research communications
N-[2-(cyclohexylsulfanyl)ethyl]quinolinic acid imide
ofaDepartment of Chemistry (BK21 plus) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: mychoi@gnu.ac.kr, thkim@gnu.ac.kr
The title compound, C15H18N2O2S {systematic name: 6-[2-(cyclohexylsulfanyl)ethyl]-5H-pyrrolo[3,4-b]pyridine-5,7(6H)-dione}, was obtained from the reaction of pyridine-2,3-dicarboxylic anhydride (synonym: quinolinic anhydride) with 2-(cyclohexylsulfanyl)ethylamine. The dihedral angle between the mean plane of the cyclohexyl ring and the quinolinic acid imide ring is 25.43 (11)°. In the crystal, each molecule forms two C—H⋯O hydrogen bonds and one weak C—O⋯π [O⋯ring centroid = 3.255 (2) Å] interaction with neighbouring molecules to generate a ladder structure along the b-axis direction. The ladders are linked by weak C—O⋯π [O⋯ring centroid = 3.330 (2) Å] interactions, resulting in sheets extending parallel to the ab plane. The molecular structure is broadly consistent with theoretical calculations performed by density functional theory (DFT).
CCDC reference: 1570205
1. Chemical context
Quinolinic et al., 2013). In addition, it is expected that various metal complexes may be formed because they are composed of N/S-donor atoms. In particular, our group reported copper(I) coordination polymers with N/S-donor-atom ligands, which showed their various luminescence and reversible/irreversible structural transformations (Jeon et al., 2014; Cho et al., 2015). As part of our ongoing studies in this area, we designed and synthesized a new N/S-donor ligand, namely N-[2-(cyclohexylsulfanyl)ethyl]quinolinic acid imide, which was prepared from the reaction of quinolinic anhydride with 2-(cyclohexylsulfanyl)ethylamine. Herein, we report its crystal structure.
have been used extensively as versatile intermediates in the synthesis of various heterocyclic systems, such as aphthyridines, nicotinamides and isotonic derivatives. Recently, they have been exploited in antiviral, dementia, anti-allergy and antitumor targets (Metobo2. Structural commentary
The . The cyclohexyl ring adopts a chair conformation, with the exocyclic C—S bond in an equatorial orientation; the dihedral angle between the mean plane (r.m.s. deviation = 0.2317 Å) of the cyclohexyl ring and the quinolinic acid imide ring is 25.43 (11)°. All bond lengths and angles are normal and comparable to those observed in similar crystal structures (Garduño-Beltrán et al., 2009; Inoue et al., 2009).
of the title compound is shown in Fig. 13. Supramolecular features
In the crystal, molecules are linked by C2—H2⋯O1i and C3—H3⋯O1i hydrogen bonds [H⋯O = 2.50 and 2.55 Å, respectively; symmetry code: (i) x, y + 1, z; Table 1], and weak C6—O1⋯Cg1ii (Cg1 is the centroid of the N1/C1–C5 ring) interactions [O⋯π = 3.255 (2) Å; symmetry code: (ii) 1 − x, − + y, − z], forming a one-dimensional ladder structure along the b axis. The ladders are packed in an ABAB pattern along the c axis (yellow dashed lines in Fig. 2). In addition, the ladders are linked by C7—O2⋯Cg1iii interactions [O⋯π = 3.330 (2) Å; symmetry code: (iii) −1 + x, y, z], resulting in the formation of a two-dimensional network structure lying parallel to the ab plane (red dashed lines in Fig. 3).
4. Theoretical calculations
To support the experimental data based on the diffraction study, computational calculations on the N-[2-(cyclohexylsulfanyl)ethyl]quinolinic acid imide molecule were performed using the GAUSSIAN09 software package (Frisch et al., 2009). Full geometry optimizations were calculated at the DFT level of theory using a basis set of 6-311++G(d,p). The optimized parameters, such as bond lengths and angles, are in generally good agreement (the largest bond-length deviation is less than 0.03 Å) with the experimental crystallographic data (Table 2). The calculated and experimental torsion angles for N2—C8—C9—S1 (C8—C9—S1—C10) are 53.64 (65.80) and 64.2 (3)° [97.4 (2)°], respectively. The calculated and experimental dihedral angle between the ring systems were 25.34 and 25.43 (11)°, respectively. However, several relatively large differences between the experimental and theoretical data (see Table 2) may be due to the packing effects induced by the intermolecular interactions in the crystal.
|
5. Synthesis and crystallization
A mixture of quinolinic anhydride (0.67 g, 5.0 mmol) and 2-(cyclohexylsulfanyl)ethylamine (0.83 g, 5.3 mmol) in toluene (15 ml) was heated at 433 K with stirring for 8 h. The crude product was extracted with dichloromethane. The dichloromethane layer was dried with anhydrous Na2SO4 and evaporated to give a crude solid. The reaction mixture was then concentrated and purified by on silica gel (MeCOOEt/n-C6H14 = 30/70 v/v, RF = 0.28) (Kang et al., 2015). Colourless plates were obtained by slow evaporation of a hexane solution of the title compound. 1H NMR (300 MHz, CDCl3): δ 7.40 (dd, H, Py), 8.02 (t, H, Py), 7.52 (dd, H, Py), 3.74 (t, 2H, NCH2), 2.64 (t, 2H, CH2S), 2.56 (d, H, SCH), 1.82–1.04 [m, 10H, (CH2)5]; 13C NMR (75.4 MHz, CDCl3): δ 166.84, 166.47, 155.60, 144.65, 139.31, 125.76, 116.76, 42.95, 37.89, 33.36, 27.71, 25.91, 25.68
6. Refinement
Crystal data, data collection and structure . All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H groups, C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for CH2 groups, and C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C) for Csp3—H groups.
details are summarized in Table 3Supporting information
CCDC reference: 1570205
https://doi.org/10.1107/S2056989017012142/hb7685sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017012142/hb7685Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).C15H18N2O2S | Dx = 1.346 Mg m−3 |
Mr = 290.37 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 2024 reflections |
a = 5.5322 (2) Å | θ = 2.5–27.2° |
b = 7.8707 (3) Å | µ = 0.23 mm−1 |
c = 32.9092 (14) Å | T = 173 K |
V = 1432.94 (10) Å3 | Plate, colourless |
Z = 4 | 0.28 × 0.10 × 0.09 mm |
F(000) = 616 |
Bruker APEXII CCD diffractometer | 2302 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.046 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 25.0°, θmin = 1.2° |
Tmin = 0.690, Tmax = 0.746 | h = −6→6 |
11035 measured reflections | k = −8→9 |
2536 independent reflections | l = −39→39 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.034 | w = 1/[σ2(Fo2) + (0.0215P)2 + 0.3497P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.072 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.20 e Å−3 |
2536 reflections | Δρmin = −0.19 e Å−3 |
181 parameters | Absolute structure: Flack x determined using 839 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: 0.05 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.53243 (13) | 0.93377 (11) | 0.09181 (3) | 0.0414 (2) | |
O1 | 0.5825 (3) | 0.9636 (2) | 0.20137 (6) | 0.0362 (5) | |
O2 | 0.1331 (3) | 1.3885 (3) | 0.14389 (6) | 0.0360 (5) | |
N1 | 0.8186 (4) | 1.2919 (3) | 0.22791 (7) | 0.0292 (6) | |
N2 | 0.3211 (4) | 1.1461 (3) | 0.16766 (7) | 0.0268 (5) | |
C1 | 0.8794 (5) | 1.4552 (4) | 0.23364 (8) | 0.0306 (7) | |
H1 | 1.0179 | 1.4779 | 0.2498 | 0.037* | |
C2 | 0.7561 (5) | 1.5929 (4) | 0.21783 (8) | 0.0320 (7) | |
H2 | 0.8111 | 1.7050 | 0.2233 | 0.038* | |
C3 | 0.5532 (5) | 1.5678 (3) | 0.19413 (8) | 0.0301 (6) | |
H3 | 0.4639 | 1.6597 | 0.1829 | 0.036* | |
C4 | 0.4884 (5) | 1.4006 (3) | 0.18778 (7) | 0.0235 (6) | |
C5 | 0.6241 (5) | 1.2727 (3) | 0.20487 (8) | 0.0234 (6) | |
C6 | 0.5174 (5) | 1.1058 (3) | 0.19241 (8) | 0.0262 (6) | |
C7 | 0.2900 (5) | 1.3212 (4) | 0.16376 (8) | 0.0281 (7) | |
C8 | 0.1681 (5) | 1.0227 (4) | 0.14678 (9) | 0.0335 (7) | |
H8A | −0.0035 | 1.0559 | 0.1499 | 0.040* | |
H8B | 0.1895 | 0.9095 | 0.1594 | 0.040* | |
C9 | 0.2300 (5) | 1.0119 (4) | 0.10179 (9) | 0.0369 (8) | |
H9A | 0.2130 | 1.1263 | 0.0896 | 0.044* | |
H9B | 0.1120 | 0.9361 | 0.0883 | 0.044* | |
C10 | 0.4745 (5) | 0.7095 (3) | 0.08142 (8) | 0.0278 (6) | |
H10 | 0.3597 | 0.6645 | 0.1023 | 0.033* | |
C11 | 0.3645 (5) | 0.6857 (4) | 0.03962 (8) | 0.0318 (7) | |
H11A | 0.4706 | 0.7395 | 0.0191 | 0.038* | |
H11B | 0.2057 | 0.7435 | 0.0387 | 0.038* | |
C12 | 0.3313 (6) | 0.4988 (4) | 0.02908 (10) | 0.0448 (9) | |
H12A | 0.2117 | 0.4476 | 0.0478 | 0.054* | |
H12B | 0.2676 | 0.4887 | 0.0011 | 0.054* | |
C13 | 0.5693 (6) | 0.4026 (4) | 0.03229 (10) | 0.0463 (8) | |
H13A | 0.5408 | 0.2803 | 0.0271 | 0.056* | |
H13B | 0.6831 | 0.4450 | 0.0114 | 0.056* | |
C14 | 0.6795 (6) | 0.4253 (4) | 0.07406 (10) | 0.0438 (8) | |
H14A | 0.8382 | 0.3672 | 0.0750 | 0.053* | |
H14B | 0.5734 | 0.3716 | 0.0946 | 0.053* | |
C15 | 0.7133 (5) | 0.6123 (4) | 0.08458 (9) | 0.0388 (8) | |
H15A | 0.8329 | 0.6633 | 0.0658 | 0.047* | |
H15B | 0.7773 | 0.6223 | 0.1126 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0268 (4) | 0.0445 (5) | 0.0529 (5) | −0.0066 (4) | 0.0022 (3) | −0.0203 (4) |
O1 | 0.0412 (12) | 0.0199 (11) | 0.0474 (12) | 0.0036 (10) | −0.0046 (10) | 0.0019 (10) |
O2 | 0.0354 (11) | 0.0345 (12) | 0.0380 (11) | 0.0093 (10) | −0.0109 (9) | −0.0026 (10) |
N1 | 0.0318 (13) | 0.0227 (14) | 0.0332 (13) | 0.0016 (11) | −0.0039 (11) | −0.0014 (11) |
N2 | 0.0258 (12) | 0.0212 (13) | 0.0333 (13) | −0.0014 (11) | −0.0006 (11) | −0.0047 (10) |
C1 | 0.0334 (15) | 0.0274 (17) | 0.0310 (16) | 0.0000 (14) | −0.0036 (12) | −0.0047 (13) |
C2 | 0.0432 (17) | 0.0200 (17) | 0.0329 (16) | −0.0009 (14) | −0.0028 (13) | −0.0022 (13) |
C3 | 0.0408 (15) | 0.0212 (15) | 0.0282 (14) | 0.0072 (14) | −0.0074 (13) | −0.0001 (12) |
C4 | 0.0302 (14) | 0.0186 (14) | 0.0217 (13) | 0.0009 (13) | −0.0013 (11) | −0.0016 (11) |
C5 | 0.0263 (13) | 0.0186 (15) | 0.0252 (14) | 0.0002 (12) | 0.0010 (12) | −0.0010 (12) |
C6 | 0.0275 (14) | 0.0215 (15) | 0.0297 (14) | 0.0013 (13) | 0.0031 (12) | −0.0012 (12) |
C7 | 0.0304 (15) | 0.0289 (17) | 0.0251 (14) | 0.0027 (14) | 0.0033 (12) | −0.0035 (13) |
C8 | 0.0253 (14) | 0.0272 (17) | 0.0478 (18) | −0.0047 (13) | 0.0013 (14) | −0.0099 (14) |
C9 | 0.0290 (14) | 0.0363 (18) | 0.0455 (18) | 0.0024 (13) | −0.0079 (13) | −0.0159 (14) |
C10 | 0.0245 (14) | 0.0323 (16) | 0.0265 (14) | −0.0028 (13) | 0.0030 (12) | −0.0022 (12) |
C11 | 0.0361 (16) | 0.0329 (18) | 0.0265 (15) | 0.0029 (14) | −0.0032 (13) | −0.0027 (13) |
C12 | 0.0435 (19) | 0.039 (2) | 0.052 (2) | 0.0007 (16) | −0.0084 (16) | −0.0145 (16) |
C13 | 0.0491 (19) | 0.0342 (19) | 0.056 (2) | 0.0052 (17) | 0.0069 (16) | −0.0118 (16) |
C14 | 0.0379 (17) | 0.042 (2) | 0.051 (2) | 0.0103 (18) | 0.0047 (15) | 0.0076 (17) |
C15 | 0.0307 (15) | 0.049 (2) | 0.0372 (17) | 0.0036 (15) | −0.0018 (13) | −0.0023 (16) |
S1—C9 | 1.813 (3) | C8—H8B | 0.9900 |
S1—C10 | 1.827 (3) | C9—H9A | 0.9900 |
O1—C6 | 1.212 (3) | C9—H9B | 0.9900 |
O2—C7 | 1.209 (3) | C10—C11 | 1.516 (4) |
N1—C5 | 1.325 (3) | C10—C15 | 1.530 (4) |
N1—C1 | 1.342 (4) | C10—H10 | 1.0000 |
N2—C6 | 1.394 (3) | C11—C12 | 1.523 (4) |
N2—C7 | 1.395 (4) | C11—H11A | 0.9900 |
N2—C8 | 1.460 (3) | C11—H11B | 0.9900 |
C1—C2 | 1.382 (4) | C12—C13 | 1.523 (4) |
C1—H1 | 0.9500 | C12—H12A | 0.9900 |
C2—C3 | 1.381 (4) | C12—H12B | 0.9900 |
C2—H2 | 0.9500 | C13—C14 | 1.514 (4) |
C3—C4 | 1.380 (4) | C13—H13A | 0.9900 |
C3—H3 | 0.9500 | C13—H13B | 0.9900 |
C4—C5 | 1.376 (4) | C14—C15 | 1.524 (5) |
C4—C7 | 1.490 (4) | C14—H14A | 0.9900 |
C5—C6 | 1.497 (4) | C14—H14B | 0.9900 |
C8—C9 | 1.522 (4) | C15—H15A | 0.9900 |
C8—H8A | 0.9900 | C15—H15B | 0.9900 |
C9—S1—C10 | 101.54 (14) | H9A—C9—H9B | 107.7 |
C5—N1—C1 | 113.2 (2) | C11—C10—C15 | 110.3 (2) |
C6—N2—C7 | 112.0 (2) | C11—C10—S1 | 111.1 (2) |
C6—N2—C8 | 125.1 (2) | C15—C10—S1 | 108.6 (2) |
C7—N2—C8 | 122.8 (2) | C11—C10—H10 | 109.0 |
N1—C1—C2 | 125.0 (3) | C15—C10—H10 | 109.0 |
N1—C1—H1 | 117.5 | S1—C10—H10 | 109.0 |
C2—C1—H1 | 117.5 | C10—C11—C12 | 112.0 (2) |
C3—C2—C1 | 120.1 (3) | C10—C11—H11A | 109.2 |
C3—C2—H2 | 120.0 | C12—C11—H11A | 109.2 |
C1—C2—H2 | 120.0 | C10—C11—H11B | 109.2 |
C4—C3—C2 | 115.7 (3) | C12—C11—H11B | 109.2 |
C4—C3—H3 | 122.2 | H11A—C11—H11B | 107.9 |
C2—C3—H3 | 122.2 | C13—C12—C11 | 111.1 (3) |
C5—C4—C3 | 119.6 (2) | C13—C12—H12A | 109.4 |
C5—C4—C7 | 108.2 (2) | C11—C12—H12A | 109.4 |
C3—C4—C7 | 132.2 (2) | C13—C12—H12B | 109.4 |
N1—C5—C4 | 126.4 (2) | C11—C12—H12B | 109.4 |
N1—C5—C6 | 125.3 (2) | H12A—C12—H12B | 108.0 |
C4—C5—C6 | 108.3 (2) | C14—C13—C12 | 110.6 (3) |
O1—C6—N2 | 125.7 (2) | C14—C13—H13A | 109.5 |
O1—C6—C5 | 128.7 (2) | C12—C13—H13A | 109.5 |
N2—C6—C5 | 105.5 (2) | C14—C13—H13B | 109.5 |
O2—C7—N2 | 124.8 (3) | C12—C13—H13B | 109.5 |
O2—C7—C4 | 129.2 (3) | H13A—C13—H13B | 108.1 |
N2—C7—C4 | 106.0 (2) | C13—C14—C15 | 111.7 (3) |
N2—C8—C9 | 111.4 (2) | C13—C14—H14A | 109.3 |
N2—C8—H8A | 109.4 | C15—C14—H14A | 109.3 |
C9—C8—H8A | 109.4 | C13—C14—H14B | 109.3 |
N2—C8—H8B | 109.4 | C15—C14—H14B | 109.3 |
C9—C8—H8B | 109.4 | H14A—C14—H14B | 107.9 |
H8A—C8—H8B | 108.0 | C14—C15—C10 | 111.2 (3) |
C8—C9—S1 | 113.7 (2) | C14—C15—H15A | 109.4 |
C8—C9—H9A | 108.8 | C10—C15—H15A | 109.4 |
S1—C9—H9A | 108.8 | C14—C15—H15B | 109.4 |
C8—C9—H9B | 108.8 | C10—C15—H15B | 109.4 |
S1—C9—H9B | 108.8 | H15A—C15—H15B | 108.0 |
C5—N1—C1—C2 | 0.3 (4) | C6—N2—C7—C4 | 1.1 (3) |
N1—C1—C2—C3 | 0.1 (4) | C8—N2—C7—C4 | −177.0 (2) |
C1—C2—C3—C4 | −0.3 (4) | C5—C4—C7—O2 | −179.3 (3) |
C2—C3—C4—C5 | 0.2 (4) | C3—C4—C7—O2 | −0.8 (5) |
C2—C3—C4—C7 | −178.2 (3) | C5—C4—C7—N2 | −0.6 (3) |
C1—N1—C5—C4 | −0.4 (4) | C3—C4—C7—N2 | 177.9 (3) |
C1—N1—C5—C6 | 178.4 (3) | C6—N2—C8—C9 | −103.0 (3) |
C3—C4—C5—N1 | 0.2 (4) | C7—N2—C8—C9 | 74.9 (3) |
C7—C4—C5—N1 | 179.0 (2) | N2—C8—C9—S1 | 64.2 (3) |
C3—C4—C5—C6 | −178.8 (2) | C10—S1—C9—C8 | 97.4 (2) |
C7—C4—C5—C6 | 0.0 (3) | C9—S1—C10—C11 | 75.0 (2) |
C7—N2—C6—O1 | 178.8 (3) | C9—S1—C10—C15 | −163.5 (2) |
C8—N2—C6—O1 | −3.1 (4) | C15—C10—C11—C12 | 55.5 (3) |
C7—N2—C6—C5 | −1.1 (3) | S1—C10—C11—C12 | 175.9 (2) |
C8—N2—C6—C5 | 176.9 (2) | C10—C11—C12—C13 | −56.0 (4) |
N1—C5—C6—O1 | 1.7 (4) | C11—C12—C13—C14 | 55.3 (4) |
C4—C5—C6—O1 | −179.3 (3) | C12—C13—C14—C15 | −55.8 (4) |
N1—C5—C6—N2 | −178.4 (2) | C13—C14—C15—C10 | 56.0 (3) |
C4—C5—C6—N2 | 0.6 (3) | C11—C10—C15—C14 | −55.2 (3) |
C6—N2—C7—O2 | 179.9 (3) | S1—C10—C15—C14 | −177.1 (2) |
C8—N2—C7—O2 | 1.8 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1i | 0.95 | 2.50 | 3.119 (3) | 123 |
C3—H3···O1i | 0.95 | 2.55 | 3.129 (3) | 119 |
Symmetry code: (i) x, y+1, z. |
Bond | X-ray | B3LYP (6-311++G(d,p)) | difference |
S1—C9 | 1.813 (3) | 1.830 | –0.017 |
S1—C10 | 1.827 (3) | 1.853 | –0.026 |
O1—C6 | 1.212 (3) | 1.205 | 0.007 |
O2—C7 | 1.209 (3) | 1.210 | 0.001 |
N1—C5 | 1.325 (3) | 1.324 | 0.001 |
N1—C1 | 1.342 (4) | 1.342 | 0.000 |
N2—C6 | 1.394 (3) | 1.407 | –0.013 |
N2—C7 | 1.395 (4) | 1.399 | –0.004 |
N2—C8 | 1.460 (3) | 1.456 | 0.004 |
C1—C2 | 1.382 (4) | 1.400 | –0.018 |
C2—C3 | 1.381 (4) | 1.396 | –0.015 |
C3—C4 | 1.380 (4) | 1.385 | –0.005 |
C4—C5 | 1.376 (4) | 1.392 | –0.016 |
C4—C7 | 1.490 (4) | 1.492 | –0.002 |
C5—C6 | 1.497 (4) | 1.508 | –0.011 |
C8—C9 | 1.522 (4) | 1.536 | –0.014 |
C10—C11 | 1.516 (4) | 1.534 | –0.018 |
C10—C15 | 1.530 (4) | 1.536 | –0.006 |
C11—C12 | 1.523 (4) | 1.539 | –0.016 |
C12—C13 | 1.523 (4) | 1.534 | –0.011 |
C13—C14 | 1.514 (4) | 1.535 | –0.021 |
C14—C15 | 1.524 (5) | 1.537 | –0.013 |
Acknowledgements
The main calculations were carried out by the Supercomputing Center/Korea Institute of Science and Technology Information (KISTI) (KSC-2017-C1-0002).
Funding information
Funding for this research was provided by: National Research Foundation of Korea (Basic Science Research Program through the National Research Foundation of Korea (NRF); grant No. 2015R1D1A3A01020410; grant No. 2016R1D1A1B03934376) and by the Korea government (MSIP) (2017M2B2A9A02049940).
References
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cho, S., Jeon, Y., Lee, S., Kim, J. & Kim, T. H. (2015). Chem. Eur. J. 21, 1439–1443. CSD CrossRef CAS PubMed Google Scholar
Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. https://www.gaussian.com. Google Scholar
Garduño-Beltrán, O., Román-Bravo, P., Medrano, F. & Tlahuext, H. (2009). Acta Cryst. E65, o2581. Web of Science CSD CrossRef IUCr Journals Google Scholar
Inoue, S., Shiota, H., Fukumoto, Y. & Chatani, N. (2009). J. Am. Chem. Soc. 131, 6898–6899. CSD CrossRef PubMed CAS Google Scholar
Jeon, Y., Cheon, S., Cho, S., Lee, K. Y., Kim, T. H. & Kim, J. (2014). Cryst. Growth Des. 14, 2105–2109. CrossRef CAS Google Scholar
Kang, G., Jeon, Y., Lee, K. Y., Kim, J. & Kim, T. H. (2015). Cryst. Growth Des. 15, 5183–5187. Web of Science CSD CrossRef CAS Google Scholar
Metobo, S. E., Jabri, S. Y., Aktoudianakis, E., Evans, J., Jin, H. & Kim, C. U. (2013). Tetrahedron Lett. 54, 6782–6784. CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.