research communications
H-1,3-benzothiazin-4-one 1-oxide
of 2,3-diphenyl-2,3-dihydro-4aDepartment of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA, and bPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
*Correspondence e-mail: ljs43@psu.edu
In the racemic title compound, C20H15NO2S, the planes of the two phenyl substituents form dihedral angles of 48.97 (15) and 69.26 (15)° with that of the fused benzene ring of the parent benzothiazine ring, while the heterocyclic thiazine ring exhibits a screw-boat pucker. The O atom on the S atom of the ring is pseudo-axial on the thiazine ring and trans to the 2-phenyl group. In the crystal, molecules are arranged in layers in the ac plane, the layers being linked across b through intermolecular C—H⋯O hydrogen-bonding interactions.
CCDC reference: 1561660
1. Chemical context
The 2,3-dihydro-4H-1,3-benzothiazin-4-one scaffold has shown a wide range of bioactivity, including antitumor (Li et al., 2012; Wang et al., 2015; Kamel et al., 2010; Nofal et al., 2014), antimicrobial (Popiolek et al., 2016; Mandour et al., 2007), antimalarial (Mei et al., 2013), HIV–RT inhibition (Jeng et al., 2015; Hou et al., 2016) and cyclooxygenase COX-2 enzyme inhibition (Zarghi et al., 2009). The S-oxides of these compounds have been little studied (a search found fewer than 50), despite the evidence of enhanced activity in the similar 2,3,5,6-tetrahydro-4H-1,3-thiazin-4-ones (Surrey et al., 1958; Surrey, 1963a,b) and 1,3-thiazolidin-4-ones (Gududuru et al., 2004). Also of potential interest is the triphenyltin chloride adduct, which may have enhanced antifungal activity (Eng et al., 1996).
Recently, we reported the crystal structures of 2,3-diphenyl-2,3,5,6-tetrahydro-4H-1,3-thiazine-4-one 1-oxide (Yennawar, Yang & Silverberg, 2016) and the 1:1 adduct of triphenyltin chloride and 2,3-diphenyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one (Yennawar, Fox & Silverberg, 2016). Attempts to prepare the triphenyltin chloride adduct of 2,3-diphenyl-2,3-dihydro-4H-1,3-benzothiazin-4-one instead produced the sulfoxide 2,3-diphenyl-2,3-dihydro-4H-1,3-benzothiazin-4-one 1-oxide on two separate occasions. The sulfoxide was also intentionally prepared by oxidation of 2,3-diphenyl-2,3-dihydro-4H-1,3-benzothiazin-4-one with Oxone®. It has not yet been determined how the sulfoxide formed in the tin reaction, but Bourgoin-Legay & Boudet (1969) have reported the air oxidation of 2-alkyl-4H-1,3-benzothiazines to give the although the analogous 2-aryl compounds were less prone to air oxidation.
In this article, we report the H-1,3-benzothiazin-4-one 1-oxide, (I). To the best of our knowledge, this is the first reported of an S-oxide of a 2,3-dihydro-4H-1,3-benzothiazin-4-one.
of the product from one of the reactions using tin, the title compound, namely 2,3-diphenyl-2,3-dihydro-42. Structural commentary
In the title ). The O atom on the S atom is pseudo-axial and trans to the 2-phenyl ring, just as in 2,3-diphenyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one 1-oxide (Yennawar, Yang & Silverberg, 2016). The thiazine ring has a screw-boat conformation, with a puckering amplitude of 0.686 (2) Å and θ = 65.6 (2)° (Cremer & Pople, 1975). The thiazine ring in 2,3-diphenyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one 1-oxide (Yennawar, Yang & Silverberg, 2016) was in an The overall molecular configuration is quite similar to the structure of 2,3-diphenyl-2,3-dihydro-4H-1,3-benzothiazin-4-one (Yennawar et al., 2014).
the planes of the two phenyl substituents form dihedral angles of 48.97 (15) and 69.26 (15)° with that of the fused benzene ring of the parent benzothiazine system (Fig. 13. Supramolecular features
The a-axis direction and lying in the ac plane. The layers are linked across the b-cell direction through intermolecular C1—H⋯O2i hydrogen bonds (Fig. 2, Table 1) between molecules of the same [symmetry code: (i) −x + , y − , −z + ]. While C—H⋯O interactions are also present in our two earlier structures (Yennawar et al., 2014; Yennawar, Yang & Silverberg, 2016), the differences in either the donor C or acceptor O atoms make them unique in each case. In the present structure, the chiral C atom donates the proton to the O atom at position 4 (⋯O—C) of the thiazine ring, while in our 2016 structure, the acceptor O atom was the one at position 1 (⋯O—S). In the 2014 structure, the two benzene-ring C atoms are the donors to the only O atom (⋯O—C) on the thiazine ring.
has layers of molecules comprising alternating enantiomers, extending along the4. Database survey
A literature search found no prior reports of a S-oxide of a 2,3-dihydro-4H-1,3-benzothiazin-4-one. We have previously reported the crystal structures of 2,3-diphenyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one 1-oxide (Yennawar, Yang & Silverberg, 2016) and 2,3-diphenyl-2,3-dihydro-4H-1,3-benzothiazin-4-one (Yennawar et al., 2014).
of an5. Synthesis and crystallization
A 2 ml reactivial with a stir bar was charged with 0.1004 g of 2,3-diphenyl-2,3-dihydro-4H-1,3-benzothiazin-4-one and 0.95 ml of acetone and stirred. The benzothiazinone did not fully dissolve. A 10 ml round-bottomed flask was charged with 0.1212 g of triphenyltin chloride and 2.0 ml of acetone and stirred. The contents of the 2 ml vial were added to the 10 ml flask and the vial was rinsed with an additional 0.5 ml of acetone, giving a clear solution, which was stirred for 2 h and then allowed to stand without stirring for 3 d. The solution was filtered through Celite and then concentrated under vacuum, giving a white solid. The solid was recrystallized from cyclohexane to give a yellow solid (yield 0.0755 g, 72%). Crystals suitable for X-ray analysis were obtained by slow evaporation from an acetone solution.
6. Refinement
Crystal data, data collection and structure . The H atoms were placed geometrically and allowed to ride on their parent C atoms during with C—H distances of 0.98 (methine) or 0.93 Å (aromatic) and with Uiso(H) = 1.2Ueq(C). Although of no particular significance in this the enantiomer chosen was the C1(S) one.
details are summarized in Table 2Supporting information
CCDC reference: 1561660
https://doi.org/10.1107/S2056989017010313/zs2384sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017010313/zs2384Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017010313/zs2384Isup3.mol
Supporting information file. DOI: https://doi.org/10.1107/S2056989017010313/zs2384Isup4.cml
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SMART (Bruker, 2001); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C20H15NO2S | F(000) = 696 |
Mr = 333.39 | Dx = 1.351 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.1505 (16) Å | Cell parameters from 975 reflections |
b = 11.2712 (19) Å | θ = 2.9–28.1° |
c = 16.379 (3) Å | µ = 0.21 mm−1 |
β = 103.997 (6)° | T = 298 K |
V = 1639.2 (5) Å3 | Block, colorless |
Z = 4 | 0.20 × 0.16 × 0.14 mm |
Bruker CCD area detector diffractometer | 4036 independent reflections |
Radiation source: fine-focus sealed tube | 3701 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
phi and ω scans | θmax = 28.4°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −12→11 |
Tmin = 0.790, Tmax = 0.9 | k = −14→14 |
12730 measured reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.090 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.231 | H-atom parameters constrained |
S = 1.65 | w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 |
4036 reflections | (Δ/σ)max < 0.001 |
217 parameters | Δρmax = 0.61 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2072 (3) | 0.6272 (2) | 0.31199 (16) | 0.0321 (5) | |
H1 | 0.1959 | 0.5611 | 0.2720 | 0.039* | |
C2 | 0.3510 (3) | 0.8148 (2) | 0.32892 (15) | 0.0295 (5) | |
C3 | 0.3394 (3) | 0.8157 (2) | 0.41882 (15) | 0.0303 (5) | |
C4 | 0.3293 (3) | 0.7126 (2) | 0.46419 (16) | 0.0341 (6) | |
C5 | 0.3268 (3) | 0.7173 (3) | 0.54783 (18) | 0.0473 (7) | |
H5 | 0.3222 | 0.6477 | 0.5776 | 0.057* | |
C6 | 0.3311 (4) | 0.8261 (3) | 0.58734 (19) | 0.0516 (8) | |
H6 | 0.3298 | 0.8298 | 0.6439 | 0.062* | |
C7 | 0.3373 (3) | 0.9288 (3) | 0.54312 (18) | 0.0467 (7) | |
H7 | 0.3384 | 1.0019 | 0.5696 | 0.056* | |
C8 | 0.3420 (3) | 0.9239 (2) | 0.45941 (17) | 0.0384 (6) | |
H8 | 0.3470 | 0.9939 | 0.4301 | 0.046* | |
C9 | 0.0503 (3) | 0.6611 (2) | 0.31841 (15) | 0.0339 (6) | |
C10 | −0.0061 (3) | 0.7748 (3) | 0.30135 (18) | 0.0434 (7) | |
H10 | 0.0541 | 0.8338 | 0.2868 | 0.052* | |
C11 | −0.1521 (4) | 0.8012 (3) | 0.3059 (2) | 0.0562 (9) | |
H11 | −0.1896 | 0.8776 | 0.2938 | 0.067* | |
C12 | −0.2407 (4) | 0.7160 (4) | 0.3280 (2) | 0.0648 (10) | |
H12 | −0.3379 | 0.7346 | 0.3316 | 0.078* | |
C13 | −0.1875 (4) | 0.6036 (4) | 0.3447 (3) | 0.0673 (10) | |
H13 | −0.2485 | 0.5458 | 0.3599 | 0.081* | |
C14 | −0.0414 (4) | 0.5746 (3) | 0.3393 (2) | 0.0526 (8) | |
H14 | −0.0061 | 0.4974 | 0.3498 | 0.063* | |
C15 | 0.3197 (3) | 0.7045 (2) | 0.19894 (16) | 0.0320 (5) | |
C16 | 0.2398 (4) | 0.7703 (3) | 0.13225 (17) | 0.0446 (7) | |
H16 | 0.1642 | 0.8216 | 0.1393 | 0.053* | |
C17 | 0.2729 (5) | 0.7592 (3) | 0.05491 (19) | 0.0574 (9) | |
H17 | 0.2198 | 0.8038 | 0.0096 | 0.069* | |
C18 | 0.3845 (4) | 0.6825 (3) | 0.0442 (2) | 0.0582 (9) | |
H18 | 0.4082 | 0.6770 | −0.0077 | 0.070* | |
C19 | 0.4602 (4) | 0.6144 (3) | 0.1105 (2) | 0.0548 (8) | |
H19 | 0.5333 | 0.5610 | 0.1030 | 0.066* | |
C20 | 0.4279 (3) | 0.6249 (3) | 0.18879 (18) | 0.0430 (7) | |
H20 | 0.4787 | 0.5787 | 0.2338 | 0.052* | |
N1 | 0.2910 (2) | 0.71883 (18) | 0.28149 (13) | 0.0304 (5) | |
O1 | 0.4735 (2) | 0.5462 (2) | 0.39909 (15) | 0.0535 (6) | |
O2 | 0.4139 (2) | 0.89553 (17) | 0.30137 (12) | 0.0421 (5) | |
S1 | 0.32220 (8) | 0.57148 (6) | 0.41423 (4) | 0.0392 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0354 (12) | 0.0251 (11) | 0.0372 (13) | −0.0058 (9) | 0.0112 (10) | −0.0019 (10) |
C2 | 0.0296 (11) | 0.0270 (11) | 0.0303 (12) | 0.0005 (9) | 0.0041 (9) | 0.0034 (9) |
C3 | 0.0273 (11) | 0.0307 (12) | 0.0309 (13) | −0.0032 (9) | 0.0032 (9) | 0.0014 (9) |
C4 | 0.0332 (12) | 0.0328 (12) | 0.0351 (13) | 0.0028 (10) | 0.0059 (10) | 0.0033 (10) |
C5 | 0.0507 (16) | 0.0536 (17) | 0.0366 (15) | 0.0039 (13) | 0.0087 (12) | 0.0134 (13) |
C6 | 0.0555 (18) | 0.068 (2) | 0.0303 (14) | 0.0079 (15) | 0.0083 (13) | −0.0011 (14) |
C7 | 0.0493 (16) | 0.0513 (17) | 0.0372 (15) | 0.0007 (13) | 0.0062 (12) | −0.0131 (13) |
C8 | 0.0415 (14) | 0.0347 (14) | 0.0370 (14) | −0.0045 (10) | 0.0058 (11) | −0.0013 (11) |
C9 | 0.0342 (12) | 0.0395 (14) | 0.0284 (12) | −0.0097 (10) | 0.0079 (10) | −0.0089 (10) |
C10 | 0.0387 (14) | 0.0467 (15) | 0.0431 (15) | 0.0005 (12) | 0.0065 (12) | −0.0077 (13) |
C11 | 0.0443 (17) | 0.070 (2) | 0.0495 (18) | 0.0094 (15) | 0.0029 (14) | −0.0180 (16) |
C12 | 0.0364 (15) | 0.101 (3) | 0.058 (2) | −0.0051 (18) | 0.0132 (14) | −0.032 (2) |
C13 | 0.0468 (18) | 0.089 (3) | 0.072 (2) | −0.0270 (19) | 0.0265 (17) | −0.011 (2) |
C14 | 0.0475 (16) | 0.0529 (19) | 0.0606 (19) | −0.0145 (14) | 0.0196 (15) | −0.0049 (15) |
C15 | 0.0343 (12) | 0.0315 (12) | 0.0312 (12) | −0.0057 (9) | 0.0101 (10) | −0.0017 (10) |
C16 | 0.0587 (18) | 0.0383 (14) | 0.0378 (15) | 0.0025 (12) | 0.0136 (13) | 0.0016 (12) |
C17 | 0.085 (2) | 0.0500 (18) | 0.0366 (16) | −0.0038 (17) | 0.0139 (15) | 0.0080 (14) |
C18 | 0.078 (2) | 0.063 (2) | 0.0414 (17) | −0.0122 (17) | 0.0293 (17) | −0.0071 (15) |
C19 | 0.0516 (18) | 0.065 (2) | 0.0541 (19) | 0.0021 (15) | 0.0252 (15) | −0.0110 (16) |
C20 | 0.0379 (14) | 0.0530 (17) | 0.0380 (15) | 0.0047 (12) | 0.0089 (11) | −0.0052 (12) |
N1 | 0.0350 (10) | 0.0270 (10) | 0.0305 (10) | −0.0046 (8) | 0.0106 (8) | −0.0016 (8) |
O1 | 0.0475 (12) | 0.0473 (12) | 0.0673 (14) | 0.0153 (9) | 0.0169 (10) | 0.0093 (10) |
O2 | 0.0545 (12) | 0.0346 (10) | 0.0385 (10) | −0.0164 (8) | 0.0139 (9) | 0.0009 (8) |
S1 | 0.0453 (4) | 0.0278 (4) | 0.0463 (4) | 0.0023 (2) | 0.0145 (3) | 0.0098 (3) |
C1—H1 | 0.9800 | C10—C11 | 1.388 (4) |
C1—C9 | 1.514 (3) | C11—H11 | 0.9300 |
C1—N1 | 1.446 (3) | C11—C12 | 1.361 (5) |
C1—S1 | 1.858 (3) | C12—H12 | 0.9300 |
C2—C3 | 1.502 (3) | C12—C13 | 1.361 (6) |
C2—N1 | 1.367 (3) | C13—H13 | 0.9300 |
C2—O2 | 1.220 (3) | C13—C14 | 1.400 (5) |
C3—C4 | 1.394 (3) | C14—H14 | 0.9300 |
C3—C8 | 1.386 (3) | C15—C16 | 1.375 (4) |
C4—C5 | 1.377 (4) | C15—C20 | 1.375 (4) |
C4—S1 | 1.783 (3) | C15—N1 | 1.447 (3) |
C5—H5 | 0.9300 | C16—H16 | 0.9300 |
C5—C6 | 1.383 (4) | C16—C17 | 1.378 (4) |
C6—H6 | 0.9300 | C17—H17 | 0.9300 |
C6—C7 | 1.374 (4) | C17—C18 | 1.381 (5) |
C7—H7 | 0.9300 | C18—H18 | 0.9300 |
C7—C8 | 1.383 (4) | C18—C19 | 1.373 (5) |
C8—H8 | 0.9300 | C19—H19 | 0.9300 |
C9—C10 | 1.384 (4) | C19—C20 | 1.389 (4) |
C9—C14 | 1.383 (4) | C20—H20 | 0.9300 |
C10—H10 | 0.9300 | O1—S1 | 1.491 (2) |
C9—C1—H1 | 106.9 | C12—C11—H11 | 119.8 |
C9—C1—S1 | 111.28 (17) | C11—C12—H12 | 119.9 |
N1—C1—H1 | 106.9 | C13—C12—C11 | 120.2 (3) |
N1—C1—C9 | 115.8 (2) | C13—C12—H12 | 119.9 |
N1—C1—S1 | 108.68 (16) | C12—C13—H13 | 119.8 |
S1—C1—H1 | 106.9 | C12—C13—C14 | 120.4 (3) |
N1—C2—C3 | 116.7 (2) | C14—C13—H13 | 119.8 |
O2—C2—C3 | 120.6 (2) | C9—C14—C13 | 119.8 (3) |
O2—C2—N1 | 122.7 (2) | C9—C14—H14 | 120.1 |
C4—C3—C2 | 123.1 (2) | C13—C14—H14 | 120.1 |
C8—C3—C2 | 118.6 (2) | C16—C15—N1 | 120.0 (2) |
C8—C3—C4 | 118.3 (2) | C20—C15—C16 | 121.0 (3) |
C3—C4—S1 | 119.9 (2) | C20—C15—N1 | 119.0 (2) |
C5—C4—C3 | 121.2 (2) | C15—C16—H16 | 120.4 |
C5—C4—S1 | 118.9 (2) | C15—C16—C17 | 119.2 (3) |
C4—C5—H5 | 120.2 | C17—C16—H16 | 120.4 |
C4—C5—C6 | 119.6 (3) | C16—C17—H17 | 119.8 |
C6—C5—H5 | 120.2 | C16—C17—C18 | 120.5 (3) |
C5—C6—H6 | 120.0 | C18—C17—H17 | 119.8 |
C7—C6—C5 | 120.0 (3) | C17—C18—H18 | 120.1 |
C7—C6—H6 | 120.0 | C19—C18—C17 | 119.8 (3) |
C6—C7—H7 | 119.9 | C19—C18—H18 | 120.1 |
C6—C7—C8 | 120.3 (3) | C18—C19—H19 | 119.9 |
C8—C7—H7 | 119.9 | C18—C19—C20 | 120.2 (3) |
C3—C8—H8 | 119.7 | C20—C19—H19 | 119.9 |
C7—C8—C3 | 120.6 (2) | C15—C20—C19 | 119.2 (3) |
C7—C8—H8 | 119.7 | C15—C20—H20 | 120.4 |
C10—C9—C1 | 122.2 (2) | C19—C20—H20 | 120.4 |
C14—C9—C1 | 118.8 (3) | C1—N1—C15 | 118.32 (19) |
C14—C9—C10 | 119.0 (3) | C2—N1—C1 | 122.9 (2) |
C9—C10—H10 | 119.9 | C2—N1—C15 | 118.7 (2) |
C9—C10—C11 | 120.3 (3) | C4—S1—C1 | 93.56 (11) |
C11—C10—H10 | 119.9 | O1—S1—C1 | 105.12 (12) |
C10—C11—H11 | 119.8 | O1—S1—C4 | 108.31 (13) |
C12—C11—C10 | 120.4 (3) | ||
C1—C9—C10—C11 | 178.3 (2) | C15—C16—C17—C18 | 0.4 (5) |
C1—C9—C14—C13 | −179.3 (3) | C16—C15—C20—C19 | 2.4 (4) |
C2—C3—C4—C5 | 176.6 (2) | C16—C15—N1—C1 | 105.0 (3) |
C2—C3—C4—S1 | −2.5 (3) | C16—C15—N1—C2 | −78.4 (3) |
C2—C3—C8—C7 | −177.6 (2) | C16—C17—C18—C19 | 1.7 (5) |
C3—C2—N1—C1 | 5.9 (3) | C17—C18—C19—C20 | −1.9 (5) |
C3—C2—N1—C15 | −170.5 (2) | C18—C19—C20—C15 | −0.2 (5) |
C3—C4—C5—C6 | 1.3 (4) | C20—C15—C16—C17 | −2.5 (4) |
C3—C4—S1—C1 | −36.3 (2) | C20—C15—N1—C1 | −75.2 (3) |
C3—C4—S1—O1 | 70.9 (2) | C20—C15—N1—C2 | 101.3 (3) |
C4—C3—C8—C7 | 1.1 (4) | N1—C1—C9—C10 | −4.0 (3) |
C4—C5—C6—C7 | 0.3 (5) | N1—C1—C9—C14 | 173.9 (2) |
C5—C4—S1—C1 | 144.5 (2) | N1—C1—S1—C4 | 60.72 (18) |
C5—C4—S1—O1 | −108.3 (2) | N1—C1—S1—O1 | −49.3 (2) |
C5—C6—C7—C8 | −1.2 (5) | N1—C2—C3—C4 | 26.3 (3) |
C6—C7—C8—C3 | 0.5 (4) | N1—C2—C3—C8 | −155.1 (2) |
C8—C3—C4—C5 | −2.0 (4) | N1—C15—C16—C17 | 177.3 (3) |
C8—C3—C4—S1 | 178.89 (19) | N1—C15—C20—C19 | −177.4 (2) |
C9—C1—N1—C2 | 73.2 (3) | O2—C2—C3—C4 | −152.3 (3) |
C9—C1—N1—C15 | −110.4 (2) | O2—C2—C3—C8 | 26.3 (3) |
C9—C1—S1—C4 | −67.89 (18) | O2—C2—N1—C1 | −175.5 (2) |
C9—C1—S1—O1 | −177.94 (17) | O2—C2—N1—C15 | 8.1 (4) |
C9—C10—C11—C12 | 0.7 (4) | S1—C1—C9—C10 | 120.8 (2) |
C10—C9—C14—C13 | −1.4 (4) | S1—C1—C9—C14 | −61.4 (3) |
C10—C11—C12—C13 | −0.8 (5) | S1—C1—N1—C2 | −52.8 (3) |
C11—C12—C13—C14 | −0.1 (6) | S1—C1—N1—C15 | 123.56 (19) |
C12—C13—C14—C9 | 1.3 (5) | S1—C4—C5—C6 | −179.5 (2) |
C14—C9—C10—C11 | 0.5 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O2i | 0.98 | 2.31 | 3.240 (3) | 157 |
Symmetry code: (i) −x+1/2, y−1/2, −z+1/2. |
Funding information
Funding for this research was provided by: Penn State Schuylkill; National Science Foundation (grant No. CHEM-0131112) for the X-ray diffractometer.
References
Bourgoin-Legay, D. & Boudet, R. (1969). Bull. Soc. Chim. Fr. 7, 2524–2530. Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Eng, G., Whalen, D., Zhang, Y. Z., Tierney, J., Jiang, X. & May, L. (1996). Appl. Organomet. Chem. 10, 495–499. CrossRef CAS Google Scholar
Gududuru, V., Hurh, E., Dalton, J. T. & Miller, D. D. (2004). Bioorg. Med. Chem. Lett. 14, 5289–5293. Web of Science CrossRef PubMed CAS Google Scholar
Hou, Y., Xing, S., Shao, J., Yin, Z., Hao, L., Yang, T., Zhang, H., Zhu, M., Chen, H. & Li, X. (2016). Carbohydr. Res. 429, 105–112. CSD CrossRef CAS PubMed Google Scholar
Jeng, F., Li, X., Shao, J., Zhu, M., Li, Y., Hua, C. & Xiaoliu, L. (2015). Chin. J. Org. Chem. 35, 1370–1374. Google Scholar
Kamel, M. M., Ali, H. I., Anwar, M. M., Mohamed, N. A. & Soliman, A. M. M. (2010). Eur. J. Med. Chem. 45, 572–580. Web of Science CrossRef PubMed CAS Google Scholar
Li, Q., Li, C., Lu, X., Zhang, H. & Zhu, H. (2012). Eur. J. Med. Chem. 50, 288–295. CrossRef CAS PubMed Google Scholar
Mandour, A. H., El-Sawy, E. R., Ebid, M. S. & El-Sayed, Z. G. (2007). Egypt. J. Chem. 50, 555–568. CAS Google Scholar
Mei, Z., Wang, L., Lu, W., Pang, C., Maeda, T., Peng, W., Kaiser, M., El Sayed, I. & Inokuchi, T. (2013). J. Med. Chem. 56, 1431–1442. CrossRef CAS PubMed Google Scholar
Nofal, Z. M., Soliman, E. A., El-Karim, A., El-Zahar, M. I., Srour, A. M., Sethumadhavan, S. & Maher, T. J. (2014). J. Heterocycl. Chem. 51, 1797–1806. CrossRef CAS Google Scholar
Popiolek, L., Biernasiuk, A. & Malm, A. (2016). J. Heterocycl. Chem. 53, 479–486. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Surrey, A. R. (1963a). US Patent 3082209. Google Scholar
Surrey, A. R. (1963b). US Patent 3093639. Google Scholar
Surrey, A. R., Webb, W. G. & Gesler, R. M. (1958). J. Am. Chem. Soc. 80, 3469–3471. CrossRef CAS Web of Science Google Scholar
Wang, S., Fang, K., Dong, G., Chen, S., Liu, N., Miao, Z., Yao, J., Li, J., Zhang, W. & Sheng, C. (2015). J. Med. Chem. 58, 6678–6696. CrossRef CAS PubMed Google Scholar
Yennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, o465. CSD CrossRef IUCr Journals Google Scholar
Yennawar, H. P., Fox, R. & Silverberg, L. J. (2016). Acta Cryst. E72, 276–279. CSD CrossRef IUCr Journals Google Scholar
Yennawar, H. P., Yang, Z. & Silverberg, L. J. (2016). Acta Cryst. E72, 1541–1543. CSD CrossRef IUCr Journals Google Scholar
Zarghi, A., Zebardast, T., Daraie, B. & Hedayati, M. (2009). Bioorg. Med. Chem. 17, 5369–5373. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.