research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tetra­hydro­seselin, an angular pyran­ocoumarin

CROSSMARK_Color_square_no_text.svg

aBio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India, bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and cDepartment of Applied Chemistry & Chemical Engineering, University of Dhaka, Dhaka 1000, Bangladesh
*Correspondence e-mail: mustafizacce@du.ac.bd

Edited by G. Smith, Queensland University of Technology, Australia (Received 10 May 2017; accepted 21 June 2017; online 4 July 2017)

In the title compound, tetra­hydro­seselin, C14H16O3, a pyran­ocoumarin [systematic name: 8,8-dimethyl-3,4,9,10-tetra­hydro-2H,8H-pyrano[2,3-f]chromen-2-one] obtained from the hydrogenation of seselin in the presence of Pd/C in MeOH at room temperature, the dihedral angle between the central benzene ring and the best planes of the outer fused ring systems are 6.20 (7) and 10.02 (8)°. In the crystal, mol­ecules show only very weak inter­molecular C—H⋯O inter­actions.

1. Chemical context

The title mol­ecule, tetra­hydro­seselin, a hydrogenated product of an angular pyran­ocoumarin, seselin, consists of three different kinds of fused rings: a central benzene ring, an outer pyrone ring and a pyrane ring with dimethyl substituents attached at C3. These pyran­ocoumarins have absorption bands in the near UV region resulting from the presence of conjugated double bonds in the enone system and exhibit photo-mutagenic and photo-carcinogenic properties (Appendino et al., 2004[Appendino, G., Bianchi, F., Bader, A., Campagnuolo, C., Fattorusso, E., Taglialatela-Scafati, O., Blanco-Molina, M., Macho, A., Fiebich, B. L., Bremner, P., Heinrich, M., Ballero, M. & Muñoz, E. (2004). J. Nat. Prod. 67, 532-536.]), which bind with the purine base of DNA in living cells to yield photo-adducts (Conforti et al., 2009[Conforti, F., Marrelli, M., Menichini, F., Bonesi, M., Statti, G., Provenzano, E. & Menichini, F. (2009). Curr. Drug Ther. 4, 38-58.]). Based on this property, the mol­ecules are used to treat numerous inflammatory skin diseases such as atopic dermatitis and pigment disorders like vitiligo and psoriasis, through exposure to UV radiation in photo dynamic therapy (PDT). Because of their strong ability to absorb UV radiation, these classes of mol­ecules are utilized as photo-protective agents to prevent the absorption of harmful UV radiation by the skin, in the form of a variety of sun-screening lotions widely used in dermatological applications in the cosmetic and pharmaceutical industries (Chen et al., 2007[Chen, Y., Fan, G., Zhang, Q., Wu, H. & Wu, Y. (2007). J. Pharm. Biomed. Anal. 43, 926-936.], 2009[Chen, D., Wang, J., Jiang, Y., Zhou, T., Fan, G. & Wu, Y. (2009). J. Pharm. Biomed. Anal. 50, 695-702.]). Also, in vitro anti-proliferative activity and in vivo photo-toxicity against numerous cancer cell lines, e.g. HL60 and A431, has been observed (Conconi et al., 1998[Conconi, M. T., Montesi, F. & Parnigotto, P. P. (1998). Basic Clin. Pharmacol. Toxicol. 82, 193-198.]). In addition, this class of coumarins have been successfully used in the treatment of inhibited proliferation in the human hepatocellular carcinoma cell line (March et al., 1993[March, K. L., Patton, B. L., Wilensky, R. L. & Hathaway, D. R. (1993). Circulation, 87, 184-191.]). Experimental results have shown that its photo-toxicity is extended via a Diels–Alder reaction to bind the double bond of a purine base of DNA in the living cell with the double bonds of coumarin to yield mono [(2 + 2) cyclo­addition] and diadducts [(4 + 2) cyclo­addition] (Conforti et al., 2009[Conforti, F., Marrelli, M., Menichini, F., Bonesi, M., Statti, G., Provenzano, E. & Menichini, F. (2009). Curr. Drug Ther. 4, 38-58.]). As a part of our studies in this area, we are looking at the role of double bonds in the photo-biological activity of the aforesaid mol­ecule. The crystal structure of the title compound tetra­hydro­seselin, C14H16O3, is reported herein.

[Scheme 1]

2. Structural commentary

In the title compound, the three different fused rings comprising the mol­ecule (Fig. 1[link]), are the central benzene ring (C1/C5–C12), the outer pyrone ring (O2/C6–C7) and the di­hydro­pyrane ring (O1/C1–C2), with dimethyl substituents attached at C3. The mean planes of these rings (O1/C1–C2 and O2/C6–C7) are inclined to the benzene plane by 6.20 (7) and 10.02 (8)°, respectively. The angles between the mean plane of the benzene ring and the four planar atoms of each pyran ring (O1/C1–C2) and (O2/C6–C10) are 3.0 (1)° (r.m.s. of the fitted atoms = 0.0092 Å) and 2.6 (1)° (r.m.s. of the fitted atoms = 0.0046 Å), respectively. Both rings are in half-chair conformations and atoms C2, C3, C7 and C8 deviate by 0.282, 0.446, 0.241 and 0.687 Å, respectively, from the plane through the other four essentially planar atoms of the respective pyran rings. These distortions of the di­hydro­pyran rings are probably the result of the ring flexibility and the presence of the methyl substituents. Experimental results from the title compound reveal that the photo-biological activity of the parent compound seselin has been diminished due to the formation of distorted half-chair conformations of the pyran rings on hydrogenation. The C6—C5—C1—O1 and C11—C10—C6—O2 torsion angles are almost the same viz. 178.44 (12) and 178.73 (14)°, respectively, indicating that these rings are coplanar. The destruction of photo-biological activity and change of conformation of the pyran rings of the title mol­ecule is considered to be due to the loss of the double bonds in seselin.

[Figure 1]
Figure 1
The mol­ecular structure of title compound, showing the atomic labelling. with displacement ellipsoids drawn at the 50% probability level

3. Supra­molecular features

In the crystal, no formal hydrogen bonds are present but the mol­ecules exhibit very weak inter­molecular C—H⋯O inter­actions; none of these, however, can be considered as hydrogen bonds. Examples are: aromatic C8—H⋯O2i (ring) [3.221 (2) Å] and methyl­ene C9—H⋯O3i (carbon­yl) [3.412 (2) Å] inter­actions [symmetry code: (i) x, −y + [{1\over 2}], z − [{1\over 2}]], together with aromatic C12—H⋯O3ii (ring) [3.598 (3) Å] and methyl­ene C8—H⋯O3ii (carbon­yl) [3.593 (3) Å] inter­actions [symmetry code: (ii) x + 1, −y + [{1\over 2}], z − [{1\over 2}]], giving `ribbons' extending along a through very weak head-to-tail R44(8) ring motifs (Figs. 2[link] and 3[link]). No ππ ring associations are present [minimum ring centroid separation = 4.654 (1) Å].

[Figure 2]
Figure 2
A view of the crystal packing in the unit cell of the title compound.
[Figure 3]
Figure 3
Part of the crystal structure, with weak C—H⋯O inter­actions shown as dashed lines. The most significant C—H⋯Oring and C—H⋯Ocarbon­yl inter­actions are shown as blue and orange dashed lines, respectively. Other H atoms have been omitted.

4. Synthesis and crystallization

The title compound was isolated as a colourless solid substance from the methanol extract of T. stictocarpum (in the local dialect, it is known as Aajmoda) by means of column chromatography over SiO2 gel by gradient elution with a binary mixed solvent system of hexane and ethyl acetate. It was purified by reverse phase high-pressure liquid chroma­tography (RP–HPLC) followed by crystallization to yield a colourless product. This compound was subjected to hydrogenation using Pd/C in a protic solvent (MeOH) at room temperature with continuous mechanical stirring overnight. The reaction product was worked up by the usual method to yield a crude product, which was was purified by column chromatography over SiO2 gel with gradient solvent elution to yield the pure title compound. Suitable crystals for X-ray diffraction analysis were obtained after recrystallization (×3) from ethyl acetate:hexane (1:4), by slow evaporation at room temperature. 1H NMR data (CDCl3, 200 MHz):δH 7.25 (d, 1H, J = 8.6 Hz, H-12), 6.68 (d, 1H, J = 8.6 Hz H-11), 2.40 (t, 1H, J = 6.6 Hz, H-4), 2.35 (t, 1H, J = 6.4 Hz, H-9), 2.26 (t, 2H, J = 6.4 Hz, H-8), 1.56 (t, 2H, J = 6.6 Hz, H-3), 1.50 (s, 3H, CH3, H-13), 1.54 (s, 3H, CH3, H-14).

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.38, update November, 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave more than thirty five hits for both linear and angular pyran­ocoumarin (psoralene class) structures. They include four reports, CSD refcodes AMYROL [Kato, 1970[Kato, K. (1970). Acta Cryst. B26, 2022-2029.]: seselin (Amyrolin)]; AMYROL01 [Bauri et al., 2006[Bauri, A. K., Foro, S., Lindner, H.-J. & Nayak, S. K. (2006). Acta Cryst. E62, o1340-o1341.]; seselin (redetermination)]; FUGVOS {Thailambal & Pattabhi, 1987[Thailambal, V. G. & Pattabhi, V. (1987). Acta Cryst. C43, 2369-2372.]: 2,3-dihy­droxy-9-hy­droxy-2(1-hy­droxy-1-methyl­eth­yl)-7H-furo[3,2-g]-[1]-benzo­pyran-7-one; bromo­hydroxy-seselin (Bauri et al., 2017a[Bauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017a). Acta Cryst. E73, 453-455.]); di­bromo­mometh­oxy-seselin (DMS) (Bauri et al., 2017b[Bauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017b). Acta Cryst. E73, 774-776.])}, and a number of structures with various substituents at C3 and C4, many of which are natural products.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All H atoms were located in difference-Fourier maps and the positional coordinates of all except the methyl H atoms were allowed to refine, with Uiso(H) = 1.2Ueq(C). Those on methyl groups were allowed to ride with C—H = 0.96 Å and with Uiso(H) = 1.2Ueq(C).

Table 1
Experimental details

Crystal data
Chemical formula C14H16O3
Mr 232.27
Crystal system, space group Monoclinic, P21/c
Temperature (K) 299
a, b, c (Å) 7.282 (1), 18.445 (3), 9.144 (2)
β (°) 96.11 (3)
V3) 1221.2 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.71
Crystal size (mm) 0.50 × 0.50 × 0.40
 
Data collection
Diffractometer Enraf–Nonius CAD-4
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.717, 0.763
No. of measured, independent and observed [I > 2σ(I)] reflections 4924, 2187, 1954
Rint 0.096
(sin θ/λ)max−1) 0.598
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.151, 1.06
No. of reflections 2187
No. of parameters 187
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.21
Computer programs: CAD-4-PC (Enraf–Nonius, 1996[Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]), REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

8,8-Dimethyl-3,4,9,10-tetrahydro-2H,8H-pyrano[2,3-f]chromen-2-one top
Crystal data top
C14H16O3F(000) = 496
Mr = 232.27Dx = 1.263 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 7.282 (1) Åθ = 6.1–22.1°
b = 18.445 (3) ŵ = 0.71 mm1
c = 9.144 (2) ÅT = 299 K
β = 96.11 (3)°Prism, colourless
V = 1221.2 (4) Å30.50 × 0.50 × 0.40 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1954 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.096
Graphite monochromatorθmax = 67.1°, θmin = 4.8°
ω/2θ scansh = 88
Absorption correction: ψ scan
(North et al., 1968)
k = 220
Tmin = 0.717, Tmax = 0.763l = 1010
4924 measured reflections3 standard reflections every 120 min
2187 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0834P)2 + 0.1422P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.017
2187 reflectionsΔρmax = 0.32 e Å3
187 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.089 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.20282 (18)0.18547 (7)0.29558 (16)0.0471 (4)
C20.3391 (2)0.07055 (8)0.2387 (2)0.0587 (5)
C30.2859 (2)0.04422 (8)0.3851 (2)0.0605 (5)
H3A0.288 (2)0.0078 (11)0.378 (2)0.073*
H3B0.382 (3)0.0604 (10)0.461 (2)0.073*
C40.0980 (2)0.07214 (8)0.4157 (2)0.0616 (5)
H4A0.077 (3)0.0653 (10)0.515 (3)0.074*
H4B0.002 (3)0.0455 (10)0.349 (2)0.074*
C50.08030 (19)0.15144 (7)0.37942 (16)0.0475 (4)
C60.05415 (18)0.19413 (8)0.43281 (16)0.0477 (4)
C70.3262 (2)0.18844 (9)0.56020 (19)0.0594 (5)
C80.3766 (2)0.26087 (10)0.4945 (3)0.0713 (5)
H8A0.433 (3)0.2557 (11)0.384 (3)0.086*
H8B0.459 (3)0.2797 (12)0.563 (3)0.086*
C90.2123 (2)0.30853 (9)0.4840 (2)0.0641 (5)
H9A0.162 (3)0.3240 (11)0.594 (2)0.077*
H9B0.251 (3)0.3509 (12)0.429 (2)0.077*
C100.0687 (2)0.26811 (7)0.41073 (18)0.0515 (4)
C110.0569 (2)0.29965 (7)0.32680 (18)0.0534 (4)
H110.050 (3)0.3510 (10)0.306 (2)0.064*
C120.1899 (2)0.25945 (8)0.26732 (18)0.0522 (4)
H120.277 (2)0.2804 (10)0.212 (2)0.063*
C130.2047 (3)0.04668 (11)0.1106 (2)0.0818 (6)
H13A0.24630.06360.02050.098*
H13B0.08490.06650.12100.098*
H13C0.19750.00530.10900.098*
C140.5356 (3)0.04849 (10)0.2193 (3)0.0811 (6)
H14A0.56890.06740.12800.097*
H14B0.54440.00340.21870.097*
H14C0.61780.06760.29910.097*
O10.34407 (14)0.14972 (5)0.23956 (13)0.0580 (4)
O20.17164 (15)0.15694 (6)0.51821 (13)0.0586 (4)
O30.41482 (18)0.15412 (7)0.63843 (17)0.0787 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0422 (7)0.0445 (7)0.0554 (8)0.0013 (5)0.0087 (6)0.0009 (5)
C20.0557 (9)0.0461 (8)0.0758 (11)0.0064 (6)0.0141 (7)0.0035 (6)
C30.0594 (9)0.0438 (8)0.0792 (11)0.0069 (6)0.0112 (8)0.0050 (7)
C40.0626 (9)0.0441 (8)0.0818 (11)0.0018 (7)0.0247 (8)0.0087 (7)
C50.0455 (8)0.0411 (7)0.0567 (8)0.0012 (5)0.0088 (6)0.0012 (5)
C60.0449 (7)0.0455 (8)0.0538 (8)0.0038 (5)0.0108 (6)0.0005 (5)
C70.0495 (8)0.0620 (9)0.0695 (10)0.0067 (7)0.0189 (7)0.0109 (7)
C80.0554 (9)0.0700 (11)0.0916 (14)0.0063 (8)0.0220 (9)0.0059 (9)
C90.0628 (10)0.0520 (9)0.0798 (12)0.0073 (7)0.0185 (8)0.0052 (8)
C100.0498 (8)0.0440 (7)0.0613 (8)0.0017 (6)0.0086 (7)0.0032 (6)
C110.0547 (8)0.0388 (7)0.0675 (9)0.0004 (6)0.0093 (7)0.0035 (6)
C120.0496 (8)0.0457 (8)0.0627 (9)0.0036 (6)0.0130 (7)0.0063 (6)
C130.0920 (14)0.0689 (11)0.0833 (13)0.0066 (9)0.0041 (11)0.0151 (9)
C140.0697 (11)0.0674 (11)0.1112 (16)0.0190 (8)0.0325 (11)0.0012 (10)
O10.0528 (6)0.0465 (6)0.0784 (8)0.0039 (4)0.0251 (5)0.0034 (4)
O20.0566 (7)0.0509 (6)0.0723 (7)0.0033 (4)0.0259 (6)0.0017 (5)
O30.0724 (8)0.0745 (8)0.0967 (10)0.0108 (6)0.0430 (7)0.0049 (6)
Geometric parameters (Å, º) top
C1—O11.3665 (17)C7—C81.495 (3)
C1—C51.3869 (19)C8—C91.496 (3)
C1—C121.390 (2)C8—H8A1.05 (2)
C2—O11.4608 (17)C8—H8B0.98 (2)
C2—C131.510 (3)C9—C101.499 (2)
C2—C31.513 (3)C9—H9A1.08 (2)
C2—C141.516 (2)C9—H9B0.95 (2)
C3—C41.516 (2)C10—C111.384 (2)
C3—H3A0.96 (2)C11—C121.377 (2)
C3—H3B0.98 (2)C11—H110.967 (18)
C4—C51.5025 (19)C12—H120.936 (19)
C4—H4A0.95 (2)C13—H13A0.9600
C4—H4B1.03 (2)C13—H13B0.9600
C5—C61.385 (2)C13—H13C0.9600
C6—C101.382 (2)C14—H14A0.9600
C6—O21.3980 (17)C14—H14B0.9600
C7—O31.195 (2)C14—H14C0.9600
C7—O21.3576 (19)
O1—C1—C5122.89 (13)C7—C8—H8B101.7 (13)
O1—C1—C12116.28 (12)C9—C8—H8B112.6 (13)
C5—C1—C12120.81 (13)H8A—C8—H8B116.1 (17)
O1—C2—C13108.01 (14)C8—C9—C10109.71 (14)
O1—C2—C3108.93 (13)C8—C9—H9A106.9 (11)
C13—C2—C3112.76 (16)C10—C9—H9A111.5 (11)
O1—C2—C14104.25 (13)C8—C9—H9B108.9 (12)
C13—C2—C14111.91 (17)C10—C9—H9B110.6 (13)
C3—C2—C14110.55 (16)H9A—C9—H9B109.1 (16)
C2—C3—C4112.07 (14)C6—C10—C11116.82 (13)
C2—C3—H3A104.6 (12)C6—C10—C9118.19 (14)
C4—C3—H3A111.9 (11)C11—C10—C9124.93 (13)
C2—C3—H3B107.2 (12)C12—C11—C10121.81 (13)
C4—C3—H3B111.0 (12)C12—C11—H11118.3 (12)
H3A—C3—H3B109.7 (15)C10—C11—H11119.9 (12)
C5—C4—C3110.34 (13)C11—C12—C1119.46 (13)
C5—C4—H4A108.8 (11)C11—C12—H12122.5 (11)
C3—C4—H4A111.9 (12)C1—C12—H12118.0 (11)
C5—C4—H4B107.2 (11)C2—C13—H13A109.5
C3—C4—H4B108.8 (11)C2—C13—H13B109.5
H4A—C4—H4B109.6 (16)H13A—C13—H13B109.5
C6—C5—C1117.26 (13)C2—C13—H13C109.5
C6—C5—C4121.51 (13)H13A—C13—H13C109.5
C1—C5—C4121.18 (13)H13B—C13—H13C109.5
C10—C6—C5123.78 (13)C2—C14—H14A109.5
C10—C6—O2121.60 (13)C2—C14—H14B109.5
C5—C6—O2114.55 (12)H14A—C14—H14B109.5
O3—C7—O2117.36 (16)C2—C14—H14C109.5
O3—C7—C8126.07 (15)H14A—C14—H14C109.5
O2—C7—C8116.39 (14)H14B—C14—H14C109.5
C7—C8—C9112.78 (15)C1—O1—C2117.74 (11)
C7—C8—H8A111.0 (11)C7—O2—C6121.53 (13)
C9—C8—H8A103.2 (12)
O1—C2—C3—C459.85 (19)C5—C6—C10—C9175.60 (15)
C13—C2—C3—C460.04 (19)O2—C6—C10—C91.4 (2)
C14—C2—C3—C4173.83 (14)C8—C9—C10—C632.6 (2)
C2—C3—C4—C545.0 (2)C8—C9—C10—C11150.31 (17)
O1—C1—C5—C6178.44 (12)C6—C10—C11—C120.3 (2)
C12—C1—C5—C60.1 (2)C9—C10—C11—C12177.46 (14)
O1—C1—C5—C40.9 (2)C10—C11—C12—C12.0 (2)
C12—C1—C5—C4177.47 (15)O1—C1—C12—C11176.63 (14)
C3—C4—C5—C6162.49 (15)C5—C1—C12—C111.8 (2)
C3—C4—C5—C115.0 (2)C5—C1—O1—C214.7 (2)
C1—C5—C6—C102.0 (2)C12—C1—O1—C2166.94 (14)
C4—C5—C6—C10175.61 (15)C13—C2—O1—C178.75 (18)
C1—C5—C6—O2179.11 (12)C3—C2—O1—C144.04 (18)
C4—C5—C6—O21.5 (2)C14—C2—O1—C1162.07 (15)
O3—C7—C8—C9144.78 (19)O3—C7—O2—C6176.80 (14)
O2—C7—C8—C940.1 (2)C8—C7—O2—C67.7 (2)
C7—C8—C9—C1050.8 (2)C10—C6—O2—C712.6 (2)
C5—C6—C10—C111.8 (2)C5—C6—O2—C7170.16 (12)
O2—C6—C10—C11178.73 (14)
 

Acknowledgements

The authors thank Professor Dr Hartmut, FG Strukturforschung, Material-und Geowissenschaften, Technische Universität Darmstadt, Germany, for his kind cooperation for providing diffractometer time.

References

First citationAppendino, G., Bianchi, F., Bader, A., Campagnuolo, C., Fattorusso, E., Taglialatela-Scafati, O., Blanco-Molina, M., Macho, A., Fiebich, B. L., Bremner, P., Heinrich, M., Ballero, M. & Muñoz, E. (2004). J. Nat. Prod. 67, 532–536.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBauri, A. K., Foro, S., Lindner, H.-J. & Nayak, S. K. (2006). Acta Cryst. E62, o1340–o1341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017a). Acta Cryst. E73, 453–455.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017b). Acta Cryst. E73, 774–776.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, Y., Fan, G., Zhang, Q., Wu, H. & Wu, Y. (2007). J. Pharm. Biomed. Anal. 43, 926–936.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChen, D., Wang, J., Jiang, Y., Zhou, T., Fan, G. & Wu, Y. (2009). J. Pharm. Biomed. Anal. 50, 695–702.  Web of Science CrossRef PubMed CAS Google Scholar
First citationConconi, M. T., Montesi, F. & Parnigotto, P. P. (1998). Basic Clin. Pharmacol. Toxicol. 82, 193–198.  CrossRef CAS Google Scholar
First citationConforti, F., Marrelli, M., Menichini, F., Bonesi, M., Statti, G., Provenzano, E. & Menichini, F. (2009). Curr. Drug Ther. 4, 38–58.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKato, K. (1970). Acta Cryst. B26, 2022–2029.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationMarch, K. L., Patton, B. L., Wilensky, R. L. & Hathaway, D. R. (1993). Circulation, 87, 184–191.  CrossRef CAS PubMed Google Scholar
First citationNonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationThailambal, V. G. & Pattabhi, V. (1987). Acta Cryst. C43, 2369–2372.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds