research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(acetato-κ2O,O′)di­aqua­[1-(pyridin-2-yl­methyl­­idene-κN)-2-(pyridin-2-yl-κN)hydrazine-κN1]terbium(III) nitrate monohydrate

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bDépartement de Chimie, Faculté des Sciences, Université de Nouakchott, Nouakchott, Mauritania, and cCentre de Recherche e Gif, Institut de Chimie des Substances Naturelles, CNRS–UPR2301, 1 Avenue la Terasse, 91198 Gif sur Yvette, France
*Correspondence e-mail: mlgayeastou@yahoo.fr

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 25 May 2017; accepted 30 June 2017; online 7 July 2017)

In the title compound, [Tb(C2H3O2)2(C11H10N4)(H2O)2]NO3·H2O, the Tb3+ ion is nine-coordinated in a distorted tricapped trigonal-prismatic geometry by the three N atoms of the tridentate 1-(pyridin-2-yl­methyl­idene)-2-(pyridin-2-yl)hydrazine ligand, four carboxyl­ate O atoms of two chelating acetate groups and two O atoms of the coordinating water mol­ecules. The organic hydrazine ligand is disordered over two orientations with a refined occupancy ratio of 0.52 (3):0.48 (3). All bond lengths in the coordination environment of the Tb3+ ion are slightly larger than those observed in the isostructural Y3+ and Er3+ complexes. In the crystal, the complex cations are linked by pairs of O—H⋯O hydrogen bonds into dimers. These dimers, nitrate anions and non-coordinating water mol­ecules are joined by O—H⋯O and N—H⋯O hydrogen bonds into a three-dimensional structure.

1. Chemical context

As a result of their various architectures and numerous applications (Binnemans, 2005[Binnemans, K. (2005). Rare-Earth Beta-Diketonates, in Handbook on the Physics and Chemistry of Rare Earths, Vol. 35, ch. 225, edited by K. A. Gschneidner Jr, J.-C. G. Bünzli & V. K. Pecharsky, pp. 107-272. Amsterdam: Elsevier.]), lanthanide complexes have attracted significant attention, and the synthesis of new complexes of this type has became relevant. Both mononuclear and polynuclear lanthanide complexes reveal specific properties as mol­ecular magnets (Cristóvão & Hnatejko, 2015[Cristóvão, B. & Hnatejko, Z. (2015). J. Mol. Struct. 1088, 50-55.]), luminescence materials (Lahoud et al., 2016[Lahoud, M. G., Frem, R. C. G., Gálico, D. A., Bannach, G., Nolasco, M. M., Ferreira, R. A. S. & Carlos, L. D. (2016). J. Lumin. 170, 357-363.]) and preparates for medical biology (Zhang et al., 2014[Zhang, Y., Wei, W., Das, G. K. & Yang Tan, T. T. (2014). J. Photochem. Photobiol. Photochem. Rev. 20, 71-96.]). Used as ligands, Schiff bases together with carboxyl­ate anions display large versatility in forming coordination compounds with metal ions and can generate a wide variety of coordination types. Considerable inter­est is afforded to the development of polydentate ligands containing different (hard and soft) N, O or S binding sites, designed to yield special topological structures (Binnemans, 2005[Binnemans, K. (2005). Rare-Earth Beta-Diketonates, in Handbook on the Physics and Chemistry of Rare Earths, Vol. 35, ch. 225, edited by K. A. Gschneidner Jr, J.-C. G. Bünzli & V. K. Pecharsky, pp. 107-272. Amsterdam: Elsevier.]). By appropriate design, the mol­ecular structure of the ligand can be modified in order to coordinate metal ions in diverse modes resulting in specific architectures. The coordination mode also depends on the adopted synthetic procedures. In this context, for synthesis of the terbium(III) complex, the Schiff base 1-(pyridin-2-yl­methyl­idene)-2-(pyridin-2-yl)hydrazine (HL), which provides three soft-donating N atoms from two pyridine rings and the imino function, was used together with acetate anions, which provide hard-donating O atoms, as co-ligands (Neves et al., 1992[Neves, A., Erthal, S. M. D., Vencato, I., Ceccato, A. S., Mascarenhas, Y. P., Nascimento, O. R., Horner, M. & Batista, A. A. (1992). Inorg. Chem. 31, 4749-4755.]; Schwingel et al., 1996[Schwingel, E. W., Arend, K., Zarling, J., Neves, A. & Szpoganicz, B. (1996). J. Braz. Chem. Soc. 7, 31-37.]; Gregório et al., 2015[Gregório, T., Rüdiger, A. L., Nunes, G. G., Soares, J. F. & Hughes, D. L. (2015). Acta Cryst. E71, 65-68.]). The ligand HL and acetate groups were used in our previous attempts to prepare new mono- and binuclear lanthanide(III) complexes (Ndiaye-Gueye, Dieng, Thiam, Sow et al., 2017[Ndiaye-Gueye, M., Dieng, M., Thiam, I. E., Sow, M. M., Gueye-Sylla, R., Barry, A. H., Gaye, M. & Retailleau, P. (2017). Rev. Roum. Chim. 62, 35-41.]; Ndiaye-Gueye, Dieng, Thiam, Lo et al., 2017[Ndiaye-Gueye, M., Dieng, M., Thiam, I. E., Lo, D., Barry, A. H., Gaye, M. & Retailleau, P. (2017). S. Afr. J. Chem. 70, 8-15.]; Ndiaye-Gueye, Dieng, Lo et al., 2017[Ndiaye-Gueye, M., Dieng, M., Lo, D., Thiam, I. E., Barry, A. H., Gaye, M., Sall, A. S. & Retailleau, P. (2017). Eur. J. Chem. 8, 137-143.]). In the present study, mixing of the HL ligand, sodium acetate and hexa­hydrated terbium nitrate yields a nine-coordinated mononuclear complex of Tb3+.

[Scheme 1]

2. Structural commentary

The crystallographic study shows a 1:1:2 ratio of HL/Tb/acetate in the resulting cationic complex when these components were mixed at room temperature in ethanol with a 1:1:3 ratio. The asymmetric unit comprises a Tb3+ ion coordinated by one tridentate HL ligand, two chelating acetate ions, two coordinating water mol­ecules, one non-coordinating nitrate anion and one non-coordinating water mol­ecule (Fig. 1[link]). The Schiff base acts as a tridentate ligand with three donating N atoms, forming two five-membered chelate rings (TbNCCN and TbNNCN). The Tb3+ ion is nine-coordinated and its environment can be described as a distorted tricapped trigonal prism with slanted base faces N1, N2, O2 and O3, O5W, O6W. The Tb—O(Ac) bond lengths lie within the range 2.401 (3)–2.476 (3) Å (Table 1[link]) and are comparable to the average value of 2.46 (6) Å for analogous structures from the Cambridge Structural Database (CSD Version 5.38, November 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The Tb—OW bond lengths involving O atoms of the coordinating water mol­ecules of 2.357 (3) and 2.362 (3) Å are also well comparable with the known values [average 2.41 (5) Å from CSD]. In the title structure, the bonds Tb—N differ in length: the distance involving the imino N atom is shorter than those involving the pyridine N atoms: 2.542 (4) Å vs 2.574 (4) and 2.588 (4) Å (Table 1[link]). The same relations between the Tb—N(imine) and Tb—N(Py) bond lengths were observed in the structures of {N,N′-cyclo­hexane-1,2-diylbis[1-(pyridin-2-yl)methanimine]}-tris­(nitrato)terbium (Chen et al., 2013[Chen, Sh., Fan, R.-Q., Gao, S., Wang, X. & Yang, Y.-L. (2013). J. Lumin. 149, 75-85.]) and {(2,9-di­formyl­phenanthroline)bis­[(2-pyrid­yl)hydrazone]}bis­(nitrato)terbium nitrate (Carcelli et al., 2005[Carcelli, M., Ianelli, S., Pelagatti, P., Pelizzi, G., Rogolino, D., Solinas, C. & Tegoni, M. (2005). Inorg. Chim. Acta, 358, 903-911.]), though the absolute values of Tb—N distances of the same kind in these three structures are different. The distances Tb—O(Ac), Tb—OW and Tb—N in the title structure are slightly larger (by 0.03–0.04 Å) than the corresponding distances observed in isostructural Y3+ and Er3+ complexes we recently reported (Ndiaye-Gueye, Dieng, Lo et al., 2017[Ndiaye-Gueye, M., Dieng, M., Lo, D., Thiam, I. E., Barry, A. H., Gaye, M., Sall, A. S. & Retailleau, P. (2017). Eur. J. Chem. 8, 137-143.]). These observations can be correlated with the decrease in the unit-cell volume: 1060.5 (2) Å3 for Tb3+ vs 1051.3 (2) Å3 for Y3+ and 1049.6 (2) Å3 for Er3+. The bond lengths in the disordered chain C—CH=N—NH—C bridging two pyridine rings are 1.484 (14) and 1.513 (17) Å for C—C, 1.293 (17) and 1.319 (13) Å for C=N, 1.393 (13) and 1.396 (13) Å for N—N and 1.411 (13) and 1.417 (12) Å for N—C. These bonds are slightly longer than observed for this ligand in other complexes. This may be related to the disorder detected for this chain. The dihedral angle formed by the planes of two terminal pyridine rings is 11.0 (4)°.

Table 1
Selected bond lengths (Å)

Tb1—O5W 2.357 (3) N2—C6 1.293 (17)
Tb1—O6W 2.362 (3) N2—C6A 1.319 (13)
Tb1—O2 2.401 (3) N2—N4 1.393 (13)
Tb1—O4 2.447 (3) N2—N4A 1.396 (13)
Tb1—O3 2.476 (3) N4—C5 1.417 (12)
Tb1—O1 2.476 (3) C5—C6A 1.484 (14)
Tb1—N2 2.542 (4) C6—C7 1.513 (17)
Tb1—N3 2.574 (4) C7—N4A 1.410 (13)
Tb1—N1 2.588 (4)    
[Figure 1]
Figure 1
An ORTEP view of the title compound, showing some of hydrogen bonds as dashed lines. Displacement ellipsoids are plotted at the 50% probability level.

3. Supra­molecular features

The crystal structure is stabilized by hydrogen bonds giving rise to a three-dimensional network (Table 2[link]). The complex cations are linked into centrosymmetric dimers by pairs of O—H⋯O hydrogen bonds between one of two coordinating water mol­ecules (O5W) and the acetate O1 atom in an R22(8) manner. The second coordinating water mol­ecule (O6W) acts as hydrogen-atom donor, forming hydrogen bonds with the non-coordinating water mol­ecule and the nitrate anion, as shown in Fig. 1[link]. The acetate O atoms act as acceptors in the hydrogen bonds with the HN groups of adjacent complex cation. Furthermore, the non-coordinating water mol­ecule forms hydrogen bonds to the nitrate anions. There are also some C—H⋯O contacts, which contribute to the crystal architecture and may be considered as weak hydrogen bonds (Fig. 2[link], Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5W—H5WA⋯O1i 0.82 (2) 1.91 (2) 2.718 (4) 175 (6)
O5W—H5WB⋯O9ii 0.80 (2) 2.12 (2) 2.849 (5) 153 (5)
O5W—H5WB⋯O3 0.80 (2) 2.48 (2) 2.874 (5) 112 (4)
O6W—H6WA⋯O7W 0.86 1.84 2.653 (5) 157
O6W—H6WB⋯O8 0.86 2.03 2.778 (5) 145
O7W—H7WA⋯O10iii 0.82 (2) 2.16 (2) 2.975 (6) 172 (6)
O7W—H7WB⋯O9ii 0.81 (2) 2.13 (2) 2.924 (6) 164 (8)
N4—H4N⋯O4iv 0.86 2.11 2.938 (11) 163
N4A—H4NA⋯O2v 0.86 2.04 2.896 (14) 179
C2—H2⋯O10i 0.93 2.58 3.407 (7) 148
C11—H11⋯O6W 0.93 2.52 3.125 (7) 123
C13—H13C⋯O8ii 0.96 2.47 3.227 (7) 136
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x+1, y, z; (iii) -x, -y+2, -z+2; (iv) -x+2, -y+1, -z+1; (v) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
The packing showing the hydrogen bonds as dashed lines.

4. Database survey

The ligand 1-(pyridin-2-yl­methyl­idene)-2-(pyridin-2-yl)hydrazine has been widely used in coordination chemistry. The current release of the CSD (Version 5.38, November 2016 + 1 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 16 hits. Six examples of complexes of the above ligand with f-block metal ions are known from the literature (Baraniak et al., 1976[Baraniak, E., Bruce, R. S. L., Freeman, H. C., Hair, N. J. & James, J. (1976). Inorg. Chem. 15, 2226-2230.]; Ndiaye-Gueye, Dieng, Thiam, Sow et al., 2017[Ndiaye-Gueye, M., Dieng, M., Thiam, I. E., Sow, M. M., Gueye-Sylla, R., Barry, A. H., Gaye, M. & Retailleau, P. (2017). Rev. Roum. Chim. 62, 35-41.]; Ndiaye-Gueye, Dieng, Thiam, Lo et al., 2017[Ndiaye-Gueye, M., Dieng, M., Thiam, I. E., Lo, D., Barry, A. H., Gaye, M. & Retailleau, P. (2017). S. Afr. J. Chem. 70, 8-15.]; Ndiaye-Gueye, Dieng, Lo et al., 2017[Ndiaye-Gueye, M., Dieng, M., Lo, D., Thiam, I. E., Barry, A. H., Gaye, M., Sall, A. S. & Retailleau, P. (2017). Eur. J. Chem. 8, 137-143.]). The other entries are related to complexes with p- and d-block metal ions. Structures are available for Ca2+ (Vantomme et al., 2014[Vantomme, G., Hafezi, N. & Lehn, J.-M. (2014). Chem. Sci. 5, 1475-1483.]), Cu2+ (Mesa et al., 1988[Mesa, J. L., Arriortua, M. I., Lezama, L., Pizarro, J. L., Rojo, T. & Beltran, D. (1988). Polyhedron, 7, 1383-1388.], 1989[Mesa, J. L., Rojo, T., Arriortua, M. L., Villeneuve, G., Folgado, J. V., Beltran-Porter, A. & Beltran-Porter, D. (1989). J. Chem. Soc. Dalton Trans. pp. 53-56.]; Rojo et al., 1988[Rojo, T., Mesa, J. L., Arriortua, M. I., Savariault, J. M., Galy, J., Villeneuve, G. & Beltran, D. (1988). Inorg. Chem. 27, 3904-3911.]; Ainscough et al., 1996[Ainscough, E. W., Brodie, A. M., Ingham, S. L. & Waters, J. M. (1996). Inorg. Chim. Acta, 249, 47-55.]; Chowdhury et al., 2009[Chowdhury, S., Mal, P., Basu, C., Stoeckli-Evans, H. & Mukherjee, S. (2009). Polyhedron, 28, 3863-3871.]; Mukherjee et al., 2010[Mukherjee, S., Chowdhury, S., Chattopadhyay, A. P. & Stoeckli-Evans, H. (2010). Polyhedron, 29, 1182-1188.]; Chang et al., 2011[Chang, M., Kobayashi, A., Chang, H.-C., Nakajima, K. & Kato, M. (2011). Chem. Lett. 40, 1335-1337.]), Co2+ (Gerloch et al., 1966[Gerloch, M. (1966). J. Chem. Soc. A, pp. 1317-1325.]), Ni2+ (Chiumia et al., 1999[Chiumia, G. C., Craig, D. C., Phillips, D. J., Rae, A. D. & Kaifi, F. M. Z. (1999). Inorg. Chim. Acta, 285, 297-300.]) and Zn2+ (Dumitru et al., 2005[Dumitru, F., Petit, E., van der Lee, A. & Barboiu, M. (2005). Eur. J. Inorg. Chem. 2005, 4255-4262.]). In 15 cases, the ligand acts in a tridentate mode through the soft nitro­gen atoms of two pyridine rings and the imino function. The hard protonated nitro­gen atom remains non-coordinating in all known complexes.

5. Synthesis and crystallization

A mixture of 2-hydrazino­pyridine (1 mmol) and 2-pyridine­carbaldehyde (1 mmol) in ethanol (15 mL) was stirred under reflux during 30 min. A mixture of sodium acetate (3 mmol) and Tb(NO3)3·6H2O (1 mmol) in ethanol (10 mL) was added to the solution. The mixture was stirred for 30 min and the resulting yellow solution was filtered and the filtrate was kept at 298 K. A yellow powder appeared after one day and was collected by filtration. [C15H20TbN4O6]NO3·H2O. Yield 62%. Analysis calculated C, 30.47; H, 3.75; N, 11.84. Found: C, 30.42; H, 3.69; N, 11.89%. μeff (μB): 2.51. ΛM (S cm2 mol−1): 90. IR (cm−1): 3225, 1588, 1575, 1558, 1445,1365, 820. δH (250 MHz, DMSO-d6) 11.21 (H, s, H-N-N); 8.54 (1H, s, H-Py); 8.16 (1H, H-Py); 8.10 (1H, s, H—C=N); 8.01 (1H, d, J = 7.50 Hz, H-Py); 7.81 (1H, d, J = 8 Hz, H-Py); 7.69 (1H, d, J = 8Hz, H-Py); 7.35 (2H, d, J = 8 Hz, H-Py); 6.83 (1H, s, H-Py); 4.722 (s, broad, H2O). δC (250 MHz, DMSO-d6): 106.526 (C-8), 115.559 (C-10), 118.845 (C-4), 122.912 (C-2), 136.465 (C-3), 138.015 (C-9), 139.171 (C-6), 147.804 (C-11).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms of the water mol­ecules were located in difference-Fourier maps. The O—H distances involving the O5W and O7W water mol­ecules were restrained to 0.82 (2) Å, those involving O6W were constrained using the AFIX 7 instruction. Other H atoms (CH and CH3 groups) were positioned geometrically and refined using a riding model with Uiso(H) = 1.2Ueq(C) (1.5 for CH3 groups). The chain bridging the two pyridine rings was found to be disordered. This disorder may be explained by the fact that the sequence of atoms C(py)—CH=N—NH—C(py) overlaps with the sequence C(py)—NH—N=CH—C(py), meaning two orientations for the ligand. For the refinement, we assumed that the C atom of CH group from one chain is situated nearby the N atom of NH group from the second chain, and the same relates inversely, whereas the imino N atoms of both chains occupy the same position. The occupancy factors were refined to a 0.52 (3):0.48 (3) ratio.

Table 3
Experimental details

Crystal data
Chemical formula [Tb(C2H3O2)2(C11H10N4)(H2O)2]NO3·H2O
Mr 591.29
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 7.9184 (7), 11.7686 (10), 12.5196 (10)
α, β, γ (°) 78.981 (7), 73.965 (7), 72.222 (8)
V3) 1060.45 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.40
Crystal size (mm) 0.08 × 0.07 × 0.05
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.230, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15646, 5172, 4355
Rint 0.069
(sin θ/λ)max−1) 0.706
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.083, 0.97
No. of reflections 5172
No. of parameters 314
No. of restraints 7
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.12, −1.58
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

Bis(acetato-κ2O,O')diaqua[1-(pyridin-2-ylmethylidene-κN)-2-(pyridin-2-yl-κN)hydrazine-κN1]terbium(III) nitrate monohydrate top
Crystal data top
[Tb(C2H3O2)2(C11H10N4)(H2O)2]NO3·H2OZ = 2
Mr = 591.29F(000) = 584
Triclinic, P1Dx = 1.852 Mg m3
a = 7.9184 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.7686 (10) ÅCell parameters from 9920 reflections
c = 12.5196 (10) Åθ = 2.4–28.6°
α = 78.981 (7)°µ = 3.40 mm1
β = 73.965 (7)°T = 293 K
γ = 72.222 (8)°Prismatic, yellow
V = 1060.45 (16) Å30.08 × 0.07 × 0.05 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5172 independent reflections
Radiation source: fine-focus sealed tube4355 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.069
CCD scansθmax = 30.1°, θmin = 4.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1011
Tmin = 0.230, Tmax = 1.000k = 1614
15646 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0354P)2]
where P = (Fo2 + 2Fc2)/3
5172 reflections(Δ/σ)max = 0.002
314 parametersΔρmax = 1.12 e Å3
7 restraintsΔρmin = 1.58 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Tb10.57850 (2)0.62098 (2)0.74087 (2)0.02775 (8)
O10.3829 (4)0.5115 (3)0.8860 (2)0.0386 (7)
O20.3445 (4)0.5452 (3)0.7157 (3)0.0425 (7)
O30.6931 (4)0.7991 (3)0.7223 (3)0.0440 (7)
O40.8873 (4)0.6407 (3)0.6551 (3)0.0497 (8)
O5W0.6728 (5)0.6114 (3)0.9059 (3)0.0431 (7)
H5WA0.650 (8)0.577 (4)0.969 (2)0.065*
H5WB0.705 (7)0.670 (3)0.903 (4)0.065*
O6W0.3256 (4)0.7749 (3)0.8163 (3)0.0473 (8)
H6WA0.3591850.8172890.8513880.071*
H6WB0.2438520.7439300.8624350.071*
O7W0.3776 (6)0.9555 (4)0.8901 (4)0.0793 (14)
H7WA0.308 (7)0.988 (7)0.944 (4)0.119*
H7WB0.480 (5)0.925 (7)0.901 (6)0.119*
O80.0192 (5)0.7371 (3)0.8970 (4)0.0629 (10)
O90.2955 (5)0.8218 (4)0.9709 (4)0.0666 (11)
O100.0942 (6)0.9208 (4)0.9267 (4)0.0735 (12)
N10.7632 (5)0.3976 (3)0.7525 (3)0.0368 (8)
N20.7066 (6)0.5259 (4)0.5591 (3)0.0547 (11)
N30.4996 (5)0.7501 (3)0.5616 (3)0.0362 (8)
N40.858 (3)0.4265 (11)0.5572 (9)0.043 (4)0.48 (3)
H4N0.9469670.4138350.4994050.051*0.48 (3)
N50.1358 (5)0.8281 (4)0.9303 (4)0.0440 (9)
C10.7881 (6)0.3285 (4)0.8487 (4)0.0437 (10)
H10.7269610.3610700.9154050.052*
C20.8978 (8)0.2133 (5)0.8545 (5)0.0564 (13)
H20.9065260.1686550.9235650.068*
C30.9929 (10)0.1656 (6)0.7589 (6)0.081 (2)
H31.0718400.0886630.7605150.097*
C40.9705 (12)0.2330 (6)0.6591 (6)0.112 (3)
H41.0343180.2019910.5919670.134*
C50.8520 (8)0.3480 (5)0.6585 (4)0.0620 (15)
C60.712 (3)0.5933 (16)0.4644 (13)0.041 (3)0.48 (3)
H60.8049610.5737890.4010550.049*0.48 (3)
C70.5569 (8)0.7066 (5)0.4646 (4)0.0549 (13)
C80.5096 (12)0.7717 (7)0.3673 (5)0.095 (3)
H80.5483460.7363910.3012080.114*
C90.4057 (9)0.8881 (6)0.3695 (6)0.0730 (18)
H90.3752380.9339810.3048920.088*
C100.3486 (9)0.9347 (5)0.4675 (6)0.0726 (17)
H100.2768871.0133520.4722040.087*
C110.3980 (9)0.8641 (5)0.5604 (5)0.0653 (16)
H110.3579230.8978930.6272910.078*
C120.8521 (5)0.7497 (4)0.6718 (4)0.0337 (9)
C130.9806 (7)0.8089 (5)0.6350 (5)0.0532 (13)
H13A0.9259440.8913050.6110020.080*
H13B1.0703220.7727250.5732140.080*
H13C1.0380150.8053220.6942670.080*
C140.2996 (6)0.5032 (4)0.8165 (4)0.0358 (9)
C150.1467 (7)0.4436 (5)0.8522 (5)0.0532 (13)
H15A0.0533920.4837100.9104060.080*
H15B0.1924310.3609010.8794820.080*
H15C0.0966700.4481750.7893380.080*
C6A0.782 (3)0.4094 (12)0.5581 (11)0.039 (3)0.52 (3)
H6A0.7903100.3688270.4991340.046*0.52 (3)
N4A0.638 (3)0.5818 (11)0.4654 (10)0.043 (4)0.52 (3)
H4NA0.6436340.5430270.4121900.052*0.52 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.02887 (12)0.03134 (13)0.02209 (11)0.00834 (8)0.00363 (8)0.00384 (8)
O10.0436 (16)0.0513 (19)0.0251 (15)0.0198 (14)0.0081 (13)0.0027 (14)
O20.0512 (18)0.057 (2)0.0283 (16)0.0294 (16)0.0129 (14)0.0028 (15)
O30.0420 (17)0.0430 (18)0.046 (2)0.0133 (14)0.0061 (15)0.0061 (15)
O40.0369 (17)0.052 (2)0.051 (2)0.0125 (15)0.0051 (15)0.0068 (17)
O5W0.061 (2)0.051 (2)0.0276 (16)0.0307 (16)0.0136 (15)0.0012 (14)
O6W0.0379 (16)0.0488 (19)0.052 (2)0.0117 (14)0.0042 (15)0.0190 (17)
O7W0.063 (3)0.073 (3)0.102 (4)0.002 (2)0.016 (3)0.049 (3)
O80.055 (2)0.049 (2)0.075 (3)0.0056 (18)0.0004 (19)0.020 (2)
O90.042 (2)0.073 (3)0.082 (3)0.0155 (19)0.0052 (19)0.016 (2)
O100.084 (3)0.051 (2)0.093 (3)0.029 (2)0.017 (2)0.012 (2)
N10.0383 (19)0.038 (2)0.032 (2)0.0072 (16)0.0093 (15)0.0028 (16)
N20.077 (3)0.042 (2)0.025 (2)0.009 (2)0.008 (2)0.0065 (18)
N30.0401 (19)0.0336 (19)0.033 (2)0.0116 (16)0.0075 (16)0.0009 (16)
N40.049 (8)0.037 (6)0.028 (5)0.005 (5)0.009 (5)0.005 (4)
N50.046 (2)0.042 (2)0.046 (2)0.0120 (19)0.0131 (18)0.0086 (19)
C10.053 (3)0.042 (3)0.036 (3)0.016 (2)0.010 (2)0.003 (2)
C20.071 (3)0.046 (3)0.052 (3)0.014 (3)0.027 (3)0.011 (3)
C30.097 (5)0.049 (3)0.067 (4)0.024 (3)0.023 (4)0.002 (3)
C40.152 (7)0.065 (4)0.055 (4)0.056 (5)0.011 (4)0.015 (3)
C50.082 (4)0.047 (3)0.032 (3)0.014 (3)0.007 (3)0.007 (2)
C60.045 (8)0.046 (7)0.026 (6)0.002 (7)0.005 (6)0.010 (5)
C70.074 (4)0.050 (3)0.032 (3)0.005 (3)0.017 (2)0.003 (2)
C80.153 (7)0.074 (4)0.036 (3)0.014 (5)0.040 (4)0.003 (3)
C90.094 (5)0.064 (4)0.058 (4)0.011 (3)0.041 (4)0.016 (3)
C100.089 (4)0.046 (3)0.067 (4)0.001 (3)0.024 (3)0.013 (3)
C110.085 (4)0.044 (3)0.048 (3)0.004 (3)0.011 (3)0.002 (3)
C120.031 (2)0.044 (2)0.024 (2)0.0123 (18)0.0048 (17)0.0010 (18)
C130.055 (3)0.055 (3)0.045 (3)0.027 (3)0.001 (2)0.006 (2)
C140.039 (2)0.039 (2)0.030 (2)0.0115 (19)0.0073 (18)0.0023 (19)
C150.049 (3)0.069 (4)0.049 (3)0.031 (3)0.013 (2)0.002 (3)
C6A0.046 (7)0.037 (6)0.032 (5)0.012 (5)0.001 (5)0.013 (4)
N4A0.067 (10)0.039 (5)0.029 (5)0.009 (6)0.026 (6)0.006 (4)
Geometric parameters (Å, º) top
Tb1—O5W2.357 (3)N4—C51.417 (12)
Tb1—O6W2.362 (3)N4—H4N0.8600
Tb1—O22.401 (3)C1—C21.370 (7)
Tb1—O42.447 (3)C1—H10.9300
Tb1—O32.476 (3)C2—C31.349 (9)
Tb1—O12.476 (3)C2—H20.9300
Tb1—N22.542 (4)C3—C41.371 (10)
Tb1—N32.574 (4)C3—H30.9300
Tb1—N12.588 (4)C4—C51.392 (8)
Tb1—C142.812 (4)C4—H40.9300
Tb1—C122.865 (4)C5—C6A1.484 (14)
Tb1—Tb1i6.5113 (7)C6—C71.513 (17)
O1—C141.261 (5)C6—H60.9300
O2—C141.259 (5)C7—C81.390 (8)
O3—C121.256 (5)C7—N4A1.410 (13)
O4—C121.272 (6)C8—C91.367 (9)
O5W—H5WA0.819 (19)C8—H80.9300
O5W—H5WB0.800 (19)C9—C101.345 (9)
O6W—H6WA0.8617C9—H90.9300
O6W—H6WB0.8617C10—C111.370 (8)
O7W—H7WA0.82 (2)C10—H100.9300
O7W—H7WB0.81 (2)C11—H110.9300
O8—N51.236 (5)C12—C131.336 (6)
O9—N51.245 (5)C13—H13A0.9600
O10—N51.223 (5)C13—H13B0.9600
N1—C51.332 (6)C13—H13C0.9600
N1—C11.345 (6)C14—C151.502 (6)
N2—C61.293 (17)C15—H15A0.9600
N2—C6A1.319 (13)C15—H15B0.9600
N2—N41.393 (13)C15—H15C0.9600
N2—N4A1.396 (13)C6A—H6A0.9300
N3—C71.317 (6)N4A—H4NA0.8600
N3—C111.337 (6)
O5W—Tb1—O6W85.06 (12)C6A—N2—N4A114.0 (9)
O5W—Tb1—O2128.75 (11)C6—N2—Tb1119.8 (8)
O6W—Tb1—O282.50 (11)C6A—N2—Tb1121.7 (6)
O5W—Tb1—O481.62 (12)N4—N2—Tb1116.2 (6)
O6W—Tb1—O4125.77 (11)N4A—N2—Tb1119.5 (6)
O2—Tb1—O4142.99 (12)C7—N3—C11115.7 (4)
O5W—Tb1—O372.94 (11)C7—N3—Tb1121.4 (3)
O6W—Tb1—O373.67 (11)C11—N3—Tb1122.9 (3)
O2—Tb1—O3146.48 (11)N2—N4—C5114.3 (9)
O4—Tb1—O352.15 (11)N2—N4—H4N122.8
O5W—Tb1—O175.65 (10)C5—N4—H4N122.8
O6W—Tb1—O176.13 (11)O10—N5—O8120.8 (4)
O2—Tb1—O153.11 (10)O10—N5—O9120.8 (4)
O4—Tb1—O1146.94 (11)O8—N5—O9118.4 (4)
O3—Tb1—O1137.72 (10)N1—C1—C2124.1 (5)
O5W—Tb1—N2137.14 (13)N1—C1—H1117.9
O6W—Tb1—N2137.52 (13)C2—C1—H1117.9
O2—Tb1—N273.60 (13)C3—C2—C1119.1 (5)
O4—Tb1—N269.39 (14)C3—C2—H2120.5
O3—Tb1—N2109.07 (14)C1—C2—H2120.5
O1—Tb1—N2113.20 (13)C2—C3—C4118.5 (5)
O5W—Tb1—N3146.84 (11)C2—C3—H3120.8
O6W—Tb1—N378.75 (12)C4—C3—H3120.8
O2—Tb1—N377.73 (11)C3—C4—C5119.8 (6)
O4—Tb1—N384.69 (12)C3—C4—H4120.1
O3—Tb1—N374.79 (11)C5—C4—H4120.1
O1—Tb1—N3126.77 (10)N1—C5—C4122.0 (5)
N2—Tb1—N362.34 (12)N1—C5—N4116.7 (6)
O5W—Tb1—N181.87 (12)C4—C5—N4119.5 (6)
O6W—Tb1—N1149.42 (12)N1—C5—C6A115.0 (6)
O2—Tb1—N184.37 (11)C4—C5—C6A121.3 (7)
O4—Tb1—N179.43 (11)N2—C6—C7114.8 (11)
O3—Tb1—N1127.41 (10)N2—C6—H6122.6
O1—Tb1—N173.90 (11)C7—C6—H6122.6
N2—Tb1—N162.72 (12)N3—C7—C8123.0 (5)
N3—Tb1—N1124.96 (11)N3—C7—N4A117.3 (6)
O5W—Tb1—C14102.28 (12)C8—C7—N4A118.4 (7)
O6W—Tb1—C1477.74 (12)N3—C7—C6112.5 (8)
O2—Tb1—C1426.47 (11)C8—C7—C6122.9 (8)
O4—Tb1—C14156.49 (12)C9—C8—C7119.5 (6)
O3—Tb1—C14151.29 (12)C9—C8—H8120.3
O1—Tb1—C1426.64 (11)C7—C8—H8120.3
N2—Tb1—C1493.73 (14)C10—C9—C8118.3 (6)
N3—Tb1—C14102.27 (12)C10—C9—H9120.9
N1—Tb1—C1478.22 (12)C8—C9—H9120.9
O5W—Tb1—C1276.23 (12)C9—C10—C11118.8 (6)
O6W—Tb1—C1299.55 (12)C9—C10—H10120.6
O2—Tb1—C12154.91 (11)C11—C10—H10120.6
O4—Tb1—C1226.23 (12)N3—C11—C10124.7 (6)
O3—Tb1—C1225.92 (11)N3—C11—H11117.6
O1—Tb1—C12151.81 (11)C10—C11—H11117.6
N2—Tb1—C1289.05 (14)O3—C12—O4117.7 (4)
N3—Tb1—C1278.17 (11)O3—C12—C13121.8 (5)
N1—Tb1—C12103.96 (12)O4—C12—C13120.5 (4)
C14—Tb1—C12177.06 (12)O3—C12—Tb159.5 (2)
O5W—Tb1—Tb1i41.12 (8)O4—C12—Tb158.2 (2)
O6W—Tb1—Tb1i81.29 (9)C13—C12—Tb1177.5 (4)
O2—Tb1—Tb1i87.80 (7)C12—C13—H13A109.5
O4—Tb1—Tb1i117.10 (9)C12—C13—H13B109.5
O3—Tb1—Tb1i110.91 (8)H13A—C13—H13B109.5
O1—Tb1—Tb1i34.82 (6)C12—C13—H13C109.5
N2—Tb1—Tb1i130.93 (10)H13A—C13—H13C109.5
N3—Tb1—Tb1i156.65 (8)H13B—C13—H13C109.5
N1—Tb1—Tb1i70.70 (8)O2—C14—O1119.8 (4)
C14—Tb1—Tb1i61.39 (9)O2—C14—C15119.2 (4)
C12—Tb1—Tb1i117.28 (8)O1—C14—C15120.9 (4)
C14—O1—Tb191.7 (3)O2—C14—Tb158.2 (2)
C14—O2—Tb195.3 (2)O1—C14—Tb161.7 (2)
C12—O3—Tb194.6 (3)C15—C14—Tb1177.2 (3)
C12—O4—Tb195.5 (2)C14—C15—H15A109.5
Tb1—O5W—H5WA134 (4)C14—C15—H15B109.5
Tb1—O5W—H5WB109 (4)H15A—C15—H15B109.5
H5WA—O5W—H5WB113 (3)C14—C15—H15C109.5
Tb1—O6W—H6WA110.0H15A—C15—H15C109.5
Tb1—O6W—H6WB109.9H15B—C15—H15C109.5
H6WA—O6W—H6WB108.8N2—C6A—C5114.7 (9)
H7WA—O7W—H7WB112 (4)N2—C6A—H6A122.7
C5—N1—C1116.4 (4)C5—C6A—H6A122.7
C5—N1—Tb1119.4 (3)N2—N4A—C7115.0 (8)
C1—N1—Tb1124.0 (3)N2—N4A—H4NA122.5
C6—N2—N4112.9 (10)C7—N4A—H4NA122.5
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5W—H5WA···O1i0.82 (2)1.91 (2)2.718 (4)175 (6)
O5W—H5WB···O9ii0.80 (2)2.12 (2)2.849 (5)153 (5)
O5W—H5WB···O30.80 (2)2.48 (2)2.874 (5)112 (4)
O6W—H6WA···O7W0.861.842.653 (5)157
O6W—H6WB···O80.862.032.778 (5)145
O7W—H7WA···O10iii0.82 (2)2.16 (2)2.975 (6)172 (6)
O7W—H7WB···O9ii0.81 (2)2.13 (2)2.924 (6)164 (8)
N4—H4N···O4iv0.862.112.938 (11)163
N4A—H4NA···O2v0.862.042.896 (14)179
C2—H2···O10i0.932.583.407 (7)148
C11—H11···O6W0.932.523.125 (7)123
C13—H13C···O8ii0.962.473.227 (7)136
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z; (iii) x, y+2, z+2; (iv) x+2, y+1, z+1; (v) x+1, y+1, z+1.
 

