research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N-[2-(cyclo­hexyl­sulfan­yl)eth­yl]quinolinic acid imide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry (BK21 plus) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: mychoi@gnu.ac.kr, thkim@gnu.ac.kr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 13 June 2017; accepted 22 August 2017; online 25 August 2017)

The title compound, C15H18N2O2S {systematic name: 6-[2-(cyclo­hexyl­sulfan­yl)eth­yl]-5H-pyrrolo­[3,4-b]pyridine-5,7(6H)-dione}, was obtained from the reaction of pyridine-2,3-di­carb­oxy­lic anhydride (synonym: quinolinic anhydride) with 2-(cyclo­hexyl­sulfan­yl)ethyl­amine. The dihedral angle between the mean plane of the cyclo­hexyl ring and the quinolinic acid imide ring is 25.43 (11)°. In the crystal, each mol­ecule forms two C—H⋯O hydrogen bonds and one weak C—O⋯π [O⋯ring centroid = 3.255 (2) Å] inter­action with neighbouring mol­ecules to generate a ladder structure along the b-axis direction. The ladders are linked by weak C—O⋯π [O⋯ring centroid = 3.330 (2) Å] inter­actions, resulting in sheets extending parallel to the ab plane. The mol­ecular structure is broadly consistent with theoretical calculations performed by density functional theory (DFT).

1. Chemical context

Quinolinic anhydrides have been used extensively as versatile inter­mediates in the synthesis of various heterocyclic systems, such as aphthyridines, nicotinamides and isotonic derivatives. Recently, they have been exploited in anti­viral, dementia, anti-allergy and anti­tumor targets (Metobo et al., 2013[Metobo, S. E., Jabri, S. Y., Aktoudianakis, E., Evans, J., Jin, H. & Kim, C. U. (2013). Tetrahedron Lett. 54, 6782-6784.]). In addition, it is expected that various metal complexes may be formed because they are composed of N/S-donor atoms. In particular, our group reported copper(I) coordination polymers with N/S-donor-atom ligands, which showed their various luminescence and reversible/irreversible structural transformations (Jeon et al., 2014[Jeon, Y., Cheon, S., Cho, S., Lee, K. Y., Kim, T. H. & Kim, J. (2014). Cryst. Growth Des. 14, 2105-2109.]; Cho et al., 2015[Cho, S., Jeon, Y., Lee, S., Kim, J. & Kim, T. H. (2015). Chem. Eur. J. 21, 1439-1443.]). As part of our ongoing studies in this area, we designed and synthesized a new N/S-donor ligand, namely N-[2-(cyclo­hexyl­sulfan­yl)ethyl]quinolinic acid imide, which was prepared from the reaction of quinolinic anhydride with 2-(cyclo­hexyl­sulfan­yl)ethyl­amine. Herein, we report its crystal structure.

[Scheme 1]

2. Structural commentary

The crystal structure of the title compound is shown in Fig. 1[link]. The cyclo­hexyl ring adopts a chair conformation, with the exocyclic C—S bond in an equatorial orientation; the dihedral angle between the mean plane (r.m.s. deviation = 0.2317 Å) of the cyclo­hexyl ring and the quinolinic acid imide ring is 25.43 (11)°. All bond lengths and angles are normal and comparable to those observed in similar crystal structures (Garduño-Beltrán et al., 2009[Garduño-Beltrán, O., Román-Bravo, P., Medrano, F. & Tlahuext, H. (2009). Acta Cryst. E65, o2581.]; Inoue et al., 2009[Inoue, S., Shiota, H., Fukumoto, Y. & Chatani, N. (2009). J. Am. Chem. Soc. 131, 6898-6899.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are linked by C2—H2⋯O1i and C3—H3⋯O1i hydrogen bonds [H⋯O = 2.50 and 2.55 Å, respectively; symmetry code: (i) x, y + 1, z; Table 1[link]], and weak C6—O1⋯Cg1ii (Cg1 is the centroid of the N1/C1–C5 ring) inter­actions [O⋯π = 3.255 (2) Å; symmetry code: (ii) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z], forming a one-dimensional ladder structure along the b axis. The ladders are packed in an ABAB pattern along the c axis (yellow dashed lines in Fig. 2[link]). In addition, the ladders are linked by C7—O2⋯Cg1iii inter­actions [O⋯π = 3.330 (2) Å; symmetry code: (iii) −1 + x, y, z], resulting in the formation of a two-dimensional network structure lying parallel to the ab plane (red dashed lines in Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.50 3.119 (3) 123
C3—H3⋯O1i 0.95 2.55 3.129 (3) 119
Symmetry code: (i) x, y+1, z.
[Figure 2]
Figure 2
The crystal packing of the title compound, indicating the C—H⋯O hydrogen bonds and C—O⋯π inter­actions (yellow dashed lines) [symmetry codes: (i) x, y + 1, z; (ii) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z], which results in a one-dimensional ladder structure along the b axis.
[Figure 3]
Figure 3
The packing diagram, showing the two-dimensional network structure formed by C—O⋯π inter­actions (red dashed lines) [symmetry code: (iii) −1 + x, y, z]. H atoms and cyclo­hexa­nesulfanyl groups not involved in inter­molecular inter­actions have been omitted for clarity.

4. Theoretical calculations

To support the experimental data based on the diffraction study, computational calculations on the N-[2-(cyclo­hexyl­sulfan­yl)eth­yl]quinolinic acid imide mol­ecule were performed using the GAUSSIAN09 software package (Frisch et al., 2009[Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. https://www.gaussian.com.]). Full geometry optimizations were calculated at the DFT level of theory using a basis set of 6-311++G(d,p). The optimized parameters, such as bond lengths and angles, are in generally good agreement (the largest bond-length deviation is less than 0.03 Å) with the experimental crystallographic data (Table 2[link]). The calculated and experimental torsion angles for N2—C8—C9—S1 (C8—C9—S1—C10) are 53.64 (65.80) and 64.2 (3)° [97.4 (2)°], respectively. The calculated and experimental dihedral angle between the ring systems were 25.34 and 25.43 (11)°, respectively. However, several relatively large differences between the experimental and theoretical data (see Table 2[link]) may be due to the packing effects induced by the inter­molecular inter­actions in the crystal.

Table 2
Experimental and calculated bond lengths (Å)

Bond X-ray B3LYP (6–311++G(d,p)) Difference
S1—C9 1.813 (3) 1.830 −0.017
S1—C10 1.827 (3) 1.853 −0.026
O1—C6 1.212 (3) 1.205 0.007
O2—C7 1.209 (3) 1.210 0.001
N1—C5 1.325 (3) 1.324 0.001
N1—C1 1.342 (4) 1.342 0.000
N2—C6 1.394 (3) 1.407 −0.013
N2—C7 1.395 (4) 1.399 −0.004
N2—C8 1.460 (3) 1.456 0.004
C1—C2 1.382 (4) 1.400 −0.018
C2—C3 1.381 (4) 1.396 −0.015
C3—C4 1.380 (4) 1.385 −0.005
C4—C5 1.376 (4) 1.392 −0.016
C4—C7 1.490 (4) 1.492 −0.002
C5—C6 1.497 (4) 1.508 −0.011
C8—C9 1.522 (4) 1.536 −0.014
C10—C11 1.516 (4) 1.534 −0.018
C10—C15 1.530 (4) 1.536 −0.006
C11—C12 1.523 (4) 1.539 −0.016
C12—C13 1.523 (4) 1.534 −0.011
C13—C14 1.514 (4) 1.535 −0.021
C14—C15 1.524 (5) 1.537 −0.013

5. Synthesis and crystallization

A mixture of quinolinic anhydride (0.67 g, 5.0 mmol) and 2-(cyclo­hexyl­sulfan­yl)ethyl­amine (0.83 g, 5.3 mmol) in toluene (15 ml) was heated at 433 K with stirring for 8 h. The crude product was extracted with di­chloro­methane. The di­chloro­methane layer was dried with anhydrous Na2SO4 and evaporated to give a crude solid. The reaction mixture was then concentrated and purified by chromatography on silica gel (MeCOOEt/n-C6H14 = 30/70 v/v, RF = 0.28) (Kang et al., 2015[Kang, G., Jeon, Y., Lee, K. Y., Kim, J. & Kim, T. H. (2015). Cryst. Growth Des. 15, 5183-5187.]). Colourless plates were obtained by slow evaporation of a hexane solution of the title compound. 1H NMR (300 MHz, CDCl3): δ 7.40 (dd, H, Py), 8.02 (t, H, Py), 7.52 (dd, H, Py), 3.74 (t, 2H, NCH2), 2.64 (t, 2H, CH2S), 2.56 (d, H, SCH), 1.82–1.04 [m, 10H, (CH2)5]; 13C NMR (75.4 MHz, CDCl3): δ 166.84, 166.47, 155.60, 144.65, 139.31, 125.76, 116.76, 42.95, 37.89, 33.36, 27.71, 25.91, 25.68

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H groups, C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for CH2 groups, and C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C) for Csp3—H groups.

Table 3
Experimental details

Crystal data
Chemical formula C15H18N2O2S
Mr 290.37
Crystal system, space group Orthorhombic, P212121
Temperature (K) 173
a, b, c (Å) 5.5322 (2), 7.8707 (3), 32.9092 (14)
V3) 1432.94 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.28 × 0.10 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.690, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 11035, 2536, 2302
Rint 0.046
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.072, 1.04
No. of reflections 2536
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.19
Absolute structure Flack x determined using 839 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.05 (5)
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

6-[2-(Cyclohexylsulfanyl)ethyl]-5H-pyrrolo[3,4-b]pyridine-5,7(6H)-dione top
Crystal data top
C15H18N2O2SDx = 1.346 Mg m3
Mr = 290.37Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2024 reflections
a = 5.5322 (2) Åθ = 2.5–27.2°
b = 7.8707 (3) ŵ = 0.23 mm1
c = 32.9092 (14) ÅT = 173 K
V = 1432.94 (10) Å3Plate, colourless
Z = 40.28 × 0.10 × 0.09 mm
F(000) = 616
Data collection top
Bruker APEXII CCD
diffractometer
2302 reflections with I > 2σ(I)
φ and ω scansRint = 0.046
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 25.0°, θmin = 1.2°
Tmin = 0.690, Tmax = 0.746h = 66
11035 measured reflectionsk = 89
2536 independent reflectionsl = 3939
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0215P)2 + 0.3497P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.20 e Å3
2536 reflectionsΔρmin = 0.19 e Å3
181 parametersAbsolute structure: Flack x determined using 839 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.05 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53243 (13)0.93377 (11)0.09181 (3)0.0414 (2)
O10.5825 (3)0.9636 (2)0.20137 (6)0.0362 (5)
O20.1331 (3)1.3885 (3)0.14389 (6)0.0360 (5)
N10.8186 (4)1.2919 (3)0.22791 (7)0.0292 (6)
N20.3211 (4)1.1461 (3)0.16766 (7)0.0268 (5)
C10.8794 (5)1.4552 (4)0.23364 (8)0.0306 (7)
H11.01791.47790.24980.037*
C20.7561 (5)1.5929 (4)0.21783 (8)0.0320 (7)
H20.81111.70500.22330.038*
C30.5532 (5)1.5678 (3)0.19413 (8)0.0301 (6)
H30.46391.65970.18290.036*
C40.4884 (5)1.4006 (3)0.18778 (7)0.0235 (6)
C50.6241 (5)1.2727 (3)0.20487 (8)0.0234 (6)
C60.5174 (5)1.1058 (3)0.19241 (8)0.0262 (6)
C70.2900 (5)1.3212 (4)0.16376 (8)0.0281 (7)
C80.1681 (5)1.0227 (4)0.14678 (9)0.0335 (7)
H8A0.00351.05590.14990.040*
H8B0.18950.90950.15940.040*
C90.2300 (5)1.0119 (4)0.10179 (9)0.0369 (8)
H9A0.21301.12630.08960.044*
H9B0.11200.93610.08830.044*
C100.4745 (5)0.7095 (3)0.08142 (8)0.0278 (6)
H100.35970.66450.10230.033*
C110.3645 (5)0.6857 (4)0.03962 (8)0.0318 (7)
H11A0.47060.73950.01910.038*
H11B0.20570.74350.03870.038*
C120.3313 (6)0.4988 (4)0.02908 (10)0.0448 (9)
H12A0.21170.44760.04780.054*
H12B0.26760.48870.00110.054*
C130.5693 (6)0.4026 (4)0.03229 (10)0.0463 (8)
H13A0.54080.28030.02710.056*
H13B0.68310.44500.01140.056*
C140.6795 (6)0.4253 (4)0.07406 (10)0.0438 (8)
H14A0.83820.36720.07500.053*
H14B0.57340.37160.09460.053*
C150.7133 (5)0.6123 (4)0.08458 (9)0.0388 (8)
H15A0.83290.66330.06580.047*
H15B0.77730.62230.11260.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0268 (4)0.0445 (5)0.0529 (5)0.0066 (4)0.0022 (3)0.0203 (4)
O10.0412 (12)0.0199 (11)0.0474 (12)0.0036 (10)0.0046 (10)0.0019 (10)
O20.0354 (11)0.0345 (12)0.0380 (11)0.0093 (10)0.0109 (9)0.0026 (10)
N10.0318 (13)0.0227 (14)0.0332 (13)0.0016 (11)0.0039 (11)0.0014 (11)
N20.0258 (12)0.0212 (13)0.0333 (13)0.0014 (11)0.0006 (11)0.0047 (10)
C10.0334 (15)0.0274 (17)0.0310 (16)0.0000 (14)0.0036 (12)0.0047 (13)
C20.0432 (17)0.0200 (17)0.0329 (16)0.0009 (14)0.0028 (13)0.0022 (13)
C30.0408 (15)0.0212 (15)0.0282 (14)0.0072 (14)0.0074 (13)0.0001 (12)
C40.0302 (14)0.0186 (14)0.0217 (13)0.0009 (13)0.0013 (11)0.0016 (11)
C50.0263 (13)0.0186 (15)0.0252 (14)0.0002 (12)0.0010 (12)0.0010 (12)
C60.0275 (14)0.0215 (15)0.0297 (14)0.0013 (13)0.0031 (12)0.0012 (12)
C70.0304 (15)0.0289 (17)0.0251 (14)0.0027 (14)0.0033 (12)0.0035 (13)
C80.0253 (14)0.0272 (17)0.0478 (18)0.0047 (13)0.0013 (14)0.0099 (14)
C90.0290 (14)0.0363 (18)0.0455 (18)0.0024 (13)0.0079 (13)0.0159 (14)
C100.0245 (14)0.0323 (16)0.0265 (14)0.0028 (13)0.0030 (12)0.0022 (12)
C110.0361 (16)0.0329 (18)0.0265 (15)0.0029 (14)0.0032 (13)0.0027 (13)
C120.0435 (19)0.039 (2)0.052 (2)0.0007 (16)0.0084 (16)0.0145 (16)
C130.0491 (19)0.0342 (19)0.056 (2)0.0052 (17)0.0069 (16)0.0118 (16)
C140.0379 (17)0.042 (2)0.051 (2)0.0103 (18)0.0047 (15)0.0076 (17)
C150.0307 (15)0.049 (2)0.0372 (17)0.0036 (15)0.0018 (13)0.0023 (16)
Geometric parameters (Å, º) top
S1—C91.813 (3)C8—H8B0.9900
S1—C101.827 (3)C9—H9A0.9900
O1—C61.212 (3)C9—H9B0.9900
O2—C71.209 (3)C10—C111.516 (4)
N1—C51.325 (3)C10—C151.530 (4)
N1—C11.342 (4)C10—H101.0000
N2—C61.394 (3)C11—C121.523 (4)
N2—C71.395 (4)C11—H11A0.9900
N2—C81.460 (3)C11—H11B0.9900
C1—C21.382 (4)C12—C131.523 (4)
C1—H10.9500C12—H12A0.9900
C2—C31.381 (4)C12—H12B0.9900
C2—H20.9500C13—C141.514 (4)
C3—C41.380 (4)C13—H13A0.9900
C3—H30.9500C13—H13B0.9900
C4—C51.376 (4)C14—C151.524 (5)
C4—C71.490 (4)C14—H14A0.9900
C5—C61.497 (4)C14—H14B0.9900
C8—C91.522 (4)C15—H15A0.9900
C8—H8A0.9900C15—H15B0.9900
C9—S1—C10101.54 (14)H9A—C9—H9B107.7
C5—N1—C1113.2 (2)C11—C10—C15110.3 (2)
C6—N2—C7112.0 (2)C11—C10—S1111.1 (2)
C6—N2—C8125.1 (2)C15—C10—S1108.6 (2)
C7—N2—C8122.8 (2)C11—C10—H10109.0
N1—C1—C2125.0 (3)C15—C10—H10109.0
N1—C1—H1117.5S1—C10—H10109.0
C2—C1—H1117.5C10—C11—C12112.0 (2)
C3—C2—C1120.1 (3)C10—C11—H11A109.2
C3—C2—H2120.0C12—C11—H11A109.2
C1—C2—H2120.0C10—C11—H11B109.2
C4—C3—C2115.7 (3)C12—C11—H11B109.2
C4—C3—H3122.2H11A—C11—H11B107.9
C2—C3—H3122.2C13—C12—C11111.1 (3)
C5—C4—C3119.6 (2)C13—C12—H12A109.4
C5—C4—C7108.2 (2)C11—C12—H12A109.4
C3—C4—C7132.2 (2)C13—C12—H12B109.4
N1—C5—C4126.4 (2)C11—C12—H12B109.4
N1—C5—C6125.3 (2)H12A—C12—H12B108.0
C4—C5—C6108.3 (2)C14—C13—C12110.6 (3)
O1—C6—N2125.7 (2)C14—C13—H13A109.5
O1—C6—C5128.7 (2)C12—C13—H13A109.5
N2—C6—C5105.5 (2)C14—C13—H13B109.5
O2—C7—N2124.8 (3)C12—C13—H13B109.5
O2—C7—C4129.2 (3)H13A—C13—H13B108.1
N2—C7—C4106.0 (2)C13—C14—C15111.7 (3)
N2—C8—C9111.4 (2)C13—C14—H14A109.3
N2—C8—H8A109.4C15—C14—H14A109.3
C9—C8—H8A109.4C13—C14—H14B109.3
N2—C8—H8B109.4C15—C14—H14B109.3
C9—C8—H8B109.4H14A—C14—H14B107.9
H8A—C8—H8B108.0C14—C15—C10111.2 (3)
C8—C9—S1113.7 (2)C14—C15—H15A109.4
C8—C9—H9A108.8C10—C15—H15A109.4
S1—C9—H9A108.8C14—C15—H15B109.4
C8—C9—H9B108.8C10—C15—H15B109.4
S1—C9—H9B108.8H15A—C15—H15B108.0
C5—N1—C1—C20.3 (4)C6—N2—C7—C41.1 (3)
N1—C1—C2—C30.1 (4)C8—N2—C7—C4177.0 (2)
C1—C2—C3—C40.3 (4)C5—C4—C7—O2179.3 (3)
C2—C3—C4—C50.2 (4)C3—C4—C7—O20.8 (5)
C2—C3—C4—C7178.2 (3)C5—C4—C7—N20.6 (3)
C1—N1—C5—C40.4 (4)C3—C4—C7—N2177.9 (3)
C1—N1—C5—C6178.4 (3)C6—N2—C8—C9103.0 (3)
C3—C4—C5—N10.2 (4)C7—N2—C8—C974.9 (3)
C7—C4—C5—N1179.0 (2)N2—C8—C9—S164.2 (3)
C3—C4—C5—C6178.8 (2)C10—S1—C9—C897.4 (2)
C7—C4—C5—C60.0 (3)C9—S1—C10—C1175.0 (2)
C7—N2—C6—O1178.8 (3)C9—S1—C10—C15163.5 (2)
C8—N2—C6—O13.1 (4)C15—C10—C11—C1255.5 (3)
C7—N2—C6—C51.1 (3)S1—C10—C11—C12175.9 (2)
C8—N2—C6—C5176.9 (2)C10—C11—C12—C1356.0 (4)
N1—C5—C6—O11.7 (4)C11—C12—C13—C1455.3 (4)
C4—C5—C6—O1179.3 (3)C12—C13—C14—C1555.8 (4)
N1—C5—C6—N2178.4 (2)C13—C14—C15—C1056.0 (3)
C4—C5—C6—N20.6 (3)C11—C10—C15—C1455.2 (3)
C6—N2—C7—O2179.9 (3)S1—C10—C15—C14177.1 (2)
C8—N2—C7—O21.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.503.119 (3)123
C3—H3···O1i0.952.553.129 (3)119
Symmetry code: (i) x, y+1, z.
Experimental and calculated bond lengths (Å). top
BondX-rayB3LYP (6-311++G(d,p))difference
S1—C91.813 (3)1.830–0.017
S1—C101.827 (3)1.853–0.026
O1—C61.212 (3)1.2050.007
O2—C71.209 (3)1.2100.001
N1—C51.325 (3)1.3240.001
N1—C11.342 (4)1.3420.000
N2—C61.394 (3)1.407–0.013
N2—C71.395 (4)1.399–0.004
N2—C81.460 (3)1.4560.004
C1—C21.382 (4)1.400–0.018
C2—C31.381 (4)1.396–0.015
C3—C41.380 (4)1.385–0.005
C4—C51.376 (4)1.392–0.016
C4—C71.490 (4)1.492–0.002
C5—C61.497 (4)1.508–0.011
C8—C91.522 (4)1.536–0.014
C10—C111.516 (4)1.534–0.018
C10—C151.530 (4)1.536–0.006
C11—C121.523 (4)1.539–0.016
C12—C131.523 (4)1.534–0.011
C13—C141.514 (4)1.535–0.021
C14—C151.524 (5)1.537–0.013
 

Acknowledgements

The main calculations were carried out by the Supercomputing Center/Korea Institute of Science and Technology Information (KISTI) (KSC-2017-C1-0002).

Funding information

Funding for this research was provided by: National Research Foundation of Korea (Basic Science Research Program through the National Research Foundation of Korea (NRF); grant No. 2015R1D1A3A01020410; grant No. 2016R1D1A1B03934376) and by the Korea government (MSIP) (2017M2B2A9A02049940).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCho, S., Jeon, Y., Lee, S., Kim, J. & Kim, T. H. (2015). Chem. Eur. J. 21, 1439–1443.  CSD CrossRef CAS PubMed Google Scholar
First citationFrisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. https://www.gaussian.comGoogle Scholar
First citationGarduño-Beltrán, O., Román-Bravo, P., Medrano, F. & Tlahuext, H. (2009). Acta Cryst. E65, o2581.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationInoue, S., Shiota, H., Fukumoto, Y. & Chatani, N. (2009). J. Am. Chem. Soc. 131, 6898–6899.  CSD CrossRef PubMed CAS Google Scholar
First citationJeon, Y., Cheon, S., Cho, S., Lee, K. Y., Kim, T. H. & Kim, J. (2014). Cryst. Growth Des. 14, 2105–2109.  CrossRef CAS Google Scholar
First citationKang, G., Jeon, Y., Lee, K. Y., Kim, J. & Kim, T. H. (2015). Cryst. Growth Des. 15, 5183–5187.  Web of Science CSD CrossRef CAS Google Scholar
First citationMetobo, S. E., Jabri, S. Y., Aktoudianakis, E., Evans, J., Jin, H. & Kim, C. U. (2013). Tetrahedron Lett. 54, 6782–6784.  CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds