research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-furan-2-carbaldehyde O-benzoyloxime

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Earth Sciences, Qatar University, PO Box 2713, Doha, Qatar, and bQatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 34110, Doha, Qatar
*Correspondence e-mail: yousef.hijji@qu.edu.qa, hyahia@qf.org.qa

Edited by T. N. Guru Row, Indian Institute of Science, India (Received 14 July 2017; accepted 4 August 2017; online 8 August 2017)

In the title compound, C12H9NO3, the benzoate and furan rings are almost coplanar, making a dihedral angle of 11.68 (9)°. The twist angle between the –COO group and the benzene ring is only 2.79 (16)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming chains along [100]. The mol­ecules stack in a herringbone fashion and inversion-related chains are linked by offset ππ inter­actions [inter­centroid distance = 3.931 (1) Å], forming ribbons propagating along the a-axis direction.

1. Chemical context

Oxime esters have shown potencies for inhibiting lipoprotein-associated phospho­lipase A2 (Lp-PLA2) activity. Their derivatives are used for the prevention and treatment of cardiovascular disease (Jeong et al., 2013[Jeong, T. S., Lee, W. S., Jeong, H. J., Park, Y. D., Han, J. M., Kim, H. C., Moon, O. S. & Won, Y. S. (2013). Google patent.], 2006[Jeong, H. J., Park, Y.-D., Park, H.-Y., Jeong, I. Y., Jeong, T.-S. & Lee, W. S. (2006). Bioorg. Med. Chem. Lett. 16, 5576-5579.]). These compounds are good anti­oxidants and are used in pharmaceutical compositions for their anti-microbial activity (Liu et al., 2008[Liu, X. H., Zhi, L. P., Song, B. A. & Xu, H. L. (2008). Chem. Res. Chin. Univ. 24, 454-458.]; Harini et al., 2012[Harini, S. T., Kumar, H. V., Rangaswamy, J. & Naik, N. (2012). Bioorg. Med. Chem. Lett. 22, 7588-7592.]; Ahluwalia et al., 2017[Ahluwalia, V., Kumar, J., Rana, V. S., Singh, R., Sati, O. P., Walia, S. & Garg, N. (2017). Toxicol. Environ. Chem. 99, 1-9.]). In view of this inter­est, we have synthesized the title oxime ester derivative and report herein on its crystal structure.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. An intra­molecular short contact (C8—H8⋯O2) is present (Table 1[link]), which may prevent the –COO group from tilting, since the twist angle between the –C6/O2/O3 unit and the benzene ring (C7–C12) is only 2.79 (16)°. This also might be the reason why the mol­ecule is almost planar. The dihedral angle between the furan (O1/C1–C4) ring and the benzene ring is 11.68 (9)°. The C6—O2 and C6=O3 distances of 1.352 (2) and 1.195 (2) Å, respectively, are typical values for single and double C-O bonds. This overall geometry is very similar to that observed for E-benzaldehyde O-benzoyl­oxime (Altinbas et al., 2004[Altinbas, O., Dondas, H. A., Arslan, H., Kulcu, N. & Killner, C. (2004). Z. Kristallogr. New Cryst. Struct. 219, 379.]). Within the five-membered furan ring, the inter­atomic O1—C1 and O1—C4 distances of 1.369 (2) and 1.367 (2) Å, respectively, are typical values for O—Csp2 bonds. The short C4—C3 and C1—C2 bond lengths of 1.324 (4) and 1.347 (3) Å, respectively, and the stretched C2—C3 bond distance of 1.408 (2) Å are typical values observed for double C=C and single C—C bonds, respectively. The –C5/N1/O2 group is twisted by 4.40 (13) ° with respect to the furan ring. The N1—O2 distance of 1.444 (1) Å is only slightly longer than reported in other oxime compounds (Wetherington & Moncrief, 1973[Wetherington, J. B. & Moncrief, J. W. (1973). Acta Cryst. B29, 1520-1525.]), whereas the C=N—O angle of 106.73 (11)° is slightly smaller.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2 0.93 (2) 2.384 (13) 2.724 (2) 102 (1)
C5—H5⋯O3i 0.97 (2) 2.312 (16) 3.159 (2) 145 (1)
Symmetry code: (i) x-1, y, z.
[Figure 1]
Figure 1
View of the mol­ecular structure of the title compound, with the atom labelling and 50% probability displacement ellipsoids.

3. Supra­molecular features

In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming chains along the a-axis direction (Table 1[link] and Fig. 2[link]). The mol­ecules stack in a herringbone fashion and inversion-related chains are linked by offset ππ inter­actions [Cg1⋯Cg1i = 3.931 (1) Å, inter­planar distance = 3.574 (1) Å, slippage = 1.64 Å, α = 0.03 (7)°, Cg1 is the centroid of the benzene ring (C7–C12); symmetry code: (i) −x + 1, −y + 2, −z], forming ribbons propagating along the a-axis direction (Fig. 3[link]).

[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound. The C—H⋯O hydrogen bonds, linking mol­ecules to form chains along [100], are shown as dashed lines [see Table 1[link]; only H atom H5 (grey ball) has been included].
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of the title compound. The offset ππ inter­actions are shown as blue double arrows, and only H atom H5 (grey ball) has been included.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the substructure furan-2-carbaldehyde oxime gave 20 hits, while for substructure formaldehyde O-benzoyloxime there were 24 hits. The O—N distances vary from ca 1.38 to 1.45 Å, while the N=C distances vary from ca 1.25 to 1.32 Å. In the title compound, these distances are N1—O2 = 1.444 (1) Å and N1=C5 is 1.270 (2) Å, within the limits observed. In the majority of the formaldehyde O-benzoyloxime structures, the dihedral angle between the plane of the –COO group and the benzene ring is <10 °. In the title compound, this dihedral angle is 2.79 (16)°.

5. Synthesis and crystallization

Synthesis of 2-furan­aldoxime: A mixture of 5.0 g of furfuraldehyde (without further purification), 1.5 equiv. of NH2OH·HCl and 1 mmol of pyridine was stirred for 3 h at rt until the NH2OH·HCl was completely solubilized. The reaction mixture was then quenched in water and the furan­aldoxime precipitated out. This solid was filtered and recrystallized from diethyl ether to give colourless needle-like crystals (yield 4.268 g, 74%; m.p. 349–351 K). FT–IR spectrum showed two peaks at 3166 and 1634 cm−1. Elemental analysis: analysis calculated for C5H5NO2 (111.10 g mol−1): C, 54.05; H, 4.54; N, 12.61; O, 28.80%. Found: C, 53.13; H, 4.45; N, 12.99; O, 29.43%. 1H NMR (DMSO-d6): δ (ppm): 6.64 (dd, J = 3.42Hz, 0.49 Hz, 1H), 7.20 (d, J = 3.42Hz, 1H), 7.52 (s, 1H), 7.76 (s, 1H), 11.80 (s, 1H). 13C NMR (DMSO-d6): δ (ppm) = 145.85, 143.80, 135.92, 116.89, 112.67.

Preparation of the O-benzoyl ester of furan­aldoxime: Benzoyl chloride (5.01 mmol) was added dropwise under stirring to 4.55 mmol of furan­aldoxime. Since the reaction was vigorous and exothermic the mixture was placed in an ice bath for 30 min. The reaction mixture was then quenched in ice–water, and then extracted with EtOAc. The organic layer was separated and washed with 1M NaOH solution to remove the benzoic acid and HCl that had formed as by products. The EtOAc layer was passed through anhydrous Na2SO4 and dried in vacuo to give the title compound as a light-brown solid (0.9806 g). Recrystallization of the title compound from ethanol–EtOAc gave colourless needle-like crystals (yield 50%, m.p. 410–412 K). Elemental analysis: analysis calculated for C12H9NO3 (215.20 g mol−1): C, 66.97; H, 4.22; N, 6.51; O, 22.30%. Found: C, 67.00; H, 4.19; N, 6.40; O, 22.41%. 1H NMR (DMSO-d6): δ (ppm): 6.74–6.75 (dd, J = 3.67Hz,1.96Hz, 1H), 7.18 (d, J = 3.42Hz, 1H), 7.60 (t, J = 8.04 Hz, 2H), 7.73 (t, J = 7.58Hz, 1H), 8.01 (s, 1H), 8.07 (dd, J = 8.56 Hz,1.22 Hz 2H), 8.82 (s, 1H). 13C NMR (DMSO-d6): δ ppm: 163.55, 148.05, 147.65, 145.28, 134.35, 129.77, 129.48, 128.52, 119.14, 113.07.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were located from difference-Fourier maps and freely refined.

Table 2
Experimental details

Crystal data
Chemical formula C12H9NO3
Mr 215.2
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 6.3414 (3), 9.1268 (5), 18.1423 (9)
β (°) 95.634 (2)
V3) 1044.94 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.1
Crystal size (mm) 0.19 × 0.06 × 0.04
 
Data collection
Diffractometer D8 venture
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.87, 0.89
No. of measured, independent and observed [I > 3σ(I)] reflections 19019, 2480, 1245
Rint 0.061
(sin θ/λ)max−1) 0.658
 
Refinement
R[F > 3σ(F)], wR(F), S 0.037, 0.101, 1.05
No. of reflections 2480
No. of parameters 182
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.24, −0.19
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2002 (Burla et al. 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]), JANA2006 (Petricek et al., 2014[Petricek, V., Dusek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]), DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SIR2002 (Burla et al. 2003); program(s) used to refine structure: JANA2006 (Petricek et al., 2014); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999) and Mercury (Macrae et al., 2008); software used to prepare material for publication: JANA2006 (Petricek et al., 2014).

(E)-(Furan-2-ylmethylidene)amino benzoate top
Crystal data top
C12H9NO3F(000) = 448
Mr = 215.2Dx = 1.368 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 19019 reflections
a = 6.3414 (3) Åθ = 2.3–27.9°
b = 9.1268 (5) ŵ = 0.1 mm1
c = 18.1423 (9) ÅT = 293 K
β = 95.634 (2)°Needle, colourless
V = 1044.94 (9) Å30.19 × 0.06 × 0.04 mm
Z = 4
Data collection top
D8 venture
diffractometer
1245 reflections with I > 3σ(I)
Radiation source: X-ray tubeRint = 0.061
ω and π scansθmax = 27.9°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
h = 78
Tmin = 0.87, Tmax = 0.89k = 1212
19019 measured reflectionsl = 2323
2480 independent reflections
Refinement top
Refinement on F2All H-atom parameters refined
R[F > 3σ(F)] = 0.037Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.001936I2)
wR(F) = 0.101(Δ/σ)max = 0.002
S = 1.05Δρmax = 0.24 e Å3
2480 reflectionsΔρmin = 0.19 e Å3
182 parametersExtinction correction: B–C type 1 Gaussian isotropic (Becker & Coppens, 1974)
0 restraintsExtinction coefficient: 8600 (1100)
0 constraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30081 (17)0.35070 (10)0.20660 (6)0.0583 (4)
O20.40886 (16)0.65844 (10)0.04205 (5)0.0509 (4)
O30.76174 (18)0.66965 (13)0.06946 (6)0.0708 (5)
N10.4062 (2)0.55510 (12)0.10223 (6)0.0514 (5)
C10.1492 (3)0.42685 (14)0.16340 (8)0.0476 (5)
C20.0453 (3)0.39050 (16)0.18114 (10)0.0599 (7)
H20.177 (3)0.4294 (17)0.1589 (9)0.071 (5)*
C30.0152 (4)0.28632 (18)0.23844 (10)0.0695 (8)
H30.120 (3)0.2372 (18)0.2617 (9)0.076 (5)*
C40.1916 (4)0.26537 (18)0.25172 (10)0.0682 (8)
H40.279 (3)0.2027 (17)0.2837 (9)0.074 (5)*
C50.2128 (3)0.52772 (15)0.10928 (8)0.0468 (5)
H50.099 (3)0.5716 (15)0.0768 (8)0.060 (4)*
C60.6056 (2)0.70645 (15)0.03182 (8)0.0448 (5)
C70.6002 (2)0.81086 (13)0.03072 (7)0.0402 (5)
C80.4156 (3)0.84781 (16)0.07375 (8)0.0505 (6)
H80.290 (2)0.8040 (15)0.0630 (7)0.058 (4)*
C90.4214 (3)0.94724 (17)0.13070 (10)0.0600 (7)
H90.295 (3)0.9700 (17)0.1605 (9)0.073 (5)*
C100.6096 (3)1.01023 (18)0.14491 (9)0.0596 (7)
H100.617 (3)1.0760 (16)0.1852 (9)0.069 (5)*
C110.7926 (3)0.97388 (18)0.10261 (9)0.0619 (7)
H110.922 (3)1.0175 (17)0.1118 (9)0.072 (5)*
C120.7884 (3)0.87486 (17)0.04569 (9)0.0521 (6)
H120.917 (3)0.8530 (15)0.0176 (9)0.067 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0656 (9)0.0566 (6)0.0511 (6)0.0020 (5)0.0023 (5)0.0048 (5)
O20.0418 (7)0.0557 (6)0.0551 (6)0.0011 (5)0.0037 (5)0.0127 (5)
O30.0408 (8)0.0946 (8)0.0751 (8)0.0062 (6)0.0033 (6)0.0227 (6)
N10.0521 (10)0.0499 (7)0.0518 (8)0.0018 (6)0.0026 (6)0.0090 (6)
C10.0539 (11)0.0431 (7)0.0458 (9)0.0023 (7)0.0056 (7)0.0043 (6)
C20.0589 (13)0.0498 (9)0.0740 (11)0.0015 (8)0.0217 (10)0.0002 (8)
C30.0903 (18)0.0522 (9)0.0718 (12)0.0055 (10)0.0368 (12)0.0006 (9)
C40.1016 (19)0.0539 (10)0.0491 (11)0.0050 (11)0.0081 (10)0.0044 (8)
C50.0443 (11)0.0464 (8)0.0498 (9)0.0024 (7)0.0052 (7)0.0011 (7)
C60.0350 (10)0.0488 (7)0.0506 (9)0.0034 (6)0.0043 (7)0.0060 (7)
C70.0347 (9)0.0416 (7)0.0447 (8)0.0012 (6)0.0061 (6)0.0067 (6)
C80.0385 (11)0.0556 (8)0.0577 (10)0.0016 (7)0.0067 (8)0.0046 (8)
C90.0482 (13)0.0682 (10)0.0627 (11)0.0040 (8)0.0019 (9)0.0134 (8)
C100.0586 (13)0.0624 (10)0.0592 (11)0.0018 (9)0.0134 (9)0.0103 (8)
C110.0516 (13)0.0694 (10)0.0668 (11)0.0138 (9)0.0171 (9)0.0000 (9)
C120.0373 (11)0.0643 (9)0.0544 (10)0.0023 (8)0.0032 (8)0.0035 (8)
Geometric parameters (Å, º) top
O1—C11.3688 (17)C5—H50.970 (15)
O1—C41.367 (2)C6—C71.4795 (19)
O2—N11.4441 (14)C7—C81.383 (2)
O2—C61.3523 (19)C7—C121.379 (2)
O3—C61.1945 (18)C8—H80.927 (16)
N1—C51.270 (2)C8—C91.378 (2)
C1—C21.347 (3)C9—H90.944 (17)
C1—C51.433 (2)C9—C101.372 (3)
C2—H20.957 (17)C10—H100.950 (16)
C2—C31.408 (2)C10—C111.368 (2)
C3—H30.936 (18)C11—H110.943 (17)
C3—C41.324 (4)C11—C121.374 (2)
C4—H40.952 (16)C12—H120.941 (16)
C1—O1—C4105.29 (14)O3—C6—C7125.11 (14)
N1—O2—C6113.27 (10)C6—C7—C8122.99 (13)
O2—N1—C5106.73 (11)C6—C7—C12117.92 (13)
O1—C1—C2110.27 (13)C8—C7—C12119.09 (13)
O1—C1—C5119.30 (14)C7—C8—H8118.1 (8)
C2—C1—C5130.42 (15)C7—C8—C9120.00 (15)
C1—C2—H2126.0 (10)H8—C8—C9121.9 (9)
C1—C2—C3106.37 (18)C8—C9—H9119.4 (10)
H2—C2—C3127.6 (10)C8—C9—C10120.31 (16)
C2—C3—H3127.2 (10)H9—C9—C10120.2 (10)
C2—C3—C4107.0 (2)C9—C10—H10121.1 (10)
H3—C3—C4125.7 (10)C9—C10—C11119.92 (16)
O1—C4—C3111.09 (16)H10—C10—C11118.9 (10)
O1—C4—H4114.1 (11)C10—C11—H11120.3 (9)
C3—C4—H4134.8 (11)C10—C11—C12120.21 (17)
N1—C5—C1122.35 (14)H11—C11—C12119.5 (10)
N1—C5—H5121.6 (9)C7—C12—C11120.48 (15)
C1—C5—H5116.0 (9)C7—C12—H12121.7 (10)
O2—C6—O3123.68 (13)C11—C12—H12117.8 (10)
O2—C6—C7111.21 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O20.93 (2)2.384 (13)2.724 (2)102 (1)
C5—H5···O3i0.97 (2)2.312 (16)3.159 (2)145 (1)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We are grateful to Mr Ahmed Abdelsalam Ali Easa of the Central Laboratory Unit, Qatar University, for the elemental analysis, and to Mr Ziad Sarah from the American University of Sharjah for measuring the NMR data.

Funding information

Funding for this research was provided by: Qatar National Research Fund (award No. NPRP-7-495-1-094).

References

First citationAhluwalia, V., Kumar, J., Rana, V. S., Singh, R., Sati, O. P., Walia, S. & Garg, N. (2017). Toxicol. Environ. Chem. 99, 1–9.  Web of Science CrossRef CAS Google Scholar
First citationAltinbas, O., Dondas, H. A., Arslan, H., Kulcu, N. & Killner, C. (2004). Z. Kristallogr. New Cryst. Struct. 219, 379.  Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarini, S. T., Kumar, H. V., Rangaswamy, J. & Naik, N. (2012). Bioorg. Med. Chem. Lett. 22, 7588–7592.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJeong, T. S., Lee, W. S., Jeong, H. J., Park, Y. D., Han, J. M., Kim, H. C., Moon, O. S. & Won, Y. S. (2013). Google patent.  Google Scholar
First citationJeong, H. J., Park, Y.-D., Park, H.-Y., Jeong, I. Y., Jeong, T.-S. & Lee, W. S. (2006). Bioorg. Med. Chem. Lett. 16, 5576–5579.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, X. H., Zhi, L. P., Song, B. A. & Xu, H. L. (2008). Chem. Res. Chin. Univ. 24, 454–458.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPetricek, V., Dusek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  CAS Google Scholar
First citationWetherington, J. B. & Moncrief, J. W. (1973). Acta Cryst. B29, 1520–1525.  CSD CrossRef IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds