research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and UV spectra of a 1,2-disubstituted benzimidazolium chloride

aDepartment of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India
*Correspondence e-mail: tuhin@chem.iitb.ac.in

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 13 June 2017; accepted 3 July 2017; online 7 July 2017)

1-(2-Hy­droxy­benz­yl)-2-(2-hy­droxy­phen­yl)-1H-benzimidazol-3-ium chloride, C20H17N2O2+·Cl, was prepared by reaction of salicyl­aldehyde with o-phenyl­enedi­amine in the presence of tri­methyl­silyl chloride acting as a source of HCl. As a result of steric hindrance, the cation in the crystal is far from planar: the benzimidazole ring system makes dihedral angles of 55.49 (9) and 81.36 (8)° with the planes of the phenolic groups. The crystal packing is dominated by O—H⋯Cl and N—H⋯Cl hydrogen bonds, which link the cations and anions into four-membered rings and then into chains along [100]. The title compound exhibits two transitions in the UV region, which are revealed in the solid state and solution spectra as an absorption maximum at 280 nm and a shoulder at 320 nm. According to the results of TD–DFT calculation, both transitions have a ππ* nature and the mol­ecular orbitals involved in these transitions are mostly localized on the benzimidazole ring system and on the phenyl ring attached to it at the 2-position.

1. Chemical context

Benzimidazole derivatives are well known to exhibit anti­bacterial, anti­malarial and anti-inflammatory properties (Keri et al., 2015[Keri, R. S., Hiremathad, A., Budagumpi, S. & Nagaraja, B. M. (2015). Chem. Biol. Drug Des. 86, 19-65.]; Carvalho et al., 2011[Carvalho, L. C. R., Fernandes, E. & Marques, M. M. B. (2011). Chem. Eur. J. 17, 12544-12555.]). Besides this, 1,2-disubstituted benzimidazoles are used as inter­mediates in synthesis of dyes and pigments (Carvalho et al., 2011[Carvalho, L. C. R., Fernandes, E. & Marques, M. M. B. (2011). Chem. Eur. J. 17, 12544-12555.]). Some substituted benzimidazoles, e.g. 2-(2′-hy­droxy­phen­yl)benzimidazole and its derivatives, are strongly fluorescent and show dual emission due to the excited state proton transfer (Douhal et al., 1994[Douhal, A., Amat-Guerri, F., Lillo, M. P. & Acua, A. U. (1994). J. Photochem. Photobiol. Chem. 78, 127-138.]). In the solid state, these compounds exhibit fluorescence, which is governed by their polymorphism and steric effects (Konoshima et al., 2012[Konoshima, H., Nagao, S., Kiyota, I., Amimoto, K., Yamamoto, N., Sekine, M., Nakata, M., Furukawa, K. & Sekiya, H. (2012). Phys. Chem. Chem. Phys. 14, 16448-16457.]; Benelhadj et al., 2013[Benelhadj, K., Massue, J., Retailleau, P., Ulrich, G. & Ziessel, R. (2013). Org. Lett. 15, 2918-2921.]; Shida et al., 2013[Shida, T., Mutai, T. & Araki, K. (2013). CrystEngComm, 15, 10179-10182.]). Thus, this class of compounds is considered for applications in fluorescence imaging and optoelectronics (Zhao et al., 2011[Zhao, D., Hu, J., Wu, N., Huang, X., Qin, X., Lan, J. & You, J. (2011). Org. Lett. 13, 6516-6519.]). Benzimidazolium salts attract attention due to their non-linear optical properties (Sun et al., 2011[Sun, P., Jian, F. & Tian, Y. (2011). J. Chem. Crystallogr. 41, 1049-1052.]; Wang et al., 2011[Wang, Y.-T., Tang, G.-M., He, C., Yan, S.-C., Hao, Q.-C., Chen, L., Long, X.-F., Li, T.-D. & Ng, S. W. (2011). CrystEngComm, 13, 6365-6368.]). 2-(2′-Hy­droxy­phen­yl)benzimidazole, which is a member of this class of compounds, exhibits rotamerism (Ríos Vazquez et al., 2008[Ríos Vázquez, S., Ríos Rodríguez, M. C., Mosquera, M. & Rodríguez-Prieto, F. (2008). J. Phys. Chem. A, 112, 376-387.]). In this work, the crystal structure of 1-(2-hy­droxy­benz­yl)-2-(2-hy­droxy­phen­yl)-1H-benzimidazol-3-ium chloride and its UV spectra have been reported. DFT calculations were carried out to study the geometry and electronic transitions.

2. Structural commentary

All bond lengths and bond angles are within the ranges reported for similar structures (Ha, 2012[Ha, K. (2012). Acta Cryst. E68, o1398.]). The asymmetric unit, consisting of a 1-(2-hy­droxy­benz­yl)-2-(2-hy­droxy­phen­yl)-1H-benzo[d]imidazol-3-ium cation and a chloride anion, is presented in Fig. 1[link]. As a result of steric hindrance, the cation is far from planar: the benzimidazole ring system makes dihedral angles of 55.49 (9) and 81.36 (8)° with the planes of phenolic groups immediately attached to it at position 2 and linked via the methyl­ene bridge to position 1, respectively. The deviation from planarity in the 2-(2-hy­droxy­phen­yl)benzimidazolium skeleton is larger than in the reported similar structures (Al-Douh et al., 2009b[Al-Douh, M. H., Osman, H., Hamid, S. A., Kia, R. & Fun, H.-K. (2009b). Acta Cryst. E65, o913-o914.]; Wang et al., 2011[Wang, Y.-T., Tang, G.-M., He, C., Yan, S.-C., Hao, Q.-C., Chen, L., Long, X.-F., Li, T.-D. & Ng, S. W. (2011). CrystEngComm, 13, 6365-6368.]).

[Scheme 1]
[Figure 1]
Figure 1
ORTEP diagram of the title compound with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, each cation forms three hydrogen bonds, two O—H⋯Cl and one N—H⋯Cl (Table 1[link]), to chloride anions. As a result of these inter­actions, the cations and anions form ribbons along [100], which consist of centrosymmetric four-membered rings each formed by two cations and two anions in the R42(16) and R42(20) manner, as shown in Fig. 2[link]. Some weak contacts C—H⋯O, C—H⋯Cl and C—H⋯π are also present (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl1i 0.84 2.24 3.066 (2) 169
O2—H2⋯Cl1 0.84 2.23 3.071 (1) 177
N2—H2A⋯Cl1ii 0.88 2.23 3.084 (2) 162
C16—H16⋯O1iii 0.95 2.57 3.253 (2) 129
C19—H19⋯Cl1 0.95 2.93 3.646 (2) 134
C7—H7BCg(C1-C6)iv 0.99 2.77 3.500 (2) 131
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+1, -z+2.
[Figure 2]
Figure 2
Packing diagram highlighting the hydrogen-bonding inter­actions.

4. Hirshfeld surface analysis

To evaluate the effect of close range inter­actions and compare their significance, Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; Soman et al., 2014[Soman, R., Sujatha, S. & Arunkumar, C. (2014). J. Fluor. Chem. 163, 16-22.]) has been performed and its results are presented in Fig. 3[link]. Four red spots on the Hirshfeld surface indicate short contacts. All close inter­actions are mediated by Cl anions. The H⋯H and C⋯H inter­actions are associated with 46% and 26% surface area, respectively. The contributions of the Cl⋯H (15%) and O⋯H (6%) inter­actions are smaller, but significant for the crystal architecture.

[Figure 3]
Figure 3
Hirshfeld surface of the ionic pair mapped with normalized contact distances (dnorm) indicated by red spots. Positions of close contacts are highlighted by red arrows.

5. Quantum chemical calculation

The geometry of the cation–anion pair in the gas phase was optimized with density functional theory (DFT) using GAUSSIAN09 package (Frisch et al., 2009[Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]) within the framework of B3LYP/6-31G(d). Frequency calculations were carried out to confirm that the structure corresponds to a minimum. The optimized bond lengths agree with those observed in the crystal structure within the range of 0.04 Å (Table 2[link]). The largest distinction between the calculated and crystallographic geometries is related to the twist of the phenolic group attached to the benzimidazole ring system at position 2: in the crystal, the corresponding torsion angles are by 7–14° nearer to 180° than the calculated values (Table 2[link]). This could be due to the hydrogen-bonding and C—H⋯π inter­actions. The ionic nature of the optimized cation–anion pair is reflected in the large calculated dipole moment of 18.05 D. The time-dependent DFT (TD–DFT) calculation was performed on the crystal geometry at the same level of theory as for geometry optimization.

Table 2
Comparison of notable bond lengths and torsion angles (Å, °)

  Crystal DFT optimized
C20—O2 1.356 (2) 1.315
C20—C19 1.391 (3) 1.413
C14—N2 1.337 (2) 1.356
C14—N1 1.344 (2) 1.349
∠ C16—C15—C14—N1 123.4 (2) 137.99
∠ C20—C15—C14—N2 125.5 (2) 132.45

6. UV spectra

The solid-state diffuse reflectance spectrum was measured with a Shimadzu-3600 spectrophotometer fitted with an MPC-3100 sample compartment. For that, the crystals were crushed to powder and mixed with BaSO4 to a final concentration of 5% (v/v). The Kubelka–Munk transformation (Kubelka & Munk, 1931[Kubelka, P. & Munk, F. (1931). Z. Tech. Phys. 11A, 593-601.]) was applied to the reflectance data. The spectrum of methanol solution was measured with JASCO V530 spectrophotometer. The solid-state spectrum closely resembles the spectrum of the solution, thus indicating that the geometry and electronic structure of the cation did not change in moving from solid state to solution. In the UV region, the title compound exhibits an absorption maximum at 280 nm and a shoulder around 320 nm (Fig. 4[link]a). The absorption maximum at 280 nm is typical of benzimidazole (Hirayama, 1967[Hirayama, K. (1967). In Handbook of Ultraviolet and Visible Absorption Spectra of Organic Compounds. New York: Plenum Press Data Division.]), and the 320 nm shoulder is typical of benzimidazole derivatives (Mosquera et al., 1996[Mosquera, M., Penedo, J. C., Ríos Rodríguez, M. C. & Rodríguez-Prieto, F. (1996). J. Phys. Chem. 100, 5398-5407.]; Konoshima et al., 2012[Konoshima, H., Nagao, S., Kiyota, I., Amimoto, K., Yamamoto, N., Sekine, M., Nakata, M., Furukawa, K. & Sekiya, H. (2012). Phys. Chem. Chem. Phys. 14, 16448-16457.]). The Kubelka–Munk transformed spectrum of the solid sample is quite close to that of a structurally similar derivative reported earlier (Shida et al., 2013[Shida, T., Mutai, T. & Araki, K. (2013). CrystEngComm, 15, 10179-10182.]). The positions and intensities of calculated transitions agree well with the experimental data (Fig. 4[link]a, Table 3[link]). The transition at 277 nm is found to have the ππ* nature. The associated mol­ecular orbitals (HOMO-5 and LUMO) are spread over benzimidazole and 2-phenyl group (Fig. 4[link]b, Table 3[link]). On the other hand, HOMO-3 is localized on 2-phenyl group, making the transitions at 356 nm partially charge-transfer in nature.

Table 3
Prominent electronic transitions obtained from TD–DFT calculation

Wavelength Oscillator strength Transition
356 nm 0.088 LUMO←HOMO-3 (98%)
277 nm 0.2827 LUMO←HOMO-5 (96%)
253 nm 0.0537 LUMO+2←HOMO-3 (78%)
    LUMO+3←HOMO-3 (12%)
[Figure 4]
Figure 4
(a) Peak-normalized absorption spectrum of the compound in methanolic solution (blue), Kubelka–Munk (KM) transformed diffuse reflectance solid-state spectrum (red) and TD–DFT calculated transitions (green). (b) Mol­ecular orbital energy levels and the relevant Kohn–Sham orbitals.

7. Database survey

A survey of Cambridge Structure Database (CSD version 5.36, November 2016) (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for mol­ecules with the 2-[1-(2-hy­droxy­benz­yl)-1H-benzo[d]imidazol-2-yl]phenol skeleton gave 18 hits. All of them are neutral mol­ecules. Among them are an o-methyl­ated derivative of the title compound (VIRZEC; Tarte et al., 2007[Tarte, N. H., Cho, H. Y. & Woo, S. I. (2007). Macromolecules, 40, 8162-8167.]), an o-eth­oxy derivative (ZARFEF; Ha) , o-meth­oxy derivatives (VOQVAZ and VOQRUP; Al-Douh et al., 2009a[Al-Douh, M. H., Osman, H., Hamid, S. A., Kia, R. & Fun, H.-K. (2009a). Acta Cryst. E65, o925-o926.] and Ha, 2012[Ha, K. (2012). Acta Cryst. E68, o1398.], respectively). Halide derivatives (CIQQOJ, NEGRIB) have also been reported (Fang et al., 2007[Fang, X.-N., Liu, L.-M., Huang, G.-S. & Hu, P. (2007). Acta Cryst. E63, o4881.]; Yang et al., 2006[Yang, X., Jones, R. A., Lai, R. J., Waheed, A., Oye, M. M. & Holmes, A. L. (2006). Polyhedron, 25, 881-887.]). A search for protonated mol­ecules containing the 1-benzyl-2-phenyl-1H-benzo[d]imidazol-3-ium skeleton gave 11 hits, three of which being closely related to this work are reported in the same article (EBOHOU, EBOHUA and EBOJAI; Wang et al., 2011[Wang, Y.-T., Tang, G.-M., He, C., Yan, S.-C., Hao, Q.-C., Chen, L., Long, X.-F., Li, T.-D. & Ng, S. W. (2011). CrystEngComm, 13, 6365-6368.]).

8. Synthesis and crystallization

Salicyl­aldehyde (SD Fine Chemicals, Mumbai, India), o-phenyl­enedi­amine (Sigma– Aldrich, USA) and tri­methyl­silyl chloride (Sigma–Aldrich, USA) were used as received. The title compound was synthesized by the reaction of o-phenyl­enedi­amine (1 g) with salicyl­aldehyde (1:2 mole ratio) in double distilled water at 363 K using tri­methyl­silyl chloride as catalyst (1:1 molar ratio with respect to o-phenyl­enedi­amine) for 8–10 h (Wan et al., 2009[Wan, J.-P., Gan, S.-F., Wu, J.-M. & Pan, Y. (2009). Green Chem. 11, 1633-1637.]). The reaction mixture was cooled to room temperature, and the white precipitate was filtered off, washed with water, dried by pressing against filter paper and allowed to dry at ambient conditions over a few days. Unexpectedly, the product turned out to be a salt, not a neutral compound, as prescribed by the literature synthetic procedure. It was crystallized from a solution in aceto­nitrile/methanol mixture (15:85) in a refrigerator and then at room temperature. The resulting plate-shaped crystals were used for single crystal XRD measurements. Even after repeated attempts with crude and recrystallized samples, a clean 1H NMR spectrum, which is an indication of rotamerism in solution, was not obtained. For the spectroscopic study, the parent solvent was deca­nted and then the crystals were washed with diethyl ether and finally air dried.

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms were positioned geometrically (O—H = 0.84, N—H = 0.88, C—H = 0.95–0.99 Å)and refined using a riding model with Uiso(H) = 1.2Ueq(C,N) [1.5Ueq(O)]. OH groups were allowed to rotate about the C—bonds.

Table 4
Experimental details

Crystal data
Chemical formula C20H17N2O2+·Cl
Mr 352.80
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 9.8002 (4), 10.6791 (5), 10.6986 (4)
α, β, γ (°) 111.364 (4), 102.346 (3), 111.311 (4)
V3) 890.75 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.19 × 0.18 × 0.12
 
Data collection
Diffractometer Rigaku Saturn 724
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.657, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8813, 3114, 2654
Rint 0.033
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.105, 1.04
No. of reflections 3114
No. of parameters 228
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.21
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1-(2-Hydroxybenzyl)-2-(2-hydroxyphenyl)-1H-benzimidazol-3-ium chloride top
Crystal data top
C20H17N2O2+·ClZ = 2
Mr = 352.80F(000) = 368
Triclinic, P1Dx = 1.315 Mg m3
a = 9.8002 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6791 (5) ÅCell parameters from 5921 reflections
c = 10.6986 (4) Åθ = 2.3–31.1°
α = 111.364 (4)°µ = 0.23 mm1
β = 102.346 (3)°T = 150 K
γ = 111.311 (4)°Plate, colourless
V = 890.75 (7) Å30.19 × 0.18 × 0.12 mm
Data collection top
Rigaku Saturn 724
diffractometer
3114 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2654 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
h = 1110
Tmin = 0.657, Tmax = 1.000k = 1212
8813 measured reflectionsl = 1112
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.2976P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3114 reflectionsΔρmax = 0.25 e Å3
228 parametersΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups, All N(H) groups At 1.5 times of: All O(H) groups 2.a Secondary CH2 refined with riding coordinates: C7(H7A,H7B) 2.b Aromatic/amide H refined with riding coordinates: N2(H2A), C2(H2B), C3(H3), C4(H4), C5(H5), C9(H9), C10(H10), C11(H11), C12(H12), C16(H16), C17(H17), C18(H18), C19(H19) 2.c Idealised tetrahedral OH refined as rotating group: O1(H1), O2(H2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.06343 (6)0.67366 (6)0.86942 (5)0.04152 (17)
O10.57838 (18)0.45573 (18)0.75661 (16)0.0457 (4)
H10.67740.50460.78160.069*
O20.07420 (16)0.49890 (14)0.68652 (15)0.0381 (3)
H20.03650.54810.73490.057*
N10.23361 (18)0.29524 (16)0.60618 (15)0.0302 (3)
N20.18508 (19)0.27540 (17)0.38883 (16)0.0337 (4)
H2A0.17270.29940.31830.040*
C70.2833 (2)0.3651 (2)0.76670 (19)0.0325 (4)
H7A0.18770.32930.78880.039*
H7B0.33310.47830.81010.039*
C10.5475 (2)0.3725 (2)0.8279 (2)0.0355 (4)
C20.6572 (3)0.3358 (2)0.8901 (2)0.0428 (5)
H2B0.75770.36710.88260.051*
C30.6179 (3)0.2535 (2)0.9626 (2)0.0467 (5)
H30.69130.22621.00330.056*
C40.4745 (3)0.2105 (2)0.9770 (2)0.0467 (5)
H40.45060.15711.03030.056*
C50.3645 (3)0.2453 (2)0.9129 (2)0.0400 (5)
H50.26470.21480.92170.048*
C60.3999 (2)0.3248 (2)0.83576 (18)0.0325 (4)
C80.1953 (2)0.1454 (2)0.50925 (19)0.0321 (4)
C90.1862 (2)0.0217 (2)0.5291 (2)0.0380 (5)
H90.20580.02770.62250.046*
C100.1472 (3)0.1105 (2)0.4064 (2)0.0428 (5)
H100.14170.19680.41630.051*
C110.1156 (3)0.1214 (2)0.2682 (2)0.0422 (5)
H110.08860.21500.18670.051*
C120.1225 (2)0.0002 (2)0.2470 (2)0.0384 (5)
H120.09950.00780.15280.046*
C130.1650 (2)0.1346 (2)0.3711 (2)0.0333 (4)
C140.2263 (2)0.3700 (2)0.52966 (19)0.0309 (4)
C150.2661 (2)0.5309 (2)0.58492 (19)0.0319 (4)
C160.3810 (2)0.6224 (2)0.5524 (2)0.0385 (5)
H160.43030.57850.49570.046*
C170.4234 (3)0.7744 (2)0.6010 (2)0.0428 (5)
H170.50250.83620.57960.051*
C180.3493 (3)0.8366 (2)0.6819 (2)0.0402 (5)
H180.37960.94230.71750.048*
C190.2325 (2)0.7481 (2)0.7116 (2)0.0356 (4)
H190.18120.79220.76510.043*
C200.1895 (2)0.5940 (2)0.66327 (19)0.0314 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0437 (3)0.0520 (3)0.0327 (3)0.0275 (3)0.0155 (2)0.0196 (2)
O10.0415 (9)0.0639 (10)0.0441 (8)0.0290 (8)0.0202 (7)0.0329 (8)
O20.0398 (8)0.0354 (7)0.0450 (8)0.0232 (7)0.0205 (7)0.0183 (6)
N10.0339 (9)0.0275 (8)0.0257 (8)0.0183 (7)0.0072 (7)0.0089 (6)
N20.0394 (10)0.0352 (8)0.0272 (8)0.0214 (8)0.0109 (7)0.0139 (7)
C70.0370 (11)0.0326 (10)0.0250 (9)0.0199 (9)0.0095 (8)0.0099 (8)
C10.0420 (12)0.0379 (10)0.0254 (9)0.0232 (9)0.0114 (9)0.0117 (8)
C20.0449 (13)0.0488 (12)0.0330 (11)0.0305 (11)0.0106 (10)0.0131 (9)
C30.0574 (15)0.0436 (12)0.0340 (11)0.0329 (11)0.0055 (10)0.0127 (10)
C40.0639 (16)0.0346 (11)0.0321 (11)0.0226 (11)0.0068 (11)0.0154 (9)
C50.0452 (13)0.0335 (10)0.0313 (10)0.0161 (9)0.0094 (9)0.0126 (9)
C60.0401 (11)0.0295 (9)0.0217 (9)0.0192 (9)0.0073 (8)0.0070 (8)
C80.0312 (11)0.0289 (9)0.0292 (10)0.0172 (8)0.0066 (8)0.0079 (8)
C90.0400 (12)0.0343 (10)0.0343 (10)0.0206 (9)0.0074 (9)0.0131 (9)
C100.0435 (13)0.0312 (10)0.0451 (12)0.0222 (10)0.0078 (10)0.0117 (9)
C110.0391 (12)0.0329 (10)0.0366 (11)0.0190 (9)0.0069 (9)0.0027 (9)
C120.0364 (12)0.0385 (11)0.0278 (10)0.0192 (9)0.0064 (9)0.0067 (8)
C130.0291 (10)0.0337 (10)0.0317 (10)0.0178 (9)0.0079 (8)0.0106 (8)
C140.0293 (10)0.0332 (10)0.0291 (9)0.0187 (8)0.0084 (8)0.0123 (8)
C150.0339 (11)0.0327 (10)0.0278 (9)0.0195 (9)0.0072 (8)0.0130 (8)
C160.0437 (12)0.0436 (11)0.0380 (11)0.0276 (10)0.0184 (10)0.0216 (9)
C170.0440 (13)0.0415 (11)0.0499 (12)0.0220 (10)0.0189 (11)0.0274 (10)
C180.0467 (13)0.0311 (10)0.0404 (11)0.0203 (10)0.0094 (10)0.0181 (9)
C190.0418 (12)0.0365 (10)0.0326 (10)0.0262 (10)0.0113 (9)0.0157 (9)
C200.0313 (10)0.0340 (10)0.0278 (9)0.0178 (9)0.0073 (8)0.0145 (8)
Geometric parameters (Å, º) top
O1—H10.8400C5—C61.393 (3)
O1—C11.365 (2)C8—C91.388 (3)
O2—H20.8400C8—C131.396 (3)
O2—C201.356 (2)C9—H90.9500
N1—C71.479 (2)C9—C101.380 (3)
N1—C81.402 (2)C10—H100.9500
N1—C141.344 (2)C10—C111.396 (3)
N2—H2A0.8800C11—H110.9500
N2—C131.378 (2)C11—C121.374 (3)
N2—C141.337 (2)C12—H120.9500
C7—H7A0.9900C12—C131.394 (2)
C7—H7B0.9900C14—C151.458 (2)
C7—C61.505 (2)C15—C161.400 (3)
C1—C21.393 (3)C15—C201.396 (3)
C1—C61.381 (3)C16—H160.9500
C2—H2B0.9500C16—C171.371 (3)
C2—C31.380 (3)C17—H170.9500
C3—H30.9500C17—C181.385 (3)
C3—C41.373 (3)C18—H180.9500
C4—H40.9500C18—C191.375 (3)
C4—C51.391 (3)C19—H190.9500
C5—H50.9500C19—C201.391 (3)
C1—O1—H1109.5C10—C9—C8116.71 (18)
C20—O2—H2109.5C10—C9—H9121.6
C8—N1—C7126.87 (14)C9—C10—H10118.9
C14—N1—C7124.73 (14)C9—C10—C11122.14 (18)
C14—N1—C8108.30 (14)C11—C10—H10118.9
C13—N2—H2A125.2C10—C11—H11119.2
C14—N2—H2A125.2C12—C11—C10121.63 (17)
C14—N2—C13109.54 (15)C12—C11—H11119.2
N1—C7—H7A109.2C11—C12—H12121.8
N1—C7—H7B109.2C11—C12—C13116.42 (18)
N1—C7—C6112.25 (14)C13—C12—H12121.8
H7A—C7—H7B107.9N2—C13—C8106.63 (15)
C6—C7—H7A109.2N2—C13—C12131.29 (17)
C6—C7—H7B109.2C12—C13—C8122.08 (17)
O1—C1—C2122.67 (19)N1—C14—C15128.09 (16)
O1—C1—C6116.49 (16)N2—C14—N1109.17 (15)
C6—C1—C2120.84 (18)N2—C14—C15122.61 (15)
C1—C2—H2B120.4C16—C15—C14118.21 (16)
C3—C2—C1119.1 (2)C20—C15—C14122.35 (17)
C3—C2—H2B120.4C20—C15—C16119.39 (17)
C2—C3—H3119.5C15—C16—H16119.5
C4—C3—C2121.02 (19)C17—C16—C15120.94 (18)
C4—C3—H3119.5C17—C16—H16119.5
C3—C4—H4120.2C16—C17—H17120.5
C3—C4—C5119.60 (19)C16—C17—C18119.01 (19)
C5—C4—H4120.2C18—C17—H17120.5
C4—C5—H5119.8C17—C18—H18119.4
C4—C5—C6120.3 (2)C19—C18—C17121.23 (18)
C6—C5—H5119.8C19—C18—H18119.4
C1—C6—C7119.68 (16)C18—C19—H19120.0
C1—C6—C5119.00 (18)C18—C19—C20120.08 (17)
C5—C6—C7121.27 (18)C20—C19—H19120.0
C9—C8—N1132.62 (17)O2—C20—C15117.13 (16)
C9—C8—C13121.01 (16)O2—C20—C19123.57 (16)
C13—C8—N1106.36 (15)C19—C20—C15119.29 (17)
C8—C9—H9121.6
O1—C1—C2—C3178.87 (18)C8—C9—C10—C111.1 (3)
O1—C1—C6—C70.3 (2)C9—C8—C13—N2179.52 (17)
O1—C1—C6—C5177.18 (16)C9—C8—C13—C120.8 (3)
N1—C7—C6—C163.1 (2)C9—C10—C11—C120.4 (3)
N1—C7—C6—C5119.49 (18)C10—C11—C12—C130.9 (3)
N1—C8—C9—C10178.6 (2)C11—C12—C13—N2178.91 (19)
N1—C8—C13—N20.2 (2)C11—C12—C13—C81.5 (3)
N1—C8—C13—C12179.86 (17)C13—N2—C14—N10.2 (2)
N1—C14—C15—C16123.4 (2)C13—N2—C14—C15175.93 (16)
N1—C14—C15—C2059.2 (3)C13—C8—C9—C100.5 (3)
N2—C14—C15—C1651.9 (3)C14—N1—C7—C6134.04 (18)
N2—C14—C15—C20125.5 (2)C14—N1—C8—C9179.3 (2)
C7—N1—C8—C92.7 (3)C14—N1—C8—C130.1 (2)
C7—N1—C8—C13176.58 (17)C14—N2—C13—C80.2 (2)
C7—N1—C14—N2176.79 (16)C14—N2—C13—C12179.9 (2)
C7—N1—C14—C151.0 (3)C14—C15—C16—C17179.90 (18)
C1—C2—C3—C41.4 (3)C14—C15—C20—O20.1 (3)
C2—C1—C6—C7179.56 (16)C14—C15—C20—C19179.40 (17)
C2—C1—C6—C53.0 (3)C15—C16—C17—C180.8 (3)
C2—C3—C4—C52.4 (3)C16—C15—C20—O2177.20 (16)
C3—C4—C5—C60.6 (3)C16—C15—C20—C192.1 (3)
C4—C5—C6—C7179.43 (17)C16—C17—C18—C191.2 (3)
C4—C5—C6—C12.0 (3)C17—C18—C19—C201.6 (3)
C6—C1—C2—C31.3 (3)C18—C19—C20—O2179.12 (17)
C8—N1—C7—C642.1 (2)C18—C19—C20—C150.1 (3)
C8—N1—C14—N20.1 (2)C20—C15—C16—C172.5 (3)
C8—N1—C14—C15175.76 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl1i0.842.243.066 (2)169
O2—H2···Cl10.842.233.071 (1)177
N2—H2A···Cl1ii0.882.233.084 (2)162
C16—H16···O1iii0.952.573.253 (2)129
C19—H19···Cl10.952.933.646 (2)134
C7—H7B···Cg(C1-C6)iv0.992.773.500 (2)131
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z+2.
Comparison of notable bond lengths and torsion angles (Å, °) top
CrystalDFT optimized
C20—O21.356 (2)1.315
C20—C191.391 (3)1.413
C14—N21.337 (2)1.356
C14—N11.344 (2)1.349
∠ C16—C15—C14—N1123.4 (2)137.99
∠ C20—C15—C14—N2125.5 (2)132.45
Prominent electronic transitions obtained from TD–DFT calculations top
WavelengthOscillator strengthTransition
356 nm0.088LUMOHOMO-3 (98%)
277 nm0.2827LUMOHOMO-5 (96%)
253 nm0.0537LUMO+2HOMO-3 (78%) LUMO+3HOMO-3 (12%)
 

Acknowledgements

TK thanks the CSIR and IRCC, IIT Bombay for a research fellowship. Department of Chemistry, IIT Bombay is acknowledged for the high-performance computing facility and single-crystal X-ray facility. The authors thank Archit Sanadhya, Harit Kumar and Pooja S. Varak for their efforts in synthesizing the title compound and also thank Shefali Vaidya for her help in drawing the packing diagram.

Funding information

Funding for this research was provided by: Science and Engineering Research Board (grant to Anindya Datta).

References

First citationAl-Douh, M. H., Osman, H., Hamid, S. A., Kia, R. & Fun, H.-K. (2009a). Acta Cryst. E65, o925–o926.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl-Douh, M. H., Osman, H., Hamid, S. A., Kia, R. & Fun, H.-K. (2009b). Acta Cryst. E65, o913–o914.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBenelhadj, K., Massue, J., Retailleau, P., Ulrich, G. & Ziessel, R. (2013). Org. Lett. 15, 2918–2921.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCarvalho, L. C. R., Fernandes, E. & Marques, M. M. B. (2011). Chem. Eur. J. 17, 12544–12555.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDouhal, A., Amat-Guerri, F., Lillo, M. P. & Acua, A. U. (1994). J. Photochem. Photobiol. Chem. 78, 127–138.  CrossRef CAS Web of Science Google Scholar
First citationFang, X.-N., Liu, L.-M., Huang, G.-S. & Hu, P. (2007). Acta Cryst. E63, o4881.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHa, K. (2012). Acta Cryst. E68, o1398.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHirayama, K. (1967). In Handbook of Ultraviolet and Visible Absorption Spectra of Organic Compounds. New York: Plenum Press Data Division.  Google Scholar
First citationKeri, R. S., Hiremathad, A., Budagumpi, S. & Nagaraja, B. M. (2015). Chem. Biol. Drug Des. 86, 19–65.  Web of Science CrossRef PubMed Google Scholar
First citationKonoshima, H., Nagao, S., Kiyota, I., Amimoto, K., Yamamoto, N., Sekine, M., Nakata, M., Furukawa, K. & Sekiya, H. (2012). Phys. Chem. Chem. Phys. 14, 16448–16457.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKubelka, P. & Munk, F. (1931). Z. Tech. Phys. 11A, 593–601.  Google Scholar
First citationMosquera, M., Penedo, J. C., Ríos Rodríguez, M. C. & Rodríguez-Prieto, F. (1996). J. Phys. Chem. 100, 5398–5407.  CrossRef CAS Web of Science Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRíos Vázquez, S., Ríos Rodríguez, M. C., Mosquera, M. & Rodríguez-Prieto, F. (2008). J. Phys. Chem. A, 112, 376–387.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShida, T., Mutai, T. & Araki, K. (2013). CrystEngComm, 15, 10179–10182.  Web of Science CSD CrossRef CAS Google Scholar
First citationSoman, R., Sujatha, S. & Arunkumar, C. (2014). J. Fluor. Chem. 163, 16–22.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSun, P., Jian, F. & Tian, Y. (2011). J. Chem. Crystallogr. 41, 1049–1052.  Web of Science CSD CrossRef CAS Google Scholar
First citationTarte, N. H., Cho, H. Y. & Woo, S. I. (2007). Macromolecules, 40, 8162–8167.  Web of Science CSD CrossRef CAS Google Scholar
First citationWan, J.-P., Gan, S.-F., Wu, J.-M. & Pan, Y. (2009). Green Chem. 11, 1633–1637.  Web of Science CrossRef CAS Google Scholar
First citationWang, Y.-T., Tang, G.-M., He, C., Yan, S.-C., Hao, Q.-C., Chen, L., Long, X.-F., Li, T.-D. & Ng, S. W. (2011). CrystEngComm, 13, 6365–6368.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, X., Jones, R. A., Lai, R. J., Waheed, A., Oye, M. M. & Holmes, A. L. (2006). Polyhedron, 25, 881–887.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, D., Hu, J., Wu, N., Huang, X., Qin, X., Lan, J. & You, J. (2011). Org. Lett. 13, 6516–6519.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds