research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl (E)-2-cyano-3-(thio­phen-2-yl)acrylate: two conformers forming a discrete disorder

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química, Universidad Nacional de Colombia, Bogotá D.C., Colombia, and bDepartamento de Química, Universidad de los Andes, Carrera 1 No 18A-12, Bogotá D.C., Colombia
*Correspondence e-mail: ma.maciasl@uniandes.edu.co, casierraa@unal.edu.co

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 15 June 2017; accepted 21 July 2017; online 4 August 2017)

In the title compound, C10H9NO2S, all the non-H atoms, except for the ethyl fragment, lie nearly in the same plane. Despite the mol­ecular planarity, the ethyl fragment presents more than one conformation, giving rise to a discrete disorder, which was modelled with two different crystallographic sites for the eth­oxy O and eth­oxy α-C atoms, with occupancy values of 0.5. In the crystal, the three-dimensional array is mainly directed by C—H⋯(O,N) inter­actions, giving rise to inversion dimers with R22(10) and R22(14) motifs and infinite chains running along the [100] direction.

1. Chemical context

Cyano­acrylate derivatives are organic compounds with a very important industrial inter­est due to their use as monomers in the production of adhesives and polymer materials (Gololobov & Krylova, 1995[Gololobov, Y. G. & Krylova, T. (1995). Heteroat. Chem. 6, 271-280.]). Furthermore, these compounds have been described as promissory inter­mediates for heterocycle synthesis (Gololobov et al., 1995[Gololobov, Y. G. & Krylova, T. (1995). Heteroat. Chem. 6, 271-280.]) and as nitrile-activated precursors in bioreduction reactions (Winkler et al., 2014[Winkler, C., Clay, D., Turrini, N., Lechner, H., Kroutil, W., Davies, S., Debarge, S., O'Neill, P., Steflik, J., Karmilowicz, M., Wong, J. W. & Faber, K. (2014). Adv. Synth. Catal. 356, 1878-1882.]). Still, their most outstanding application is related to their very attractive absorption properties in the UV–Vis region. This capability has been widely described in the literature where cyano­acrylates were employed as precursors for the synthesis of dye-sensitized photovoltaic materials (Chen et al., 2013[Chen, C., Yang, X., Cheng, M., Zhang, F. & Sun, L. (2013). ChemSusChem, 6, 1270-1275.]; Zietz et al., 2014[Zietz, B., Gabrielsson, E., Johansson, V., El-Zohry, A., Sun, L. & Kloo, L. (2014). Phys. Chem. Chem. Phys. 16, 2251-2255.]; Lee et al., 2009[Lee, M., Cha, S. B., Yang, S., Woong Park, S., Kim, K., Park, N. & Lee, D. (2009). Bull. Korean Chem. Soc. 30, 2260-2279.]) and sensors (Zhang et al., 2010[Zhang, X., Yang, Z., Chi, Z., Chen, M., Xu, B., Wang, C., Liu, S., Zhang, Y. & Xu, J. (2010). J. Mater. Chem. 20, 292-298.]). Considering that the absorption properties are related to the mol­ecular structure of cyano­acrylate compounds (Ma et al., 2014[Ma, J., Zhang, C., Gong, J., Yang, B., Zhang, H., Wang, W., Wu, Y., Chen, Y. & Chen, H. (2014). J. Chem. Phys. 141, 234705, 1-10.]), it is therefore very useful to know their crystal structures in detail in order to have a better understanding of the link between the structures and properties of these derivatives. In this contribution, we present the crystal structure of a thio­phene-based cyano­acrylate derivative with promising applications in the synthesis of ligands for metal sensing.

[Scheme 1]

2. Structural commentary

Fig. 1[link] shows the mol­ecule of the title compound. The near planarity of the mol­ecule (r.m.s. deviation of 0.006 Å) means that nearly all atoms lie in the same plane perpendicular to [010] except for the ethyl ester fragment (O2/C2/O1/C1/C1A), which presents a discrete disorder due to the existence of two conformations of the ethyl moiety that overlay in the same crystallographic site. This disorder was modelled using two sites for the O1, C1 and C1A atoms with occupancy values of 0.5. The split fragment is observed as a reflection of two ethyl moieties in the two opposite sides of the mirror plane that contains the mol­ecule. These atoms lie, respectively, 0.21 (2), 0.340 (7) and −1.010 (10) Å out of this plane. The planarity allows the formation of a weak intra­molecular C5—H5⋯O2 close contact (Fig. 1[link] and Table 1[link]), which generates an S(6) motif. This mol­ecule is similar to (E)-ethyl-2-cyano-3-(furan-2-yl)acrylate (Kalkhambkar et al., 2012[Kalkhambkar, R. G., Gayathri, D., Gupta, V. K., Kant, R. & Jeong, Y. T. (2012). Acta Cryst. E68, o1482.]), differing in the five-membered ring, which is a furanyl in this compound, and presenting a distorted planarity compared with the title compound [dihedral angles of 177.5–179.0° in the two molecules of the asymmetric unit compared with the value of 180.0° in the C6-C5-C3-C2 fragment of the title compound]. Also, no mol­ecular disorder was reported in the furanyl mol­ecule.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2 0.93 2.42 2.799 (3) 104
C7—H7⋯O2i 0.93 2.55 3.363 (3) 147
C5—H5⋯O2i 0.93 2.57 3.425 (3) 153
C9—H9⋯N2ii 0.93 2.60 3.520 (4) 172
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing anisotropic displacement ellipsoids drawn at the 50% probability level. The intra­molecular C—H⋯O hydrogen bond is shown as a dashed line (see Table 1[link]) and the discrete disorder in the ethyl moiety is also observed.

3. Supra­molecular features

In the crystal, the packing is directed by C5—H5⋯O2i and C7—H7⋯O2i [symmetry code: (i) −x + 1, −y + 1, −z] (see Table 1[link] and Fig. 2[link]) inter­actions, which connect pairs of inversion-related mol­ecules, forming slabs of infinite chains running along [100] with R22(10) and R22(14) motifs, respectively (see Fig. 2[link]). These slabs are further linked by weak C9—H9⋯N2ii [symmetry code: (ii) −x, −y + 1, −z] inter­actions along the a-axis direction (Table 1[link]). Neighboring chains inter­act along [001] direction by van der Waals forces, forming (010) sheets. In the [010] direction, only weak dipolar inter­actions or van der Waals forces act between neighboring sheets to consolidate the three-dimensional array of the crystal structure. Despite the mol­ecular similarity with (E)-ethyl-2-cyano-3-(furan-2-yl)acrylate (Kalkhambkar et al., 2012[Kalkhambkar, R. G., Gayathri, D., Gupta, V. K., Kant, R. & Jeong, Y. T. (2012). Acta Cryst. E68, o1482.]), the inversion-related molecules in Kalkhambkar's structure, joined by similar intermolecular hydrogen bonds, are further connected by different sorts of C—H⋯O and C—H⋯N weaker interactions involving the furanyl ring.

[Figure 2]
Figure 2
The crystal structure of the title compound, showing the C—H⋯(O, N) hydrogen-bonding inter­actions (dotted lines) along the [100] direction.

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.37 with two updates, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the complete mol­ecule given the option for any substituent in the five-membered ring and/or allowing a saturated chain longer than the ethyl fragment gave three hits, all of them forming parts of mol­ecules bigger than the title compound, giving different supra­molecular inter­actions due not only to the loss of planarity, as in the case of the ethyl-3-(3-chloro-4-cyano-5-{[4-(di­methyl­amino)­phen­yl]diazen­yl}-2-thien­yl)-2-cyano­acrylate (Xu et al., 2016[Xu, D., Li, Z., Peng, Y. X., Geng, J., Qian, H. F. & Huang, W. (2016). Dyes Pigm. 133, 143-152.]), but also due to an increase in the saturated chains as in the case of octyl-2-cyano-3-(4,6-di­bromo-7,7-dimethyl-7H-thieno[3′,4′:4,5]silolo[2,3-b]thio­phen-2-yl)acryl­ate (Liu et al., 2016[Liu, L., Song, J., Lu, H., Wang, H. & Bo, Z. (2016). Polym. Chem. 7, 319-329.]) and ethyl-2-cyano-3-(3,3′′′-dihexyl-2,2′:5′,2′′:5′′,2′′′-quaterthio­phen-5-yl)acrylate (Miyazaki et al., 2011[Miyazaki, E., Okanishi, T., Suzuki, Y., Ishine, N., Mori, H., Takimiya, K. & Harima, Y. (2011). Bull. Chem. Soc. Jpn, 84, 459-465.]). A search considering any heteroatom in the place of S1 gave six hits. Among them, the more similar compounds correspond to ethyl-(2E)-2-cyano-3-(1-methyl-1H-pyrrol-2-yl)prop-2-enoate (Asiri et al., 2011[Asiri, A. M., Al-Youbi, A. O., Alamry, K. A., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2315.]), (E)-ethyl-2-cyano-3-(1H-pyrrol-2-yl)acrylate (Yuvaraj et al., 2011[Yuvaraj, H., Gayathri, D., Kalkhambkar, R. G., Gupta, V. K. & Rajnikant (2011). Acta Cryst. E67, o2135.]) and (E)-ethyl-2-cyano-3-(furan-2-yl)acrylate (Kalkhambkar et al., 2012[Kalkhambkar, R. G., Gayathri, D., Gupta, V. K., Kant, R. & Jeong, Y. T. (2012). Acta Cryst. E68, o1482.]), the last one being the most similar compound since its mol­ecular conformation is also planar, with the ethyl fragment out of the plane and a furanyl forming the five-membered ring.

5. Synthesis and crystallization

All reagents and solvents were purchased from commercial sources and used as received. In a two-necked round-bottom flask equipped with a condenser, thio­phene-2-carboxaldehyde (740 mg, 6.6 mmol), cyano­acetic acid ethyl ester (753 mg, 6.6 mmol) and piperidine (6,8 µL, 1% mol) were stirred in ethanol for three h. A yellowish brown solid was obtained and recrystallized from ethanol solution (see Fig. 3[link]). The product was filtered out and then dried under vacuum. The yellowish brown solid was dissolved in methanol and yellow crystals were grown through slow evaporation of the solvent at room temperature with 80% yield. Melting point: 366–367 K, reported: 365–367 K (Jia et al. 2015[Jia, Y., Fang, Y., Zhang, Y., Miras, H. & Song, Y. (2015). Chem. Eur. J. 21, 14862-14870.]). 1H NMR: (DMSO-d6, 400 MHz, d, ppm): 1,41 (t, 2H), 4,38 (q, 3H), 7.25 (dd, 1H), 7,81 (d, 1H), 7,85 (d, 1H), 8.36 (s, 1H). 13C NMR (DMSO-d6, 100 MHz, d, ppm): 14.19, 62.54, 99.3, 115.6, 128.6, 135.1, 136.1, 137.1, 146.6, 162.8.

[Figure 3]
Figure 3
Schematic representation of the synthetic pathway of ethyl (E)-2-cyano-3-(thio­phen-2-yl)acrylate.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions (C—H: 0.93–0.97 Å) and included as riding contributions with isotropic displacement parameters set at 1.2–1.5 times the Ueq value of the parent atom.

Table 2
Experimental details

Crystal data
Chemical formula C10H9NO2S
Mr 207.24
Crystal system, space group Monoclinic, C2/m
Temperature (K) 298
a, b, c (Å) 13.637 (2), 6.8965 (16), 11.817 (3)
β (°) 109.28 (2)
V3) 1049.0 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.19 × 0.12 × 0.07
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2007). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.760, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9896, 1171, 1049
Rint 0.068
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.126, 1.14
No. of reflections 1171
No. of parameters 96
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.24
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2007). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Ethyl (E)-2-cyano-3-(thiophen-2-yl)acrylate top
Crystal data top
C10H9NO2SF(000) = 432
Mr = 207.24Dx = 1.312 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
a = 13.637 (2) ÅCell parameters from 2818 reflections
b = 6.8965 (16) Åθ = 4.5–26.3°
c = 11.817 (3) ŵ = 0.28 mm1
β = 109.28 (2)°T = 298 K
V = 1049.0 (4) Å3Parallelepiped, yellow
Z = 40.19 × 0.12 × 0.07 mm
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
1171 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1049 reflections with I > 2σ(I)
Detector resolution: 5.3072 pixels mm-1Rint = 0.068
ω scansθmax = 26.4°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1616
Tmin = 0.760, Tmax = 1.000k = 88
9896 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.053P)2 + 0.7374P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
1171 reflectionsΔρmax = 0.35 e Å3
96 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2016), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: iterativeExtinction coefficient: 0.007 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.11266 (5)0.5000000.02961 (7)0.0560 (3)
N20.2293 (2)0.5000000.2653 (2)0.0733 (9)
O20.53999 (15)0.5000000.1743 (2)0.0732 (7)
C20.4730 (2)0.5000000.2195 (3)0.0568 (7)
C30.36045 (19)0.5000000.1505 (2)0.0480 (6)
C40.2879 (2)0.5000000.2153 (3)0.0531 (7)
C70.2120 (2)0.5000000.1795 (3)0.0555 (7)
H70.2648020.5000000.2130020.067*
C60.22929 (19)0.5000000.0583 (2)0.0470 (6)
C50.33082 (19)0.5000000.0298 (2)0.0468 (6)
H50.3851930.5000000.0013070.056*
C80.1056 (2)0.5000000.2475 (3)0.0630 (8)
H80.0806140.5000000.3308730.076*
C90.0436 (2)0.5000000.1786 (3)0.0616 (8)
H90.0285470.5000000.2092500.074*
O10.48964 (18)0.531 (3)0.3371 (2)0.064 (3)0.5
C10.5976 (3)0.5493 (10)0.4143 (4)0.073 (3)0.5
H1A0.6008980.6152770.4879170.088*0.5
H1B0.6361450.6255440.3741420.088*0.5
C1A0.6446 (5)0.3535 (15)0.4422 (6)0.127 (3)0.5
H1AA0.6411440.2887380.3690770.191*0.5
H1AB0.6072050.2795780.4834420.191*0.5
H1AC0.7159020.3654980.4922300.191*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0331 (4)0.0805 (6)0.0559 (5)0.0000.0168 (3)0.000
N20.0468 (14)0.122 (3)0.0570 (16)0.0000.0246 (12)0.000
O20.0353 (10)0.130 (2)0.0567 (13)0.0000.0184 (9)0.000
C20.0379 (14)0.082 (2)0.0506 (16)0.0000.0144 (12)0.000
C30.0353 (13)0.0627 (16)0.0477 (15)0.0000.0161 (11)0.000
C40.0373 (13)0.0740 (19)0.0472 (15)0.0000.0127 (12)0.000
C70.0428 (14)0.0724 (19)0.0527 (16)0.0000.0179 (12)0.000
C60.0334 (12)0.0580 (15)0.0512 (15)0.0000.0161 (11)0.000
C50.0332 (12)0.0559 (15)0.0530 (15)0.0000.0167 (11)0.000
C80.0491 (16)0.088 (2)0.0462 (16)0.0000.0074 (12)0.000
C90.0368 (14)0.079 (2)0.0622 (18)0.0000.0069 (13)0.000
O10.0410 (11)0.103 (10)0.0458 (12)0.003 (2)0.0122 (9)0.008 (2)
C10.046 (2)0.112 (9)0.055 (2)0.005 (2)0.0070 (17)0.019 (3)
C1A0.093 (5)0.188 (9)0.077 (4)0.053 (5)0.004 (3)0.019 (5)
Geometric parameters (Å, º) top
S1—C91.700 (3)C5—H50.9300
S1—C61.732 (3)C8—C91.354 (5)
N2—C41.139 (4)C8—H80.9300
O2—C21.200 (3)C9—H90.9300
C2—O11.350 (5)O1—C11.459 (5)
C2—C31.482 (4)C1—C1A1.485 (11)
C3—C51.347 (4)C1—H1A0.9700
C3—C41.437 (4)C1—H1B0.9700
C7—C61.372 (4)C1A—H1AA0.9600
C7—C81.407 (4)C1A—H1AB0.9600
C7—H70.9300C1A—H1AC0.9600
C6—C51.431 (4)
C9—S1—C691.57 (14)C9—C8—H8123.6
O2—C2—O1124.3 (3)C7—C8—H8123.6
O2—C2—C3123.9 (3)C8—C9—S1112.4 (2)
O1—C2—C3111.0 (2)C8—C9—H9123.8
C5—C3—C4123.0 (2)S1—C9—H9123.8
C5—C3—C2118.5 (2)C2—O1—C1116.7 (3)
C4—C3—C2118.5 (2)O1—C1—C1A109.5 (8)
N2—C4—C3179.1 (3)O1—C1—H1A109.8
C6—C7—C8112.7 (3)C1A—C1—H1A109.8
C6—C7—H7123.6O1—C1—H1B109.8
C8—C7—H7123.6C1A—C1—H1B109.8
C7—C6—C5123.4 (2)H1A—C1—H1B108.2
C7—C6—S1110.6 (2)C1—C1A—H1AA109.5
C5—C6—S1126.0 (2)C1—C1A—H1AB109.5
C3—C5—C6130.5 (3)H1AA—C1A—H1AB109.5
C3—C5—H5114.7C1—C1A—H1AC109.5
C6—C5—H5114.7H1AA—C1A—H1AC109.5
C9—C8—C7112.8 (3)H1AB—C1A—H1AC109.5
O2—C2—C3—C50.000 (1)C2—C3—C5—C6180.000 (1)
O1—C2—C3—C5170.1 (8)C7—C6—C5—C3180.000 (1)
O2—C2—C3—C4180.000 (1)S1—C6—C5—C30.000 (1)
O1—C2—C3—C49.9 (8)C6—C7—C8—C90.000 (1)
C8—C7—C6—C5180.000 (1)C7—C8—C9—S10.000 (1)
C8—C7—C6—S10.000 (1)C6—S1—C9—C80.000 (1)
C9—S1—C6—C70.000 (1)O2—C2—O1—C15.6 (17)
C9—S1—C6—C5180.0C3—C2—O1—C1175.6 (9)
C4—C3—C5—C60.000 (1)C2—O1—C1—C1A79.5 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O20.932.422.799 (3)104
C7—H7···O2i0.932.553.363 (3)147
C5—H5···O2i0.932.573.425 (3)153
C9—H9···N2ii0.932.603.520 (4)172
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
 

Acknowledgements

The authors are grateful for financial support from the Universidad de los Andes. MAM thanks Professor Leopoldo Suescun from UdelaR (Montevideo, Uruguay) for useful and important discussions.

References

First citationAgilent (2007). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Alamry, K. A., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2315.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, C., Yang, X., Cheng, M., Zhang, F. & Sun, L. (2013). ChemSusChem, 6, 1270–1275.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGololobov, Y. G. & Krylova, T. (1995). Heteroat. Chem. 6, 271–280.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJia, Y., Fang, Y., Zhang, Y., Miras, H. & Song, Y. (2015). Chem. Eur. J. 21, 14862–14870.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKalkhambkar, R. G., Gayathri, D., Gupta, V. K., Kant, R. & Jeong, Y. T. (2012). Acta Cryst. E68, o1482.  CSD CrossRef IUCr Journals Google Scholar
First citationLee, M., Cha, S. B., Yang, S., Woong Park, S., Kim, K., Park, N. & Lee, D. (2009). Bull. Korean Chem. Soc. 30, 2260–2279.  Google Scholar
First citationLiu, L., Song, J., Lu, H., Wang, H. & Bo, Z. (2016). Polym. Chem. 7, 319–329.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, J., Zhang, C., Gong, J., Yang, B., Zhang, H., Wang, W., Wu, Y., Chen, Y. & Chen, H. (2014). J. Chem. Phys. 141, 234705, 1–10.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMiyazaki, E., Okanishi, T., Suzuki, Y., Ishine, N., Mori, H., Takimiya, K. & Harima, Y. (2011). Bull. Chem. Soc. Jpn, 84, 459–465.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWinkler, C., Clay, D., Turrini, N., Lechner, H., Kroutil, W., Davies, S., Debarge, S., O'Neill, P., Steflik, J., Karmilowicz, M., Wong, J. W. & Faber, K. (2014). Adv. Synth. Catal. 356, 1878–1882.  Web of Science CrossRef CAS PubMed Google Scholar
First citationXu, D., Li, Z., Peng, Y. X., Geng, J., Qian, H. F. & Huang, W. (2016). Dyes Pigm. 133, 143–152.  Web of Science CSD CrossRef CAS Google Scholar
First citationYuvaraj, H., Gayathri, D., Kalkhambkar, R. G., Gupta, V. K. & Rajnikant (2011). Acta Cryst. E67, o2135.  Google Scholar
First citationZhang, X., Yang, Z., Chi, Z., Chen, M., Xu, B., Wang, C., Liu, S., Zhang, Y. & Xu, J. (2010). J. Mater. Chem. 20, 292–298.  Web of Science CrossRef CAS Google Scholar
First citationZietz, B., Gabrielsson, E., Johansson, V., El-Zohry, A., Sun, L. & Kloo, L. (2014). Phys. Chem. Chem. Phys. 16, 2251–2255.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds