (5) | C7—C8 | 1.390 (8) |
O3—C12 | 1.256 (5) | C7—N4A | 1.410 (13) |
O4—C12 | 1.272 (6) | C8—C9 | 1.367 (9) |
O5W—H5WA | 0.819 (19) | C8—H8 | 0.9300 |
O5W—H5WB | 0.800 (19) | C9—C10 | 1.345 (9) |
O6W—H6WA | 0.8617 | C9—H9 | 0.9300 |
O6W—H6WB | 0.8617 | C10—C11 | 1.370 (8) |
O7W—H7WA | 0.82 (2) | C10—H10 | 0.9300 |
O7W—H7WB | 0.81 (2) | C11—H11 | 0.9300 |
O8—N5 | 1.236 (5) | C12—C13 | 1.336 (6) |
O9—N5 | 1.245 (5) | C13—H13A | 0.9600 |
O10—N5 | 1.223 (5) | C13—H13B | 0.9600 |
N1—C5 | 1.332 (6) | C13—H13C | 0.9600 |
N1—C1 | 1.345 (6) | C14—C15 | 1.502 (6) |
N2—C6 | 1.293 (17) | C15—H15A | 0.9600 |
N2—C6A | 1.319 (13) | C15—H15B | 0.9600 |
N2—N4 | 1.393 (13) | C15—H15C | 0.9600 |
N2—N4A | 1.396 (13) | C6A—H6A | 0.9300 |
N3—C7 | 1.317 (6) | N4A—H4NA | 0.8600 |
N3—C11 | 1.337 (6) | ||
O5W—Tb1—O6W | 85.06 (12) | C6A—N2—N4A | 114.0 (9) |
O5W—Tb1—O2 | 128.75 (11) | C6—N2—Tb1 | 119.8 (8) |
O6W—Tb1—O2 | 82.50 (11) | C6A—N2—Tb1 | 121.7 (6) |
O5W—Tb1—O4 | 81.62 (12) | N4—N2—Tb1 | 116.2 (6) |
O6W—Tb1—O4 | 125.77 (11) | N4A—N2—Tb1 | 119.5 (6) |
O2—Tb1—O4 | 142.99 (12) | C7—N3—C11 | 115.7 (4) |
O5W—Tb1—O3 | 72.94 (11) | C7—N3—Tb1 | 121.4 (3) |
O6W—Tb1—O3 | 73.67 (11) | C11—N3—Tb1 | 122.9 (3) |
O2—Tb1—O3 | 146.48 (11) | N2—N4—C5 | 114.3 (9) |
O4—Tb1—O3 | 52.15 (11) | N2—N4—H4N | 122.8 |
O5W—Tb1—O1 | 75.65 (10) | C5—N4—H4N | 122.8 |
O6W—Tb1—O1 | 76.13 (11) | O10—N5—O8 | 120.8 (4) |
O2—Tb1—O1 | 53.11 (10) | O10—N5—O9 | 120.8 (4) |
O4—Tb1—O1 | 146.94 (11) | O8—N5—O9 | 118.4 (4) |
O3—Tb1—O1 | 137.72 (10) | N1—C1—C2 | 124.1 (5) |
O5W—Tb1—N2 | 137.14 (13) | N1—C1—H1 | 117.9 |
O6W—Tb1—N2 | 137.52 (13) | C2—C1—H1 | 117.9 |
O2—Tb1—N2 | 73.60 (13) | C3—C2—C1 | 119.1 (5) |
O4—Tb1—N2 | 69.39 (14) | C3—C2—H2 | 120.5 |
O3—Tb1—N2 | 109.07 (14) | C1—C2—H2 | 120.5 |
O1—Tb1—N2 | 113.20 (13) | C2—C3—C4 | 118.5 (5) |
O5W—Tb1—N3 | 146.84 (11) | C2—C3—H3 | 120.8 |
O6W—Tb1—N3 | 78.75 (12) | C4—C3—H3 | 120.8 |
O2—Tb1—N3 | 77.73 (11) | C3—C4—C5 | 119.8 (6) |
O4—Tb1—N3 | 84.69 (12) | C3—C4—H4 | 120.1 |
O3—Tb1—N3 | 74.79 (11) | C5—C4—H4 | 120.1 |
O1—Tb1—N3 | 126.77 (10) | N1—C5—C4 | 122.0 (5) |
N2—Tb1—N3 | 62.34 (12) | N1—C5—N4 | 116.7 (6) |
O5W—Tb1—N1 | 81.87 (12) | C4—C5—N4 | 119.5 (6) |
O6W—Tb1—N1 | 149.42 (12) | N1—C5—C6A | 115.0 (6) |
O2—Tb1—N1 | 84.37 (11) | C4—C5—C6A | 121.3 (7) |
O4—Tb1—N1 | 79.43 (11) | N2—C6—C7 | 114.8 (11) |
O3—Tb1—N1 | 127.41 (10) | N2—C6—H6 | 122.6 |
O1—Tb1—N1 | 73.90 (11) | C7—C6—H6 | 122.6 |
N2—Tb1—N1 | 62.72 (12) | N3—C7—C8 | 123.0 (5) |
N3—Tb1—N1 | 124.96 (11) | N3—C7—N4A | 117.3 (6) |
O5W—Tb1—C14 | 102.28 (12) | C8—C7—N4A | 118.4 (7) |
O6W—Tb1—C14 | 77.74 (12) | N3—C7—C6 | 112.5 (8) |
O2—Tb1—C14 | 26.47 (11) | C8—C7—C6 | 122.9 (8) |
O4—Tb1—C14 | 156.49 (12) | C9—C8—C7 | 119.5 (6) |
O3—Tb1—C14 | 151.29 (12) | C9—C8—H8 | 120.3 |
O1—Tb1—C14 | 26.64 (11) | C7—C8—H8 | 120.3 |
N2—Tb1—C14 | 93.73 (14) | C10—C9—C8 | 118.3 (6) |
N3—Tb1—C14 | 102.27 (12) | C10—C9—H9 | 120.9 |
N1—Tb1—C14 | 78.22 (12) | C8—C9—H9 | 120.9 |
O5W—Tb1—C12 | 76.23 (12) | C9—C10—C11 | 118.8 (6) |
O6W—Tb1—C12 | 99.55 (12) | C9—C10—H10 | 120.6 |
O2—Tb1—C12 | 154.91 (11) | C11—C10—H10 | 120.6 |
O4—Tb1—C12 | 26.23 (12) | N3—C11—C10 | 124.7 (6) |
O3—Tb1—C12 | 25.92 (11) | N3—C11—H11 | 117.6 |
O1—Tb1—C12 | 151.81 (11) | C10—C11—H11 | 117.6 |
N2—Tb1—C12 | 89.05 (14) | O3—C12—O4 | 117.7 (4) |
N3—Tb1—C12 | 78.17 (11) | O3—C12—C13 | 121.8 (5) |
N1—Tb1—C12 | 103.96 (12) | O4—C12—C13 | 120.5 (4) |
C14—Tb1—C12 | 177.06 (12) | O3—C12—Tb1 | 59.5 (2) |
O5W—Tb1—Tb1i | 41.12 (8) | O4—C12—Tb1 | 58.2 (2) |
O6W—Tb1—Tb1i | 81.29 (9) | C13—C12—Tb1 | 177.5 (4) |
O2—Tb1—Tb1i | 87.80 (7) | C12—C13—H13A | 109.5 |
O4—Tb1—Tb1i | 117.10 (9) | C12—C13—H13B | 109.5 |
O3—Tb1—Tb1i | 110.91 (8) | H13A—C13—H13B | 109.5 |
O1—Tb1—Tb1i | 34.82 (6) | C12—C13—H13C | 109.5 |
N2—Tb1—Tb1i | 130.93 (10) | H13A—C13—H13C | 109.5 |
N3—Tb1—Tb1i | 156.65 (8) | H13B—C13—H13C | 109.5 |
N1—Tb1—Tb1i | 70.70 (8) | O2—C14—O1 | 119.8 (4) |
C14—Tb1—Tb1i | 61.39 (9) | O2—C14—C15 | 119.2 (4) |
C12—Tb1—Tb1i | 117.28 (8) | O1—C14—C15 | 120.9 (4) |
C14—O1—Tb1 | 91.7 (3) | O2—C14—Tb1 | 58.2 (2) |
C14—O2—Tb1 | 95.3 (2) | O1—C14—Tb1 | 61.7 (2) |
C12—O3—Tb1 | 94.6 (3) | C15—C14—Tb1 | 177.2 (3) |
C12—O4—Tb1 | 95.5 (2) | C14—C15—H15A | 109.5 |
Tb1—O5W—H5WA | 134 (4) | C14—C15—H15B | 109.5 |
Tb1—O5W—H5WB | 109 (4) | H15A—C15—H15B | 109.5 |
H5WA—O5W—H5WB | 113 (3) | C14—C15—H15C | 109.5 |
Tb1—O6W—H6WA | 110.0 | H15A—C15—H15C | 109.5 |
Tb1—O6W—H6WB | 109.9 | H15B—C15—H15C | 109.5 |
H6WA—O6W—H6WB | 108.8 | N2—C6A—C5 | 114.7 (9) |
H7WA—O7W—H7WB | 112 (4) | N2—C6A—H6A | 122.7 |
C5—N1—C1 | 116.4 (4) | C5—C6A—H6A | 122.7 |
C5—N1—Tb1 | 119.4 (3) | N2—N4A—C7 | 115.0 (8) |
C1—N1—Tb1 | 124.0 (3) | N2—N4A—H4NA | 122.5 |
C6—N2—N4 | 112.9 (10) | C7—N4A—H4NA | 122.5 |
Symmetry code: (i) −x+1, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5W—H5WA···O1i | 0.82 (2) | 1.91 (2) | 2.718 (4) | 175 (6) |
O5W—H5WB···O9ii | 0.80 (2) | 2.12 (2) | 2.849 (5) | 153 (5) |
O5W—H5WB···O3 | 0.80 (2) | 2.48 (2) | 2.874 (5) | 112 (4) |
O6W—H6WA···O7W | 0.86 | 1.84 | 2.653 (5) | 157 |
O6W—H6WB···O8 | 0.86 | 2.03 | 2.778 (5) | 145 |
O7W—H7WA···O10iii | 0.82 (2) | 2.16 (2) | 2.975 (6) | 172 (6) |
O7W—H7WB···O9ii | 0.81 (2) | 2.13 (2) | 2.924 (6) | 164 (8) |
N4—H4N···O4iv | 0.86 | 2.11 | 2.938 (11) | 163 |
N4A—H4NA···O2v | 0.86 | 2.04 | 2.896 (14) | 179 |
C2—H2···O10i | 0.93 | 2.58 | 3.407 (7) | 148 |
C11—H11···O6W | 0.93 | 2.52 | 3.125 (7) | 123 |
C13—H13C···O8ii | 0.96 | 2.47 | 3.227 (7) | 136 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x+1, y, z; (iii) −x, −y+2, −z+2; (iv) −x+2, −y+1, −z+1; (v) −x+1, −y+1, −z+1. |
Acknowledgements
The authors are grateful to the Sonatel Foundation for financial support.
References
Ainscough, E. W., Brodie, A. M., Ingham, S. L. & Waters, J. M. (1996). Inorg. Chim. Acta, 249, 47–55. CSD CrossRef CAS Web of Science Google Scholar
Baraniak, E., Bruce, R. S. L., Freeman, H. C., Hair, N. J. & James, J. (1976). Inorg. Chem. 15, 2226–2230. CSD CrossRef CAS Web of Science Google Scholar
Binnemans, K. (2005). Rare-Earth Beta-Diketonates, in Handbook on the Physics and Chemistry of Rare Earths, Vol. 35, ch. 225, edited by K. A. Gschneidner Jr, J.-C. G. Bünzli & V. K. Pecharsky, pp. 107–272. Amsterdam: Elsevier. Google Scholar
Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carcelli, M., Ianelli, S., Pelagatti, P., Pelizzi, G., Rogolino, D., Solinas, C. & Tegoni, M. (2005). Inorg. Chim. Acta, 358, 903–911. Web of Science CSD CrossRef CAS Google Scholar
Chang, M., Kobayashi, A., Chang, H.-C., Nakajima, K. & Kato, M. (2011). Chem. Lett. 40, 1335–1337. Web of Science CSD CrossRef CAS Google Scholar
Chen, Sh., Fan, R.-Q., Gao, S., Wang, X. & Yang, Y.-L. (2013). J. Lumin. 149, 75–85. Web of Science CSD CrossRef Google Scholar
Chiumia, G. C., Craig, D. C., Phillips, D. J., Rae, A. D. & Kaifi, F. M. Z. (1999). Inorg. Chim. Acta, 285, 297–300. Web of Science CSD CrossRef CAS Google Scholar
Chowdhury, S., Mal, P., Basu, C., Stoeckli–Evans, H. & Mukherjee, S. (2009). Polyhedron, 28, 3863–3871. Web of Science CSD CrossRef CAS Google Scholar
Cristóvão, B. & Hnatejko, Z. (2015). J. Mol. Struct. 1088, 50–55. Google Scholar
Dumitru, F., Petit, E., van der Lee, A. & Barboiu, M. (2005). Eur. J. Inorg. Chem. 2005, 4255–4262. Web of Science CSD CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gerloch, M. (1966). J. Chem. Soc. A, pp. 1317–1325. CSD CrossRef Web of Science Google Scholar
Gregório, T., Rüdiger, A. L., Nunes, G. G., Soares, J. F. & Hughes, D. L. (2015). Acta Cryst. E71, 65–68. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lahoud, M. G., Frem, R. C. G., Gálico, D. A., Bannach, G., Nolasco, M. M., Ferreira, R. A. S. & Carlos, L. D. (2016). J. Lumin. 170, 357–363. Web of Science CrossRef CAS Google Scholar
Mesa, J. L., Arriortua, M. I., Lezama, L., Pizarro, J. L., Rojo, T. & Beltran, D. (1988). Polyhedron, 7, 1383–1388. CSD CrossRef CAS Web of Science Google Scholar
Mesa, J. L., Rojo, T., Arriortua, M. L., Villeneuve, G., Folgado, J. V., Beltran-Porter, A. & Beltran-Porter, D. (1989). J. Chem. Soc. Dalton Trans. pp. 53–56. CSD CrossRef Web of Science Google Scholar
Mukherjee, S., Chowdhury, S., Chattopadhyay, A. P. & Stoeckli-Evans, H. (2010). Polyhedron, 29, 1182–1188. Web of Science CSD CrossRef CAS Google Scholar
Ndiaye-Gueye, M., Dieng, M., Lo, D., Thiam, I. E., Barry, A. H., Gaye, M., Sall, A. S. & Retailleau, P. (2017). Eur. J. Chem. 8, 137–143. Google Scholar
Ndiaye-Gueye, M., Dieng, M., Thiam, I. E., Lo, D., Barry, A. H., Gaye, M. & Retailleau, P. (2017). S. Afr. J. Chem. 70, 8–15. Google Scholar
Ndiaye-Gueye, M., Dieng, M., Thiam, I. E., Sow, M. M., Gueye-Sylla, R., Barry, A. H., Gaye, M. & Retailleau, P. (2017). Rev. Roum. Chim. 62, 35–41. Google Scholar
Neves, A., Erthal, S. M. D., Vencato, I., Ceccato, A. S., Mascarenhas, Y. P., Nascimento, O. R., Horner, M. & Batista, A. A. (1992). Inorg. Chem. 31, 4749–4755. CSD CrossRef CAS Web of Science Google Scholar
Rojo, T., Mesa, J. L., Arriortua, M. I., Savariault, J. M., Galy, J., Villeneuve, G. & Beltran, D. (1988). Inorg. Chem. 27, 3904–3911. CSD CrossRef CAS Web of Science Google Scholar
Schwingel, E. W., Arend, K., Zarling, J., Neves, A. & Szpoganicz, B. (1996). J. Braz. Chem. Soc. 7, 31–37. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Vantomme, G., Hafezi, N. & Lehn, J.-M. (2014). Chem. Sci. 5, 1475–1483. Web of Science CSD CrossRef CAS Google Scholar
Zhang, Y., Wei, W., Das, G. K. & Yang Tan, T. T. (2014). J. Photochem. Photobiol. Photochem. Rev. 20, 71–96. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.