Acknowledgements

The authors are grateful to the Sonatel Foundation for financial support.

References

First citationAinscough, E. W., Brodie, A. M., Ingham, S. L. & Waters, J. M. (1996). Inorg. Chim. Acta, 249, 47–55.  CSD CrossRef CAS Web of Science Google Scholar
First citationBaraniak, E., Bruce, R. S. L., Freeman, H. C., Hair, N. J. & James, J. (1976). Inorg. Chem. 15, 2226–2230.  CSD CrossRef CAS Web of Science Google Scholar
First citationBinnemans, K. (2005). Rare-Earth Beta-Diketonates, in Handbook on the Physics and Chemistry of Rare Earths, Vol. 35, ch. 225, edited by K. A. Gschneidner Jr, J.-C. G. Bünzli & V. K. Pecharsky, pp. 107–272. Amsterdam: Elsevier.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarcelli, M., Ianelli, S., Pelagatti, P., Pelizzi, G., Rogolino, D., Solinas, C. & Tegoni, M. (2005). Inorg. Chim. Acta, 358, 903–911.  Web of Science CSD CrossRef CAS Google Scholar
First citationChang, M., Kobayashi, A., Chang, H.-C., Nakajima, K. & Kato, M. (2011). Chem. Lett. 40, 1335–1337.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, Sh., Fan, R.-Q., Gao, S., Wang, X. & Yang, Y.-L. (2013). J. Lumin. 149, 75–85.  Web of Science CSD CrossRef Google Scholar
First citationChiumia, G. C., Craig, D. C., Phillips, D. J., Rae, A. D. & Kaifi, F. M. Z. (1999). Inorg. Chim. Acta, 285, 297–300.  Web of Science CSD CrossRef CAS Google Scholar
First citationChowdhury, S., Mal, P., Basu, C., Stoeckli–Evans, H. & Mukherjee, S. (2009). Polyhedron, 28, 3863–3871.  Web of Science CSD CrossRef CAS Google Scholar
First citationCristóvão, B. & Hnatejko, Z. (2015). J. Mol. Struct. 1088, 50–55.  Google Scholar
First citationDumitru, F., Petit, E., van der Lee, A. & Barboiu, M. (2005). Eur. J. Inorg. Chem. 2005, 4255–4262.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGerloch, M. (1966). J. Chem. Soc. A, pp. 1317–1325.  CSD CrossRef Web of Science Google Scholar
First citationGregório, T., Rüdiger, A. L., Nunes, G. G., Soares, J. F. & Hughes, D. L. (2015). Acta Cryst. E71, 65–68.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLahoud, M. G., Frem, R. C. G., Gálico, D. A., Bannach, G., Nolasco, M. M., Ferreira, R. A. S. & Carlos, L. D. (2016). J. Lumin. 170, 357–363.  Web of Science CrossRef CAS Google Scholar
First citationMesa, J. L., Arriortua, M. I., Lezama, L., Pizarro, J. L., Rojo, T. & Beltran, D. (1988). Polyhedron, 7, 1383–1388.  CSD CrossRef CAS Web of Science Google Scholar
First citationMesa, J. L., Rojo, T., Arriortua, M. L., Villeneuve, G., Folgado, J. V., Beltran-Porter, A. & Beltran-Porter, D. (1989). J. Chem. Soc. Dalton Trans. pp. 53–56.  CSD CrossRef Web of Science Google Scholar
First citationMukherjee, S., Chowdhury, S., Chattopadhyay, A. P. & Stoeckli-Evans, H. (2010). Polyhedron, 29, 1182–1188.  Web of Science CSD CrossRef CAS Google Scholar
First citationNdiaye-Gueye, M., Dieng, M., Lo, D., Thiam, I. E., Barry, A. H., Gaye, M., Sall, A. S. & Retailleau, P. (2017). Eur. J. Chem. 8, 137–143.  Google Scholar
First citationNdiaye-Gueye, M., Dieng, M., Thiam, I. E., Lo, D., Barry, A. H., Gaye, M. & Retailleau, P. (2017). S. Afr. J. Chem. 70, 8–15.  Google Scholar
First citationNdiaye-Gueye, M., Dieng, M., Thiam, I. E., Sow, M. M., Gueye-Sylla, R., Barry, A. H., Gaye, M. & Retailleau, P. (2017). Rev. Roum. Chim. 62, 35–41.  Google Scholar
First citationNeves, A., Erthal, S. M. D., Vencato, I., Ceccato, A. S., Mascarenhas, Y. P., Nascimento, O. R., Horner, M. & Batista, A. A. (1992). Inorg. Chem. 31, 4749–4755.  CSD CrossRef CAS Web of Science Google Scholar
First citationRojo, T., Mesa, J. L., Arriortua, M. I., Savariault, J. M., Galy, J., Villeneuve, G. & Beltran, D. (1988). Inorg. Chem. 27, 3904–3911.  CSD CrossRef CAS Web of Science Google Scholar
First citationSchwingel, E. W., Arend, K., Zarling, J., Neves, A. & Szpoganicz, B. (1996). J. Braz. Chem. Soc. 7, 31–37.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVantomme, G., Hafezi, N. & Lehn, J.-M. (2014). Chem. Sci. 5, 1475–1483.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, Y., Wei, W., Das, G. K. & Yang Tan, T. T. (2014). J. Photochem. Photobiol. Photochem. Rev. 20, 71–96.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds