research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2,3-di­phenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one 1-oxide

aDepartment of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA, and bPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
*Correspondence e-mail: ljs43@psu.edu

Edited by G. Smith, Queensland University of Technology, Australia (Received 17 June 2017; accepted 11 July 2017; online 17 July 2017)

In the racemic title compound, C20H15NO2S, the planes of the two phenyl substituents form dihedral angles of 48.97 (15) and 69.26 (15)° with that of the fused benzene ring of the parent benzo­thia­zine ring, while the heterocyclic thia­zine ring exhibits a screw-boat pucker. The O atom on the S atom of the ring is pseudo-axial on the thia­zine ring and trans to the 2-phenyl group. In the crystal, mol­ecules are arranged in layers in the ac plane, the layers being linked across b through inter­molecular C—H⋯O hydrogen-bonding inter­actions.

1. Chemical context

The 2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one scaffold has shown a wide range of bioactivity, including anti­tumor (Li et al., 2012[Li, Q., Li, C., Lu, X., Zhang, H. & Zhu, H. (2012). Eur. J. Med. Chem. 50, 288-295.]; Wang et al., 2015[Wang, S., Fang, K., Dong, G., Chen, S., Liu, N., Miao, Z., Yao, J., Li, J., Zhang, W. & Sheng, C. (2015). J. Med. Chem. 58, 6678-6696.]; Kamel et al., 2010[Kamel, M. M., Ali, H. I., Anwar, M. M., Mohamed, N. A. & Soliman, A. M. M. (2010). Eur. J. Med. Chem. 45, 572-580.]; Nofal et al., 2014[Nofal, Z. M., Soliman, E. A., El-Karim, A., El-Zahar, M. I., Srour, A. M., Sethumadhavan, S. & Maher, T. J. (2014). J. Heterocycl. Chem. 51, 1797-1806.]), anti­microbial (Popiolek et al., 2016[Popiolek, L., Biernasiuk, A. & Malm, A. (2016). J. Heterocycl. Chem. 53, 479-486.]; Mandour et al., 2007[Mandour, A. H., El-Sawy, E. R., Ebid, M. S. & El-Sayed, Z. G. (2007). Egypt. J. Chem. 50, 555-568.]), anti­malarial (Mei et al., 2013[Mei, Z., Wang, L., Lu, W., Pang, C., Maeda, T., Peng, W., Kaiser, M., El Sayed, I. & Inokuchi, T. (2013). J. Med. Chem. 56, 1431-1442.]), HIV–RT inhibition (Jeng et al., 2015[Jeng, F., Li, X., Shao, J., Zhu, M., Li, Y., Hua, C. & Xiaoliu, L. (2015). Chin. J. Org. Chem. 35, 1370-1374.]; Hou et al., 2016[Hou, Y., Xing, S., Shao, J., Yin, Z., Hao, L., Yang, T., Zhang, H., Zhu, M., Chen, H. & Li, X. (2016). Carbohydr. Res. 429, 105-112.]) and cyclo­oxygenase COX-2 enzyme inhibition (Zarghi et al., 2009[Zarghi, A., Zebardast, T., Daraie, B. & Hedayati, M. (2009). Bioorg. Med. Chem. 17, 5369-5373.]). The S-oxides of these compounds have been little studied (a search found fewer than 50), despite the evidence of enhanced activity in the similar 2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-ones (Surrey et al., 1958[Surrey, A. R., Webb, W. G. & Gesler, R. M. (1958). J. Am. Chem. Soc. 80, 3469-3471.]; Surrey, 1963a[Surrey, A. R. (1963a). US Patent 3082209.],b[Surrey, A. R. (1963b). US Patent 3093639.]) and 1,3-thia­zolidin-4-ones (Gududuru et al., 2004[Gududuru, V., Hurh, E., Dalton, J. T. & Miller, D. D. (2004). Bioorg. Med. Chem. Lett. 14, 5289-5293.]). Also of potential inter­est is the tri­phenyl­tin chloride adduct, which may have enhanced anti­fungal activity (Eng et al., 1996[Eng, G., Whalen, D., Zhang, Y. Z., Tierney, J., Jiang, X. & May, L. (1996). Appl. Organomet. Chem. 10, 495-499.]).

[Scheme 1]

Recently, we reported the crystal structures of 2,3-diphenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zine-4-one 1-oxide (Yennawar, Yang & Silverberg, 2016[Yennawar, H. P., Yang, Z. & Silverberg, L. J. (2016). Acta Cryst. E72, 1541-1543.]) and the 1:1 adduct of tri­phenyl­tin chloride and 2,3-diphenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one (Yennawar, Fox & Silverberg, 2016[Yennawar, H. P., Fox, R. & Silverberg, L. J. (2016). Acta Cryst. E72, 276-279.]). Attempts to prepare the tri­phenyl­tin chloride adduct of 2,3-diphenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one instead produced the sulfoxide 2,3-diphenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one 1-oxide on two separate occasions. The sulfoxide was also intentionally prepared by oxidation of 2,3-diphenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one with Oxone®. It has not yet been determined how the sulfoxide formed in the tin reaction, but Bourgoin-Legay & Boudet (1969[Bourgoin-Legay, D. & Boudet, R. (1969). Bull. Soc. Chim. Fr. 7, 2524-2530.]) have reported the air oxidation of 2-alkyl-4H-1,3-benzo­thia­zines to give the sulfoxides, although the analogous 2-aryl compounds were less prone to air oxidation.

In this article, we report the crystal structure of the product from one of the reactions using tin, the title compound, namely 2,3-diphenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one 1-oxide, (I)[link]. To the best of our knowledge, this is the first reported crystal structure of an S-oxide of a 2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one.

2. Structural commentary

In the title racemic compound, the planes of the two phenyl substituents form dihedral angles of 48.97 (15) and 69.26 (15)° with that of the fused benzene ring of the parent benzo­thia­zine system (Fig. 1[link]). The O atom on the S atom is pseudo-axial and trans to the 2-phenyl ring, just as in 2,3-diphenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one 1-oxide (Yennawar, Yang & Silverberg, 2016[Yennawar, H. P., Yang, Z. & Silverberg, L. J. (2016). Acta Cryst. E72, 1541-1543.]). The thia­zine ring has a screw-boat conformation, with a puckering amplitude of 0.686 (2) Å and θ = 65.6 (2)° (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). The thia­zine ring in 2,3-diphenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one 1-oxide (Yennawar, Yang & Silverberg, 2016[Yennawar, H. P., Yang, Z. & Silverberg, L. J. (2016). Acta Cryst. E72, 1541-1543.]) was in an envelope conformation. The overall mol­ecular configuration is quite similar to the structure of 2,3-diphenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one (Yennawar et al., 2014[Yennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, o465.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

The crystal lattice has layers of mol­ecules comprising alternating enanti­omers, extending along the a-axis direction and lying in the ac plane. The layers are linked across the b-cell direction through inter­molecular C1—H⋯O2i hydrogen bonds (Fig. 2[link], Table 1[link]) between mol­ecules of the same chirality [symmetry code: (i) −x + [{1\over 2}], y − [{3\over 2}], −z + [{1\over 2}]]. While C—H⋯O inter­actions are also present in our two earlier structures (Yennawar et al., 2014[Yennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, o465.]; Yennawar, Yang & Silverberg, 2016[Yennawar, H. P., Yang, Z. & Silverberg, L. J. (2016). Acta Cryst. E72, 1541-1543.]), the differences in either the donor C or acceptor O atoms make them unique in each case. In the present structure, the chiral C atom donates the proton to the O atom at position 4 (⋯O—C) of the thia­zine ring, while in our 2016[Yennawar, H. P., Yang, Z. & Silverberg, L. J. (2016). Acta Cryst. E72, 1541-1543.] structure, the acceptor O atom was the one at position 1 (⋯O—S). In the 2014[Yennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, o465.] structure, the two benzene-ring C atoms are the donors to the only O atom (⋯O—C) on the thia­zine ring.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.98 2.31 3.240 (3) 157
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing diagram showing C—H⋯O contacts as dotted red lines between mol­ecules of (I)[link] which form chains along the b-axis direction.

4. Database survey

A literature search found no prior reports of a crystal structure of an S-oxide of a 2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one. We have previously reported the crystal structures of 2,3-diphenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one 1-oxide (Yennawar, Yang & Silverberg, 2016[Yennawar, H. P., Yang, Z. & Silverberg, L. J. (2016). Acta Cryst. E72, 1541-1543.]) and 2,3-diphenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one (Yennawar et al., 2014[Yennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, o465.]).

5. Synthesis and crystallization

A 2 ml reactivial with a stir bar was charged with 0.1004 g of 2,3-diphenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one and 0.95 ml of acetone and stirred. The benzo­thia­zinone did not fully dissolve. A 10 ml round-bottomed flask was charged with 0.1212 g of tri­phenyl­tin chloride and 2.0 ml of acetone and stirred. The contents of the 2 ml vial were added to the 10 ml flask and the vial was rinsed with an additional 0.5 ml of acetone, giving a clear solution, which was stirred for 2 h and then allowed to stand without stirring for 3 d. The solution was filtered through Celite and then concentrated under vacuum, giving a white solid. The solid was recrystallized from cyclo­hexane to give a yellow solid (yield 0.0755 g, 72%). Crystals suitable for X-ray analysis were obtained by slow evaporation from an acetone solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were placed geometrically and allowed to ride on their parent C atoms during refinement, with C—H distances of 0.98 (methine) or 0.93 Å (aromatic) and with Uiso(H) = 1.2Ueq(C). Although of no particular significance in this racemic compound, the enanti­omer chosen was the C1(S) one.

Table 2
Experimental details

Crystal data
Chemical formula C20H15NO2S
Mr 333.39
Crystal system, space group Monoclinic, P21/n
Temperature (K) 298
a, b, c (Å) 9.1505 (16), 11.2712 (19), 16.379 (3)
β (°) 103.997 (6)
V3) 1639.2 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.20 × 0.16 × 0.14
 
Data collection
Diffractometer Bruker CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.790, 0.9
No. of measured, independent and observed [I > 2σ(I)] reflections 12730, 4036, 3701
Rint 0.025
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.090, 0.231, 1.65
No. of reflections 4036
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.61, −0.34
Computer programs: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SMART (Bruker, 2001); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

rac-2,3-Diphenyl-2,3-dihydro-4H-1,3-benzothiazin-4-one 1-oxide top
Crystal data top
C20H15NO2SF(000) = 696
Mr = 333.39Dx = 1.351 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.1505 (16) ÅCell parameters from 975 reflections
b = 11.2712 (19) Åθ = 2.9–28.1°
c = 16.379 (3) ŵ = 0.21 mm1
β = 103.997 (6)°T = 298 K
V = 1639.2 (5) Å3Block, colorless
Z = 40.20 × 0.16 × 0.14 mm
Data collection top
Bruker CCD area detector
diffractometer
4036 independent reflections
Radiation source: fine-focus sealed tube3701 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
phi and ω scansθmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1211
Tmin = 0.790, Tmax = 0.9k = 1414
12730 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.090Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.231H-atom parameters constrained
S = 1.65 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
4036 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.34 e Å3
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2072 (3)0.6272 (2)0.31199 (16)0.0321 (5)
H10.19590.56110.27200.039*
C20.3510 (3)0.8148 (2)0.32892 (15)0.0295 (5)
C30.3394 (3)0.8157 (2)0.41882 (15)0.0303 (5)
C40.3293 (3)0.7126 (2)0.46419 (16)0.0341 (6)
C50.3268 (3)0.7173 (3)0.54783 (18)0.0473 (7)
H50.32220.64770.57760.057*
C60.3311 (4)0.8261 (3)0.58734 (19)0.0516 (8)
H60.32980.82980.64390.062*
C70.3373 (3)0.9288 (3)0.54312 (18)0.0467 (7)
H70.33841.00190.56960.056*
C80.3420 (3)0.9239 (2)0.45941 (17)0.0384 (6)
H80.34700.99390.43010.046*
C90.0503 (3)0.6611 (2)0.31841 (15)0.0339 (6)
C100.0061 (3)0.7748 (3)0.30135 (18)0.0434 (7)
H100.05410.83380.28680.052*
C110.1521 (4)0.8012 (3)0.3059 (2)0.0562 (9)
H110.18960.87760.29380.067*
C120.2407 (4)0.7160 (4)0.3280 (2)0.0648 (10)
H120.33790.73460.33160.078*
C130.1875 (4)0.6036 (4)0.3447 (3)0.0673 (10)
H130.24850.54580.35990.081*
C140.0414 (4)0.5746 (3)0.3393 (2)0.0526 (8)
H140.00610.49740.34980.063*
C150.3197 (3)0.7045 (2)0.19894 (16)0.0320 (5)
C160.2398 (4)0.7703 (3)0.13225 (17)0.0446 (7)
H160.16420.82160.13930.053*
C170.2729 (5)0.7592 (3)0.05491 (19)0.0574 (9)
H170.21980.80380.00960.069*
C180.3845 (4)0.6825 (3)0.0442 (2)0.0582 (9)
H180.40820.67700.00770.070*
C190.4602 (4)0.6144 (3)0.1105 (2)0.0548 (8)
H190.53330.56100.10300.066*
C200.4279 (3)0.6249 (3)0.18879 (18)0.0430 (7)
H200.47870.57870.23380.052*
N10.2910 (2)0.71883 (18)0.28149 (13)0.0304 (5)
O10.4735 (2)0.5462 (2)0.39909 (15)0.0535 (6)
O20.4139 (2)0.89553 (17)0.30137 (12)0.0421 (5)
S10.32220 (8)0.57148 (6)0.41423 (4)0.0392 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0354 (12)0.0251 (11)0.0372 (13)0.0058 (9)0.0112 (10)0.0019 (10)
C20.0296 (11)0.0270 (11)0.0303 (12)0.0005 (9)0.0041 (9)0.0034 (9)
C30.0273 (11)0.0307 (12)0.0309 (13)0.0032 (9)0.0032 (9)0.0014 (9)
C40.0332 (12)0.0328 (12)0.0351 (13)0.0028 (10)0.0059 (10)0.0033 (10)
C50.0507 (16)0.0536 (17)0.0366 (15)0.0039 (13)0.0087 (12)0.0134 (13)
C60.0555 (18)0.068 (2)0.0303 (14)0.0079 (15)0.0083 (13)0.0011 (14)
C70.0493 (16)0.0513 (17)0.0372 (15)0.0007 (13)0.0062 (12)0.0131 (13)
C80.0415 (14)0.0347 (14)0.0370 (14)0.0045 (10)0.0058 (11)0.0013 (11)
C90.0342 (12)0.0395 (14)0.0284 (12)0.0097 (10)0.0079 (10)0.0089 (10)
C100.0387 (14)0.0467 (15)0.0431 (15)0.0005 (12)0.0065 (12)0.0077 (13)
C110.0443 (17)0.070 (2)0.0495 (18)0.0094 (15)0.0029 (14)0.0180 (16)
C120.0364 (15)0.101 (3)0.058 (2)0.0051 (18)0.0132 (14)0.032 (2)
C130.0468 (18)0.089 (3)0.072 (2)0.0270 (19)0.0265 (17)0.011 (2)
C140.0475 (16)0.0529 (19)0.0606 (19)0.0145 (14)0.0196 (15)0.0049 (15)
C150.0343 (12)0.0315 (12)0.0312 (12)0.0057 (9)0.0101 (10)0.0017 (10)
C160.0587 (18)0.0383 (14)0.0378 (15)0.0025 (12)0.0136 (13)0.0016 (12)
C170.085 (2)0.0500 (18)0.0366 (16)0.0038 (17)0.0139 (15)0.0080 (14)
C180.078 (2)0.063 (2)0.0414 (17)0.0122 (17)0.0293 (17)0.0071 (15)
C190.0516 (18)0.065 (2)0.0541 (19)0.0021 (15)0.0252 (15)0.0110 (16)
C200.0379 (14)0.0530 (17)0.0380 (15)0.0047 (12)0.0089 (11)0.0052 (12)
N10.0350 (10)0.0270 (10)0.0305 (10)0.0046 (8)0.0106 (8)0.0016 (8)
O10.0475 (12)0.0473 (12)0.0673 (14)0.0153 (9)0.0169 (10)0.0093 (10)
O20.0545 (12)0.0346 (10)0.0385 (10)0.0164 (8)0.0139 (9)0.0009 (8)
S10.0453 (4)0.0278 (4)0.0463 (4)0.0023 (2)0.0145 (3)0.0098 (3)
Geometric parameters (Å, º) top
C1—H10.9800C10—C111.388 (4)
C1—C91.514 (3)C11—H110.9300
C1—N11.446 (3)C11—C121.361 (5)
C1—S11.858 (3)C12—H120.9300
C2—C31.502 (3)C12—C131.361 (6)
C2—N11.367 (3)C13—H130.9300
C2—O21.220 (3)C13—C141.400 (5)
C3—C41.394 (3)C14—H140.9300
C3—C81.386 (3)C15—C161.375 (4)
C4—C51.377 (4)C15—C201.375 (4)
C4—S11.783 (3)C15—N11.447 (3)
C5—H50.9300C16—H160.9300
C5—C61.383 (4)C16—C171.378 (4)
C6—H60.9300C17—H170.9300
C6—C71.374 (4)C17—C181.381 (5)
C7—H70.9300C18—H180.9300
C7—C81.383 (4)C18—C191.373 (5)
C8—H80.9300C19—H190.9300
C9—C101.384 (4)C19—C201.389 (4)
C9—C141.383 (4)C20—H200.9300
C10—H100.9300O1—S11.491 (2)
C9—C1—H1106.9C12—C11—H11119.8
C9—C1—S1111.28 (17)C11—C12—H12119.9
N1—C1—H1106.9C13—C12—C11120.2 (3)
N1—C1—C9115.8 (2)C13—C12—H12119.9
N1—C1—S1108.68 (16)C12—C13—H13119.8
S1—C1—H1106.9C12—C13—C14120.4 (3)
N1—C2—C3116.7 (2)C14—C13—H13119.8
O2—C2—C3120.6 (2)C9—C14—C13119.8 (3)
O2—C2—N1122.7 (2)C9—C14—H14120.1
C4—C3—C2123.1 (2)C13—C14—H14120.1
C8—C3—C2118.6 (2)C16—C15—N1120.0 (2)
C8—C3—C4118.3 (2)C20—C15—C16121.0 (3)
C3—C4—S1119.9 (2)C20—C15—N1119.0 (2)
C5—C4—C3121.2 (2)C15—C16—H16120.4
C5—C4—S1118.9 (2)C15—C16—C17119.2 (3)
C4—C5—H5120.2C17—C16—H16120.4
C4—C5—C6119.6 (3)C16—C17—H17119.8
C6—C5—H5120.2C16—C17—C18120.5 (3)
C5—C6—H6120.0C18—C17—H17119.8
C7—C6—C5120.0 (3)C17—C18—H18120.1
C7—C6—H6120.0C19—C18—C17119.8 (3)
C6—C7—H7119.9C19—C18—H18120.1
C6—C7—C8120.3 (3)C18—C19—H19119.9
C8—C7—H7119.9C18—C19—C20120.2 (3)
C3—C8—H8119.7C20—C19—H19119.9
C7—C8—C3120.6 (2)C15—C20—C19119.2 (3)
C7—C8—H8119.7C15—C20—H20120.4
C10—C9—C1122.2 (2)C19—C20—H20120.4
C14—C9—C1118.8 (3)C1—N1—C15118.32 (19)
C14—C9—C10119.0 (3)C2—N1—C1122.9 (2)
C9—C10—H10119.9C2—N1—C15118.7 (2)
C9—C10—C11120.3 (3)C4—S1—C193.56 (11)
C11—C10—H10119.9O1—S1—C1105.12 (12)
C10—C11—H11119.8O1—S1—C4108.31 (13)
C12—C11—C10120.4 (3)
C1—C9—C10—C11178.3 (2)C15—C16—C17—C180.4 (5)
C1—C9—C14—C13179.3 (3)C16—C15—C20—C192.4 (4)
C2—C3—C4—C5176.6 (2)C16—C15—N1—C1105.0 (3)
C2—C3—C4—S12.5 (3)C16—C15—N1—C278.4 (3)
C2—C3—C8—C7177.6 (2)C16—C17—C18—C191.7 (5)
C3—C2—N1—C15.9 (3)C17—C18—C19—C201.9 (5)
C3—C2—N1—C15170.5 (2)C18—C19—C20—C150.2 (5)
C3—C4—C5—C61.3 (4)C20—C15—C16—C172.5 (4)
C3—C4—S1—C136.3 (2)C20—C15—N1—C175.2 (3)
C3—C4—S1—O170.9 (2)C20—C15—N1—C2101.3 (3)
C4—C3—C8—C71.1 (4)N1—C1—C9—C104.0 (3)
C4—C5—C6—C70.3 (5)N1—C1—C9—C14173.9 (2)
C5—C4—S1—C1144.5 (2)N1—C1—S1—C460.72 (18)
C5—C4—S1—O1108.3 (2)N1—C1—S1—O149.3 (2)
C5—C6—C7—C81.2 (5)N1—C2—C3—C426.3 (3)
C6—C7—C8—C30.5 (4)N1—C2—C3—C8155.1 (2)
C8—C3—C4—C52.0 (4)N1—C15—C16—C17177.3 (3)
C8—C3—C4—S1178.89 (19)N1—C15—C20—C19177.4 (2)
C9—C1—N1—C273.2 (3)O2—C2—C3—C4152.3 (3)
C9—C1—N1—C15110.4 (2)O2—C2—C3—C826.3 (3)
C9—C1—S1—C467.89 (18)O2—C2—N1—C1175.5 (2)
C9—C1—S1—O1177.94 (17)O2—C2—N1—C158.1 (4)
C9—C10—C11—C120.7 (4)S1—C1—C9—C10120.8 (2)
C10—C9—C14—C131.4 (4)S1—C1—C9—C1461.4 (3)
C10—C11—C12—C130.8 (5)S1—C1—N1—C252.8 (3)
C11—C12—C13—C140.1 (6)S1—C1—N1—C15123.56 (19)
C12—C13—C14—C91.3 (5)S1—C4—C5—C6179.5 (2)
C14—C9—C10—C110.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.982.313.240 (3)157
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Funding information

Funding for this research was provided by: Penn State Schuylkill; National Science Foundation (grant No. CHEM-0131112) for the X-ray diffractometer.

References

First citationBourgoin-Legay, D. & Boudet, R. (1969). Bull. Soc. Chim. Fr. 7, 2524–2530.  Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEng, G., Whalen, D., Zhang, Y. Z., Tierney, J., Jiang, X. & May, L. (1996). Appl. Organomet. Chem. 10, 495–499.  CrossRef CAS Google Scholar
First citationGududuru, V., Hurh, E., Dalton, J. T. & Miller, D. D. (2004). Bioorg. Med. Chem. Lett. 14, 5289–5293.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHou, Y., Xing, S., Shao, J., Yin, Z., Hao, L., Yang, T., Zhang, H., Zhu, M., Chen, H. & Li, X. (2016). Carbohydr. Res. 429, 105–112.  CSD CrossRef CAS PubMed Google Scholar
First citationJeng, F., Li, X., Shao, J., Zhu, M., Li, Y., Hua, C. & Xiaoliu, L. (2015). Chin. J. Org. Chem. 35, 1370–1374.  Google Scholar
First citationKamel, M. M., Ali, H. I., Anwar, M. M., Mohamed, N. A. & Soliman, A. M. M. (2010). Eur. J. Med. Chem. 45, 572–580.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, Q., Li, C., Lu, X., Zhang, H. & Zhu, H. (2012). Eur. J. Med. Chem. 50, 288–295.  CrossRef CAS PubMed Google Scholar
First citationMandour, A. H., El-Sawy, E. R., Ebid, M. S. & El-Sayed, Z. G. (2007). Egypt. J. Chem. 50, 555–568.  CAS Google Scholar
First citationMei, Z., Wang, L., Lu, W., Pang, C., Maeda, T., Peng, W., Kaiser, M., El Sayed, I. & Inokuchi, T. (2013). J. Med. Chem. 56, 1431–1442.  CrossRef CAS PubMed Google Scholar
First citationNofal, Z. M., Soliman, E. A., El-Karim, A., El-Zahar, M. I., Srour, A. M., Sethumadhavan, S. & Maher, T. J. (2014). J. Heterocycl. Chem. 51, 1797–1806.  CrossRef CAS Google Scholar
First citationPopiolek, L., Biernasiuk, A. & Malm, A. (2016). J. Heterocycl. Chem. 53, 479–486.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSurrey, A. R. (1963a). US Patent 3082209.  Google Scholar
First citationSurrey, A. R. (1963b). US Patent 3093639.  Google Scholar
First citationSurrey, A. R., Webb, W. G. & Gesler, R. M. (1958). J. Am. Chem. Soc. 80, 3469–3471.  CrossRef CAS Web of Science Google Scholar
First citationWang, S., Fang, K., Dong, G., Chen, S., Liu, N., Miao, Z., Yao, J., Li, J., Zhang, W. & Sheng, C. (2015). J. Med. Chem. 58, 6678–6696.  CrossRef CAS PubMed Google Scholar
First citationYennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, o465.  CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P., Fox, R. & Silverberg, L. J. (2016). Acta Cryst. E72, 276–279.  CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P., Yang, Z. & Silverberg, L. J. (2016). Acta Cryst. E72, 1541–1543.  CSD CrossRef IUCr Journals Google Scholar
First citationZarghi, A., Zebardast, T., Daraie, B. & Hedayati, M. (2009). Bioorg. Med. Chem. 17, 5369–5373.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds