research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a 1,1,2,2-tetra­chloro­ethane-solvated hydrazinecarbo­thio­amide compound

CROSSMARK_Color_square_no_text.svg

aChemistry Department, Taibah University, PO Box 30002, Code 14177, Al-Madinah Al-Munawarah, Kingdom of Saudi Arabia, and bSchool of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK
*Correspondence e-mail: d.l.hughes@uea.ac.uk, musa_said04@yahoo.co.uk

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 17 June 2017; accepted 24 July 2017; online 1 August 2017)

The title compound, [(1-{4-[2-(2,4-di­hydroxy­phen­yl)diazen-1-yl]phen­yl}ethyl­idene)amino]­thio­urea, 1,1,2,2-tetra­chloro­ethane monosolvate, C15H15N5O2S·C2H2Cl4, was prepared from 4-(4-acetyl­phenyl­diazendi­yl)resorcinol and thio­semicarbazide and recrystallized from mixed solvents of tetra­chloro­ethane and n-hexane. 1H NMR and X-ray diffraction data are in support of the thione tautomeric form. The X-ray analysis shows the mol­ecule crystallizes as a zwitterion, with proton transfer from the nominal phenol to the azide group; the N—N bond length is 1.291 (5) Å, and an intra­molecular N—H⋯O hydrogen bond is formed. In the crystal, N—H⋯O, N—H⋯N and O—H⋯S hydrogen bonds connect the mol­ecules into a three-dimensional network. The tetra­chloro­ethane solvent mol­ecules are linked to this network through weak C—H⋯O linkages.

1. Chemical context

Ethyl­idene­thio­semicarbazides are polyfunctional compounds with several nucleophilic centers (NH, SH, NH2). These compounds exist in both thione and thiol tautomeric forms, Fig. 1[link]. 1-(1-Aryl­ethyl­idene)thio­semicarbazides have been found to exhibit potent inhibitory activities against mushroom-tyrosinase (a multifunctional copper-containing enzyme that causes dermatological disorders) (Liu et al., 2008[Liu, J., Yi, W., Wan, Y., Ma, L. & Song, H. (2008). Bioorg. Med. Chem. 16, 1096-1102.], 2009[Liu, J., Cao, R., Yi, W., Ma, C., Wan, Y., Zhou, B., Ma, L. & Song, H. (2009). Eur. J. Med. Chem. 44, 1773-1778.]). Also, 1-[1-(heterocyclic)ethyl­idene]thio­semicarbazides and their metal complexes have been investigated as potential anti­cancer agents (Finch et al., 2000[Finch, R. A., Liu, M.-C., Grill, S. P., Rose, W. C., Loomis, R., Vasquez, K. M., Cheng, Y.-C. & Sartorelli, A. C. (2000). Biochem. Pharmacol. 59, 983-991.]; Soares et al., 2012[Soares, M. A., Lessa, J. A., Mendes, I. C., Da Silva, J. G., Dos Santos, R. G., Salum, L. B., Daghestani, H., Andricopulo, A. D., Day, B. W., Vogt, A., Pesquero, J. L., Rocha, W. R. & Beraldo, H. (2012). Bioorg. Med. Chem. 20, 3396-3409.]; Serda et al., 2012[Serda, M., Kalinowski, D. S., Mrozek-Wilczkiewicz, A., Musiol, R., Szurko, A., Ratuszna, A., Pantarat, N., Kovacevic, Z., Merlot, A. M., Richardson, D. R. & Polanski, J. (2012). Bioorg. Med. Chem. Lett. 22, 5527-5531.]). On the other hand, ethyl­idene­thio­semicarbazides are reactive building blocks for the construction of bioactive heterocycles, such as: [1,2,3]-thia­diazo­les (El-Sadek et al., 2012[El-Sadek, M. M., Hassan, S. Y., Abdelwahab, H. E. & Yacout, G. A. (2012). Molecules, 17, 8378-8396.]], imidazolinones (Thanusu et al., 2010[Thanusu, J., Kanagarajan, V. & Gopalakrishnan, M. (2010). Bioorg. Med. Chem. Lett. 20, 713-717.]), thia­zoles (Chimenti et al., 2010[Chimenti, F., Bolasco, A., Secci, D., Chimenti, P., Granese, A., Carradori, S., Yáñez, M., Orallo, F., Ortuso, F. & Alcaro, S. (2010). Bioorg. Med. Chem. 18, 5715-5723.]; Abdel-Gawad et al., 2010[Abdel-Gawad, H., Mohamed, H. A., Dawood, K. M. & Badria, F. A.-R. (2010). Chem. Pharm. Bull. 58, 1529-1531.]; Vazzana et al., 2004[Vazzana, I., Terranova, E., Mattioli, F. & Sparatore, F. (2004). Arkivoc, (v), 364-374.]; Vigato & Tamburini, 2004[Vigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717-2128.]), and thia­zolidin-4-ones (Abdel-Gawad et al., 2010[Abdel-Gawad, H., Mohamed, H. A., Dawood, K. M. & Badria, F. A.-R. (2010). Chem. Pharm. Bull. 58, 1529-1531.]). It has been demonstrated that the azomethine group is accountable for biological activities shown by various types of Schiff bases (Vazzana et al., 2004[Vazzana, I., Terranova, E., Mattioli, F. & Sparatore, F. (2004). Arkivoc, (v), 364-374.]; Vigato & Tamburini, 2004[Vigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717-2128.]). As part of our studies in this area, we now report the synthesis and crystal structure of the solvated title compound, (I)[link], containing azomethine groups and we investigate its keto and enol tautomeric forms.

[Scheme 1]
[Figure 1]
Figure 1
Tautomeric structures of ethyl­idene­thio­semicarbazides.

2. Structural commentary

The main mol­ecule comprises two essentially planar groups, which share the C12—C15 bond; the angle between the normals to the two planes is 13.77 (8)°, Fig. 2[link].

[Figure 2]
Figure 2
The mol­ecular structure of (I)[link] and the hydrogen-bond inter­actions (not including the `weak' hydrogen bonds). Displacement ellipsoids are drawn at the 50% probability level. Symmetry operations (in the text and all figures): (i) 2 + x, [{1\over 2}] − y, z − [{1\over 2}]; (ii) x + 1, [{1\over 2}] − y, [{1\over 2}] − z; (iii) −x − 1, 1 − y, 1 − z; (iv) x − 1, [{1\over 2}] − y, [{1\over 2}] + z; (v) x − 2, [{1\over 2}] − y, [{1\over 2}] + z; (vi) x + 1, y, z; (vii) −x, 1 − y, 1 − z; (viii) x − 1, y, z.

This mol­ecule is a zwitterion, with a negative charge on O1 and a positive charge on N8: this nitro­gen atom is bonded to a hydrogen atom (clearly identified in the X-ray analysis) and forms an intra­molecular hydrogen bond N8—H8N⋯O1. There is delocalized bonding throughout the O1—C1—C2—N7—N8—C9 chain, with bond dimensions very similar to those found in a series of 1-(2-phenyl­diazen-2-ium-1-yl)naphthalen-2-olate compounds studied by Benosmane et al. (2013[Benosmane, A., Mili, A., Bouguerria, H. & Bouchoul, A. (2013). Acta Cryst. E69, o1021.]), Bougueria et al. (2013a[Bougueria, H., Benaouida, M. A., Bouacida, S. & Bouchoul, A. El K. (2013a). Acta Cryst. E69, o1175-o1176.],b[Bougueria, H., Benosmane, A., Benaouida, M. A., Bouchoul, A. El K. & Bouaoud, S. E. (2013b). Acta Cryst. E69, o1052.]) and Chetioui et al. (2013[Chetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. & Bouaoud, S. E. (2013). Acta Cryst. E69, o1322-o1323.]), showing a structure midway between the keto and phenolate forms of compound 3 in the Scheme; in particular, the C1—O1 bond length is 1.296 (5) Å and N7—N8 is 1.291 (5) Å.

There is a more pronounced arrangement of double and single bonds for the C=N—N group further along the mol­ecule, with C15=N16 at 1.280 (5) Å, and N16—N17 at 1.377 (5) Å; N16 is the acceptor of a strained hydrogen bond from H19B.

The structure of the product was substanti­ated via spectroscopic data. For example, 1H NMR spectra of compounds 3 revealed two singlet signals at δ = 2.35 and 10.28 ppm, attributed to the methyl group adjacent to hydrazone (CH3–C=N–NH) (de Oliveira et al., 2014[Cardoso, M. V. de O., de Siqueira, L. R. P., da Silva, E. B., Costa, L. B., Hernandes, M. Z., Rabello, M. M., Ferreira, R. S., da Cruz, L. F., Magalhães Moreira, D. R., Pereira, V. R. A., de Castro, M. C. A. B., Bernhardt, P. V. & Leite, A. C. L. (2014). Eur. J. Med. Chem. 86, 48-59.]) and NH of the hydrazone group (C=N–NH), respectively; there are also two signals (δ = 8.11 and 8.43 ppm) for the NH2 group. A singlet signal at δ = 10.70 ppm is due to the OH group whereas the C=O⋯HN appears at δ = 12.53 ppm, see Fig. 3[link].

[Figure 3]
Figure 3
The 1H NMR spectrum for compound 3, showing one form of the product.

3. Supra­molecular features

Inter­molecular hydrogen bonds are shown in Table 1[link] and Fig. 4[link], and connect the mol­ecules into a three-dimensional network. The solvent tetra­chloro­ethane mol­ecules are linked to this network through weak hydrogen bonds C10—H10⋯Cl25vi and C22—H22⋯O1iv. Other short inter­molecular contacts connect mol­ecules by ππ stacking along the a axis, Fig. 5[link]; the phenyl ring of C1–C6 lies over the almost parallel ring of C9–C14 in the adjacent mol­ecule, with C1⋯C14vi = 3.309 Å, C3⋯C10vi = 3.360 Å, and C5⋯N8vi = 3.263 Å. The hydrazone group of C15⋯N17 is sandwiched between the C15⋯C18 section of an inverted mol­ecule [with closest contacts of N17⋯N17vii = 3.405 Å and C18⋯H15Cvii = 2.83Å] and the chain of N7⋯C11 of the stacked contact [with closest contacts N16⋯C10viii = 3.314 Å and H15A⋯C14viii = 2.93 Å].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯S20i 0.93 2.89 3.634 (4) 137
C10—H10⋯Cl25ii 0.93 2.88 3.807 (5) 172
C151—H15C⋯S20iii 0.96 2.87 3.458 (4) 121
N17—H17⋯S20iii 0.86 2.63 3.483 (4) 173
C22—H22⋯O1iv 0.98 2.37 3.345 (8) 175
O5—H5O⋯S20i 0.80 (2) 2.43 (2) 3.227 (4) 173 (5)
N8—H8N⋯O1 0.85 (2) 1.78 (3) 2.528 (4) 147 (4)
N19—H19A⋯O1iv 0.84 (2) 2.05 (2) 2.862 (5) 163 (4)
N19—H19B⋯N16 0.84 (2) 2.16 (5) 2.578 (5) 111 (4)
Symmetry codes: (i) [x+2, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z; (iii) -x-1, -y+1, -z+1; (iv) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 4]
Figure 4
View of the packing in (I)[link] along the a-axis direction, showing the hydrogen-bonded system.
[Figure 5]
Figure 5
View of the overlapping mol­ecules, showing some of the shorter ππ stacking contacts.

4. Synthesis and crystallization

4-Acetyl­phenyl­azoresorcinol (Torrey & MacPherson, 1909[Torrey, H. A. & MacPherson, W. (1909). J. Am. Chem. Soc. 31, 579-583.]) (1) (12.8 g, 50 mmol) was dissolved in 100ml of ethanol and stirred with an equimolar qu­antity of thio­semicarbazide (2) (4.55 g, 50 mmol) for 24 h at room temperature using catalytic amounts of HCl. The product, precipitated from the reaction mixture, was filtered, washed with ethanol and recrystallized from hot ethanol solution to give compound 3 as dark-red microcrystals (12.34g, 75%). Dark-red prisms of (I)[link] were obtained by recrystallization from mixed solvents of tetra­chloro­methane and n-hexane 1:1; m.p. 521–523 K; IR (KBr): ν (cm−1) 3456–3257 (OH+NH+NH2), 1596 (C=N); 1H NMR (DMSO-d6): δ 2.35 (s, 3H, CH3-C=N-NH), 6.37 (s, 1H, =CH—CO), 6.56 (d, 1H, J = 4 Hz, =CH—C=N), 7.69 (d, 1H, J = 4 Hz, =CH—C—OH), 7.90 (d, 2H, J = 7 Hz, Ar-H), 8.25 (d, 2H, J = 7 Hz, Ar-H), 8.11 & 8.50 (2s, 2H, NH2), 10.28 (s, 1H, NH—C=S), 10.75 (s, 1H, OH), 12.50 (s, 1H, NH—O=C) ppm; 13C-NMR (DMSO-d6): δ 13.86 CH3—C=N—NH), 102.99 (C6), 109.33 (C3), 121.39 (C10 & C14), 127.64 (C12), 132.54 (C11 & C13), 134.35 (C2), 138.86 (C4), 146.86 (C9), 150.79 (C15), 156.64 (C5), 163.28 (C=O), 179.02 (C=S) ppm; MS m/z (%): 329 (M+, 38), 227 (35), 171 (70), 146 (70). Analysis calculated for C15H15N5O2S (329.09): C, 54.70; H, 4.59; N, 21.26; S, 9.74. Found: C, 54.61; H, 4.66; N, 21.33; S, 9.51%.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms on the O and N atoms were located in difference maps and were refined with distance constraints viz O—H distances were set to 0.82 (2) Å and N—H distances to 0.86 Å; their isotropic thermal parameters were refined freely. The remaining H atoms were included in idealized positions with their Uiso values set to ride on the Ueq values of the parent carbon atoms.

Table 2
Experimental details

Crystal data
Chemical formula C15H15N5O2S·C2H2Cl4
Mr 497.21
Crystal system, space group Monoclinic, P21/c
Temperature (K) 295
a, b, c (Å) 5.9124 (2), 17.6155 (5), 20.3351 (6)
β (°) 96.563 (3)
V3) 2104.02 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.69
Crystal size (mm) 0.42 × 0.09 × 0.08
 
Data collection
Diffractometer Oxford Diffraction Xcalibur 3/Sapphire3 CCD
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.728, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 28750, 3675, 3213
Rint 0.053
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.204, 1.09
No. of reflections 3675
No. of parameters 279
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.72, −0.79
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]; Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP (Johnson, 1976; Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and WinGX (Farrugia, 2012).

[(1-{4-[2-(2,4-Dihydroxyphenyl)diazen-1-yl]phenyl}ethylidene)amino]thiourea 1,1,2,2-tetrachloroethane monosolvate top
Crystal data top
C15H15N5O2S·C2H2Cl4F(000) = 1016
Mr = 497.21Dx = 1.570 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.9124 (2) ÅCell parameters from 5694 reflections
b = 17.6155 (5) Åθ = 3.5–28.7°
c = 20.3351 (6) ŵ = 0.69 mm1
β = 96.563 (3)°T = 295 K
V = 2104.02 (11) Å3Prism, dark red
Z = 40.42 × 0.09 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur 3/Sapphire3 CCD
diffractometer
3675 independent reflections
Radiation source: Enhance (Mo) X-ray Source3213 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 16.0050 pixels mm-1θmax = 25.0°, θmin = 3.6°
Thin slice φ and ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 2020
Tmin = 0.728, Tmax = 1.000l = 2424
28750 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: mixed
wR(F2) = 0.204H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0938P)2 + 8.2654P]
where P = (Fo2 + 2Fc2)/3
3675 reflections(Δ/σ)max < 0.001
279 parametersΔρmax = 0.72 e Å3
4 restraintsΔρmin = 0.79 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9543 (5)0.22114 (17)0.20187 (14)0.0225 (7)
C11.0971 (7)0.1827 (2)0.2420 (2)0.0183 (9)
C21.0684 (7)0.1769 (2)0.3120 (2)0.0181 (9)
C31.2286 (7)0.1342 (2)0.3548 (2)0.0217 (9)
H31.21120.13080.39960.026*
C41.4060 (7)0.0984 (3)0.3313 (2)0.0239 (10)
H41.50920.07060.35960.029*
C51.4325 (7)0.1039 (2)0.2629 (2)0.0203 (9)
O51.6154 (5)0.06701 (19)0.24376 (17)0.0270 (7)
C61.2855 (7)0.1452 (2)0.2200 (2)0.0187 (9)
H61.31010.14860.17570.022*
N70.8994 (6)0.2111 (2)0.34044 (17)0.0189 (8)
N80.7553 (6)0.2510 (2)0.30244 (17)0.0184 (8)
C90.5772 (7)0.2898 (2)0.3284 (2)0.0170 (8)
C100.5488 (7)0.2886 (2)0.3949 (2)0.0189 (9)
H100.64860.26120.42460.023*
C110.3698 (7)0.3286 (2)0.4168 (2)0.0194 (9)
H110.35030.32770.46150.023*
C120.2182 (7)0.3702 (2)0.3729 (2)0.0159 (8)
C130.2511 (7)0.3713 (2)0.3063 (2)0.0205 (9)
H130.15410.39960.27650.025*
C140.4281 (7)0.3304 (3)0.2839 (2)0.0221 (9)
H140.44680.33030.23910.027*
C150.0244 (7)0.4110 (2)0.3983 (2)0.0158 (8)
C1510.1144 (7)0.4677 (3)0.3562 (2)0.0235 (10)
H15A0.26430.44770.34390.035*
H15B0.04280.47790.31710.035*
H15C0.12510.51390.38070.035*
N160.0111 (5)0.39265 (19)0.45721 (17)0.0156 (7)
N170.1850 (5)0.42611 (19)0.48636 (17)0.0165 (7)
H170.26600.46190.46700.020*
C180.2233 (7)0.4003 (2)0.5467 (2)0.0166 (9)
N190.0835 (7)0.3482 (2)0.57381 (19)0.0249 (9)
S200.44392 (18)0.43497 (6)0.58404 (5)0.0214 (3)
C210.2745 (18)0.1205 (5)0.5978 (4)0.091 (3)
H210.32960.10160.64210.109*
C220.0344 (16)0.1387 (4)0.5960 (4)0.076 (2)
H220.01550.18200.62510.091*
Cl230.4115 (4)0.21230 (11)0.58528 (10)0.0710 (6)
Cl240.3333 (5)0.05129 (12)0.53859 (10)0.0888 (8)
Cl250.0877 (4)0.16005 (11)0.51483 (9)0.0729 (6)
Cl260.0903 (5)0.05355 (12)0.62934 (11)0.0894 (8)
H5O1.612 (8)0.068 (3)0.2043 (10)0.019 (13)*
H8N0.776 (8)0.249 (3)0.2620 (11)0.021 (12)*
H19A0.101 (7)0.330 (2)0.6111 (13)0.006 (10)*
H19B0.023 (6)0.336 (3)0.552 (2)0.025 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0237 (16)0.0269 (17)0.0174 (15)0.0069 (13)0.0040 (12)0.0021 (13)
C10.018 (2)0.016 (2)0.021 (2)0.0031 (16)0.0043 (17)0.0043 (17)
C20.016 (2)0.016 (2)0.023 (2)0.0029 (16)0.0061 (16)0.0041 (17)
C30.024 (2)0.022 (2)0.021 (2)0.0003 (17)0.0072 (18)0.0012 (17)
C40.022 (2)0.024 (2)0.026 (2)0.0029 (18)0.0021 (18)0.0023 (18)
C50.016 (2)0.016 (2)0.029 (2)0.0015 (16)0.0068 (17)0.0071 (18)
O50.0237 (16)0.0311 (18)0.0277 (19)0.0112 (14)0.0090 (14)0.0021 (15)
C60.020 (2)0.019 (2)0.018 (2)0.0012 (17)0.0079 (17)0.0043 (17)
N70.0172 (17)0.0191 (18)0.0212 (18)0.0015 (14)0.0056 (14)0.0021 (15)
N80.0173 (18)0.0221 (19)0.0167 (19)0.0001 (14)0.0065 (14)0.0041 (15)
C90.0158 (19)0.017 (2)0.020 (2)0.0013 (16)0.0074 (16)0.0032 (16)
C100.017 (2)0.019 (2)0.021 (2)0.0003 (16)0.0023 (16)0.0008 (17)
C110.020 (2)0.024 (2)0.015 (2)0.0007 (17)0.0057 (16)0.0029 (17)
C120.0152 (19)0.013 (2)0.020 (2)0.0036 (15)0.0046 (16)0.0029 (16)
C130.020 (2)0.020 (2)0.022 (2)0.0050 (17)0.0049 (17)0.0043 (17)
C140.026 (2)0.025 (2)0.017 (2)0.0006 (18)0.0104 (18)0.0005 (17)
C150.0140 (19)0.014 (2)0.020 (2)0.0013 (15)0.0043 (16)0.0029 (16)
C1510.024 (2)0.025 (2)0.024 (2)0.0067 (18)0.0113 (18)0.0018 (18)
N160.0137 (16)0.0143 (17)0.0198 (18)0.0004 (13)0.0061 (13)0.0023 (14)
N170.0137 (16)0.0159 (17)0.0205 (18)0.0026 (13)0.0054 (13)0.0006 (14)
C180.017 (2)0.016 (2)0.017 (2)0.0047 (16)0.0062 (16)0.0034 (16)
N190.028 (2)0.031 (2)0.019 (2)0.0117 (17)0.0143 (16)0.0073 (16)
S200.0186 (5)0.0267 (6)0.0208 (6)0.0054 (4)0.0112 (4)0.0042 (4)
C210.134 (8)0.088 (6)0.049 (4)0.040 (6)0.003 (5)0.025 (4)
C220.122 (7)0.052 (4)0.053 (4)0.027 (4)0.004 (4)0.005 (3)
Cl230.0926 (14)0.0562 (11)0.0691 (12)0.0062 (10)0.0310 (10)0.0010 (9)
Cl240.136 (2)0.0733 (13)0.0533 (11)0.0549 (13)0.0076 (11)0.0175 (9)
Cl250.1051 (15)0.0583 (11)0.0539 (10)0.0306 (10)0.0031 (10)0.0093 (8)
Cl260.136 (2)0.0649 (13)0.0658 (13)0.0453 (13)0.0050 (12)0.0031 (10)
Geometric parameters (Å, º) top
O1—C11.296 (5)C12—C151.494 (5)
C1—C61.412 (6)C13—C141.389 (6)
C1—C21.456 (6)C13—H130.9300
C2—N71.351 (5)C14—H140.9300
C2—C31.426 (6)C15—N161.280 (5)
C3—C41.356 (6)C15—C1511.499 (6)
C3—H30.9300C151—H15A0.9600
C4—C51.420 (6)C151—H15B0.9600
C4—H40.9300C151—H15C0.9600
C5—O51.356 (5)N16—N171.377 (5)
C5—C61.369 (6)N17—C181.352 (5)
O5—H5O0.801 (19)N17—H170.8600
C6—H60.9300C18—N191.314 (6)
N7—N81.291 (5)C18—S201.696 (4)
N8—C91.408 (5)N19—H19A0.841 (19)
N8—H8N0.846 (19)N19—H19B0.84 (2)
C9—C101.381 (6)C21—C221.451 (13)
C9—C141.388 (6)C21—Cl241.776 (8)
C10—C111.387 (6)C21—Cl231.840 (11)
C10—H100.9300C21—H210.9800
C11—C121.398 (6)C22—Cl251.766 (8)
C11—H110.9300C22—Cl261.834 (9)
C12—C131.392 (6)C22—H220.9800
O1—C1—C6121.7 (4)C14—C13—H13119.8
O1—C1—C2120.8 (4)C12—C13—H13119.8
C6—C1—C2117.5 (4)C9—C14—C13120.0 (4)
N7—C2—C3116.5 (4)C9—C14—H14120.0
N7—C2—C1124.2 (4)C13—C14—H14120.0
C3—C2—C1119.3 (4)N16—C15—C12114.6 (4)
C4—C3—C2121.1 (4)N16—C15—C151124.4 (4)
C4—C3—H3119.4C12—C15—C151121.0 (4)
C2—C3—H3119.4C15—C151—H15A109.5
C3—C4—C5119.3 (4)C15—C151—H15B109.5
C3—C4—H4120.3H15A—C151—H15B109.5
C5—C4—H4120.3C15—C151—H15C109.5
O5—C5—C6122.7 (4)H15A—C151—H15C109.5
O5—C5—C4115.4 (4)H15B—C151—H15C109.5
C6—C5—C4121.8 (4)C15—N16—N17120.3 (3)
C5—O5—H5O110 (4)C18—N17—N16117.3 (3)
C5—C6—C1120.9 (4)C18—N17—H17121.4
C5—C6—H6119.6N16—N17—H17121.4
C1—C6—H6119.6N19—C18—N17116.9 (4)
N8—N7—C2117.1 (4)N19—C18—S20122.9 (3)
N7—N8—C9120.7 (3)N17—C18—S20120.2 (3)
N7—N8—H8N114 (3)C18—N19—H19A121 (3)
C9—N8—H8N125 (3)C18—N19—H19B116 (3)
C10—C9—C14120.5 (4)H19A—N19—H19B124 (5)
C10—C9—N8122.7 (4)C22—C21—Cl24113.7 (6)
C14—C9—N8116.9 (4)C22—C21—Cl23104.3 (6)
C9—C10—C11119.3 (4)Cl24—C21—Cl23112.7 (5)
C9—C10—H10120.4C22—C21—H21108.7
C11—C10—H10120.4Cl24—C21—H21108.7
C10—C11—C12121.2 (4)Cl23—C21—H21108.7
C10—C11—H11119.4C21—C22—Cl25111.4 (6)
C12—C11—H11119.4C21—C22—Cl26104.1 (6)
C13—C12—C11118.6 (4)Cl25—C22—Cl26112.4 (5)
C13—C12—C15121.9 (4)C21—C22—H22109.6
C11—C12—C15119.5 (4)Cl25—C22—H22109.6
C14—C13—C12120.4 (4)Cl26—C22—H22109.6
O1—C1—C2—N71.3 (6)C10—C11—C12—C130.5 (6)
C6—C1—C2—N7178.5 (4)C10—C11—C12—C15178.5 (4)
O1—C1—C2—C3180.0 (4)C11—C12—C13—C141.5 (6)
C6—C1—C2—C30.2 (6)C15—C12—C13—C14177.6 (4)
N7—C2—C3—C4179.3 (4)C10—C9—C14—C131.1 (6)
C1—C2—C3—C40.5 (6)N8—C9—C14—C13178.7 (4)
C2—C3—C4—C50.2 (7)C12—C13—C14—C91.7 (6)
C3—C4—C5—O5179.5 (4)C13—C12—C15—N16166.6 (4)
C3—C4—C5—C60.9 (7)C11—C12—C15—N1612.5 (5)
O5—C5—C6—C1180.0 (4)C13—C12—C15—C15112.8 (6)
C4—C5—C6—C11.6 (6)C11—C12—C15—C151168.2 (4)
O1—C1—C6—C5178.9 (4)C12—C15—N16—N17179.9 (3)
C2—C1—C6—C51.2 (6)C151—C15—N16—N170.6 (6)
C3—C2—N7—N8178.9 (4)C15—N16—N17—C18175.4 (4)
C1—C2—N7—N80.2 (6)N16—N17—C18—N193.4 (5)
C2—N7—N8—C9178.6 (4)N16—N17—C18—S20176.5 (3)
N7—N8—C9—C101.1 (6)Cl24—C21—C22—Cl2550.4 (9)
N7—N8—C9—C14179.1 (4)Cl23—C21—C22—Cl2572.7 (6)
C14—C9—C10—C110.1 (6)Cl24—C21—C22—Cl2671.0 (7)
N8—C9—C10—C11179.6 (4)Cl23—C21—C22—Cl26165.9 (4)
C9—C10—C11—C120.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···S20i0.932.893.634 (4)137
C10—H10···Cl25ii0.932.883.807 (5)172
C151—H15C···S20iii0.962.873.458 (4)121
N17—H17···S20iii0.862.633.483 (4)173
C22—H22···O1iv0.982.373.345 (8)175
O5—H5O···S20i0.80 (2)2.43 (2)3.227 (4)173 (5)
N8—H8N···O10.85 (2)1.78 (3)2.528 (4)147 (4)
N19—H19A···O1iv0.84 (2)2.05 (2)2.862 (5)163 (4)
N19—H19B···N160.84 (2)2.16 (5)2.578 (5)111 (4)
Symmetry codes: (i) x+2, y+1/2, z1/2; (ii) x+1, y, z; (iii) x1, y+1, z+1; (iv) x1, y+1/2, z+1/2.
 

References

First citationAbdel-Gawad, H., Mohamed, H. A., Dawood, K. M. & Badria, F. A.-R. (2010). Chem. Pharm. Bull. 58, 1529–1531.  Web of Science CAS PubMed Google Scholar
First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationBenosmane, A., Mili, A., Bouguerria, H. & Bouchoul, A. (2013). Acta Cryst. E69, o1021.  CSD CrossRef IUCr Journals Google Scholar
First citationBougueria, H., Benaouida, M. A., Bouacida, S. & Bouchoul, A. El K. (2013a). Acta Cryst. E69, o1175–o1176.  Google Scholar
First citationBougueria, H., Benosmane, A., Benaouida, M. A., Bouchoul, A. El K. & Bouaoud, S. E. (2013b). Acta Cryst. E69, o1052.  Google Scholar
First citationCardoso, M. V. de O., de Siqueira, L. R. P., da Silva, E. B., Costa, L. B., Hernandes, M. Z., Rabello, M. M., Ferreira, R. S., da Cruz, L. F., Magalhães Moreira, D. R., Pereira, V. R. A., de Castro, M. C. A. B., Bernhardt, P. V. & Leite, A. C. L. (2014). Eur. J. Med. Chem. 86, 48–59.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. & Bouaoud, S. E. (2013). Acta Cryst. E69, o1322–o1323.  CSD CrossRef IUCr Journals Google Scholar
First citationChimenti, F., Bolasco, A., Secci, D., Chimenti, P., Granese, A., Carradori, S., Yáñez, M., Orallo, F., Ortuso, F. & Alcaro, S. (2010). Bioorg. Med. Chem. 18, 5715–5723.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEl-Sadek, M. M., Hassan, S. Y., Abdelwahab, H. E. & Yacout, G. A. (2012). Molecules, 17, 8378–8396.  Web of Science CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFinch, R. A., Liu, M.-C., Grill, S. P., Rose, W. C., Loomis, R., Vasquez, K. M., Cheng, Y.-C. & Sartorelli, A. C. (2000). Biochem. Pharmacol. 59, 983–991.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLiu, J., Cao, R., Yi, W., Ma, C., Wan, Y., Zhou, B., Ma, L. & Song, H. (2009). Eur. J. Med. Chem. 44, 1773–1778.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, J., Yi, W., Wan, Y., Ma, L. & Song, H. (2008). Bioorg. Med. Chem. 16, 1096–1102.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSerda, M., Kalinowski, D. S., Mrozek-Wilczkiewicz, A., Musiol, R., Szurko, A., Ratuszna, A., Pantarat, N., Kovacevic, Z., Merlot, A. M., Richardson, D. R. & Polanski, J. (2012). Bioorg. Med. Chem. Lett. 22, 5527–5531.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoares, M. A., Lessa, J. A., Mendes, I. C., Da Silva, J. G., Dos Santos, R. G., Salum, L. B., Daghestani, H., Andricopulo, A. D., Day, B. W., Vogt, A., Pesquero, J. L., Rocha, W. R. & Beraldo, H. (2012). Bioorg. Med. Chem. 20, 3396–3409.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationThanusu, J., Kanagarajan, V. & Gopalakrishnan, M. (2010). Bioorg. Med. Chem. Lett. 20, 713–717.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTorrey, H. A. & MacPherson, W. (1909). J. Am. Chem. Soc. 31, 579–583.  CrossRef Google Scholar
First citationVazzana, I., Terranova, E., Mattioli, F. & Sparatore, F. (2004). Arkivoc, (v), 364–374.  Google Scholar
First citationVigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717–2128.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds