research communications
and Hirshfeld surface analysis of 2-amino-4-methoxy-6-methylpyrimidinium 2-hydroxybenzoate
aDepartment of Chemistry, Government Arts College (Autonomous), Thanthonimalai, Karur 639 005, Tamil Nadu, India, bDepartment of Chemistry, Government Arts College, Tiruchirappalli 620 022, Tamil Nadu, India, and cSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: manavaibala@gmail.com
In the title molecular salt, C6H10N3O+·C7H5O3−, the cation is protonated at the N atom lying between the amine and methyl substituents and the dihedral angle between the carboxyl group and its attached ring in the anion is 4.0 (2)°. The anion features an intramolecular O—H⋯O hydrogen bond, which closes an S(6) ring. The cation and anion are linked by two N—H⋯O hydrogen bonds [R22(8) motif] to generate an in which the dihedral angle between the aromatic rings is 8.34 (9)°. Crystal symmetry relates two ion pairs bridged by further N—H⋯O hydrogen bonds into a tetrameric DDAA array. The tetramers are linked by pairs of C—H⋯O hydrogen bonds to generate [100] chains. Hirshfeld surface and fingerprint plot analyses are presented.
Keywords: crystal structure; Hirshfeld surface analysis; hydrogen bonding.
CCDC reference: 1559280
1. chemical context
Pyrimidine and aminopyrimidine derivatives have many applications as pesticides and pharmaceutical agents (Condon et al., 1993). For example, imazosulfuron, ethirmol and mepanipyrim have been commercialized as agrochemicals (Maeno et al., 1990). Pyrimidine derivatives have also been developed as antiviral agents, such as AZT, which is the most widely-used anti-AIDS drug (Gilchrist, 1997). Hydrogen bonding plays a vital role in molecular recognition. Supramolecular chemistry plays a pivotal role in biological systems and in artificial systems. It refers to the specific interaction between two or more motifs through non-covalent interactions such as hydrogen bonding, hydrophobic forces, π–π interactions etc. The generating of supramolecular architectures is correlated to the positions and properties of the active groups in molecules (Desiraju et al., 1989; Steiner et al., 2002) As part of our studies in these areas, the synthesis and structure of the title molecular salt, (I), is presented here.
2. structural commentary
The molecular structure of (I) is shown in Fig. 1. The contains a 2-amino-4-methoxy-6-methylpyrimidinium cation and a 2-hydroxybenzoate anion. The cation is protonated at N1, which lies between the amine and methyl substituents: this protonation is reflected by an increase in the bond angle at N1 [C1—N1—C2 = 121.09 (15)°], when compared with the unprotonated atom N3 [C1—N3—C4 = 116.52 (18)°], and the corresponding angle of 116.01 (18)° in neutral 2-amino-4-methoxy-6-methylpyrimidine (Glidewell et al., 2003). An intramolecular O—H⋯O hydrogen bond occurs within the anion (Table 1).
3. supramolecular features
The protonated N atom (N1) and 2-amino group (N2) of the cation interacts with the O1 and O2 oxygen atoms of the carboxylate anion through a pair of N—H⋯O hydrogen bonds (Table 1), forming an eight-membered ring motif R22(8). Inversion-related R22(8) ring motifs are further bridged by N—H⋯O hydrogen bonds thereby forming a DDAA tetramer (D stands for hydrogen-bond donor and A stands for hydrogen-bond acceptor). This set of fused rings can be represented by the graph-set notations R22(8), R42(8) and R22(8). This type of motif has been reported previously in the crystal structures of trimethoprim hydrogen glutarate (Robert et al., 2001) and 2-amino-4-methoxy-6-methylpyridinium trifluoroacetate (Jeevaraj et al., 2016). These arrays are further linked via pairwise C—H⋯O hydrogen bonds to generate another R22(8) ring motif as part of a [100] chain (Fig. 2).
4. Hirshfeld surface analysis
The dnorm parameter takes negative or positive values depending on whether the inter-molecular contact is shorter or longer, respectively, than the van der Waals radii (Spackman & Jayatilaka et al., 2009; McKinnon et al., 2007). The dnorm surface of the ion-pair in (I) is shown in Fig. 3: this naturally neglects hydrogen bonds (intra-anion O—H⋯O and N—H⋯O cation-to-anion) that occur within the The red points represent closer contacts and negative dnorm values on the surface corresponding to the N—H⋯O and C—H⋯O interactions are light red in colour. Two-dimensional fingerprint plots from the Hirshfeld surface analysis, as shown in Fig. 4, give a break-down of different contacts as follows: H⋯H (44.2%), C⋯H/H⋯C (19.6%), O⋯H/H⋯O (20.9%), C⋯O/O⋯C (3.0%), C⋯C (2.9%), N⋯H/H⋯N (8.1%) and O⋯O (1.0%). Two `wingtips' in the fingerprint plot are related to the strong H⋯O and O⋯H interactions.
5. Database survey
A search of the Cambridge Structural Database (Version 5.37, update February 2017; Groom et al., 2016) for 2-amino-4-methoxy-6-methylpyrimidine yielded seven structures: VAQSOW, VAQSUC, VAQSEM, VAQSIQ, VAQRUB and VAQSAI (Aakeroy et al., 2003) and NUQTOJ (Jasinski et al. (2010).
6. Synthesis and crystallization
The title compound was synthesized by mixing hot methanolic solutions (20 ml) of 2-amino-4-methoxy-6-methylpyrimidine (0.139 mg) and 2-hydroxybenzoic acid (0.156 mg) in a 1:1 molar ratio. The mixed solutions were warmed few minutes over a waterbath and then cooled and kept at room temperature for slow evaporation. After a few days, colourless block-shaped crystals of (I) were obtained (yield = 65%).
7. Refinement
Crystal data, data collection and structure . The hydrogen atoms were positioned geometrically (N—H = 0.86, O—H = 0.82 and C—H = 0.96 or 0.93 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). A rotating-group model was used for the methyl group.
details are summarized in Table 2Supporting information
CCDC reference: 1559280
https://doi.org/10.1107/S2056989017011252/hb7693sup1.cif
contains datablocks global, I, 1. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017011252/hb7693Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017011252/hb7693Isup3.cml
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C6H10N3O+·C7H5O3− | F(000) = 584 |
Mr = 277.28 | Dx = 1.358 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4033 reflections |
a = 9.4291 (12) Å | θ = 2.5–27.5° |
b = 15.0620 (19) Å | µ = 0.10 mm−1 |
c = 12.1595 (11) Å | T = 296 K |
β = 128.252 (6)° | Block, colourless |
V = 1356.1 (3) Å3 | 0.55 × 0.33 × 0.16 mm |
Z = 4 |
Bruker KappaCCD APEXII diffractometer | 4033 independent reflections |
Radiation source: fine-focus sealed tube | 2373 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
ω and φ scans | θmax = 30.2°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −13→13 |
Tmin = 0.960, Tmax = 0.984 | k = −21→21 |
33325 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.164 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0587P)2 + 0.4004P] where P = (Fo2 + 2Fc2)/3 |
4033 reflections | (Δ/σ)max < 0.001 |
183 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 1.29929 (16) | 0.42997 (10) | 1.00372 (13) | 0.0632 (4) | |
N1 | 0.97381 (17) | 0.55436 (9) | 0.63943 (14) | 0.0475 (4) | |
N2 | 0.72932 (19) | 0.50804 (12) | 0.62236 (17) | 0.0659 (6) | |
N3 | 1.01155 (18) | 0.46656 (10) | 0.81604 (14) | 0.0486 (4) | |
C1 | 0.9058 (2) | 0.50922 (12) | 0.69373 (17) | 0.0482 (5) | |
C2 | 1.1545 (2) | 0.55729 (11) | 0.70701 (17) | 0.0465 (5) | |
C3 | 1.2648 (2) | 0.51464 (12) | 0.82987 (18) | 0.0510 (5) | |
C4 | 1.1868 (2) | 0.46995 (11) | 0.88151 (17) | 0.0472 (5) | |
C5 | 1.2254 (3) | 0.38111 (18) | 1.0601 (3) | 0.0863 (9) | |
C6 | 1.2148 (3) | 0.60934 (14) | 0.6387 (2) | 0.0620 (7) | |
O2 | 0.75239 (17) | 0.63571 (9) | 0.38790 (13) | 0.0593 (4) | |
O3 | 0.51173 (16) | 0.57024 (9) | 0.34276 (13) | 0.0597 (4) | |
O4 | 0.7259 (2) | 0.72936 (11) | 0.20277 (15) | 0.0756 (6) | |
C7 | 0.5836 (2) | 0.62036 (11) | 0.30856 (17) | 0.0459 (5) | |
C8 | 0.4695 (2) | 0.66507 (10) | 0.16945 (16) | 0.0445 (5) | |
C9 | 0.5463 (3) | 0.71779 (12) | 0.12434 (19) | 0.0554 (6) | |
C10 | 0.4349 (4) | 0.75988 (14) | −0.0047 (2) | 0.0723 (8) | |
C11 | 0.2513 (3) | 0.74946 (14) | −0.0879 (2) | 0.0719 (8) | |
C12 | 0.1737 (3) | 0.69718 (14) | −0.0458 (2) | 0.0649 (7) | |
C13 | 0.2822 (2) | 0.65538 (12) | 0.08200 (19) | 0.0529 (6) | |
H1 | 0.90150 | 0.58160 | 0.56090 | 0.0570* | |
H2A | 0.68270 | 0.47990 | 0.65460 | 0.0790* | |
H2B | 0.66070 | 0.53540 | 0.54350 | 0.0790* | |
H3 | 1.38930 | 0.51480 | 0.87920 | 0.0610* | |
H5A | 1.14960 | 0.41960 | 1.06650 | 0.1290* | |
H5B | 1.32220 | 0.35930 | 1.15160 | 0.1290* | |
H5C | 1.15550 | 0.33200 | 0.99970 | 0.1290* | |
H6A | 1.22890 | 0.67050 | 0.66590 | 0.0930* | |
H6B | 1.12630 | 0.60460 | 0.53890 | 0.0930* | |
H6C | 1.32820 | 0.58650 | 0.66740 | 0.0930* | |
H4 | 0.77590 | 0.70480 | 0.27870 | 0.1130* | |
H10 | 0.48530 | 0.79540 | −0.03500 | 0.0870* | |
H11 | 0.17840 | 0.77820 | −0.17400 | 0.0860* | |
H12 | 0.04900 | 0.69010 | −0.10300 | 0.0780* | |
H13 | 0.22980 | 0.61990 | 0.11070 | 0.0640* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0472 (7) | 0.0777 (9) | 0.0528 (7) | 0.0025 (6) | 0.0250 (6) | 0.0194 (6) |
N1 | 0.0436 (7) | 0.0531 (8) | 0.0423 (7) | −0.0014 (6) | 0.0249 (6) | 0.0067 (6) |
N2 | 0.0418 (8) | 0.0915 (12) | 0.0561 (9) | 0.0001 (8) | 0.0262 (7) | 0.0254 (9) |
N3 | 0.0426 (7) | 0.0549 (8) | 0.0442 (8) | −0.0032 (6) | 0.0249 (6) | 0.0054 (6) |
C1 | 0.0433 (8) | 0.0543 (10) | 0.0446 (9) | −0.0026 (7) | 0.0260 (8) | 0.0036 (7) |
C2 | 0.0468 (9) | 0.0486 (9) | 0.0478 (9) | −0.0061 (7) | 0.0311 (8) | −0.0041 (7) |
C3 | 0.0417 (8) | 0.0597 (10) | 0.0492 (9) | −0.0022 (7) | 0.0269 (8) | 0.0016 (8) |
C4 | 0.0447 (9) | 0.0496 (9) | 0.0428 (9) | 0.0003 (7) | 0.0248 (7) | 0.0021 (7) |
C5 | 0.0666 (13) | 0.1089 (19) | 0.0698 (14) | −0.0019 (12) | 0.0355 (12) | 0.0374 (13) |
C6 | 0.0594 (11) | 0.0715 (12) | 0.0613 (11) | −0.0109 (9) | 0.0405 (10) | 0.0042 (9) |
O2 | 0.0508 (7) | 0.0703 (8) | 0.0485 (7) | −0.0047 (6) | 0.0266 (6) | 0.0078 (6) |
O3 | 0.0537 (7) | 0.0726 (9) | 0.0564 (7) | 0.0029 (6) | 0.0359 (6) | 0.0161 (6) |
O4 | 0.0751 (9) | 0.0866 (11) | 0.0666 (9) | −0.0209 (8) | 0.0446 (8) | 0.0052 (8) |
C7 | 0.0511 (9) | 0.0460 (9) | 0.0460 (9) | 0.0039 (7) | 0.0328 (8) | 0.0010 (7) |
C8 | 0.0540 (9) | 0.0387 (8) | 0.0421 (8) | 0.0046 (7) | 0.0304 (8) | 0.0002 (6) |
C9 | 0.0703 (12) | 0.0485 (9) | 0.0518 (10) | −0.0050 (8) | 0.0400 (10) | −0.0011 (8) |
C10 | 0.1055 (18) | 0.0579 (12) | 0.0625 (13) | −0.0020 (11) | 0.0565 (13) | 0.0097 (10) |
C11 | 0.0920 (16) | 0.0589 (12) | 0.0491 (11) | 0.0191 (11) | 0.0359 (12) | 0.0094 (9) |
C12 | 0.0653 (12) | 0.0627 (12) | 0.0528 (11) | 0.0186 (9) | 0.0296 (10) | 0.0042 (9) |
C13 | 0.0571 (10) | 0.0490 (10) | 0.0502 (10) | 0.0100 (8) | 0.0320 (9) | 0.0026 (8) |
O1—C4 | 1.321 (2) | C5—H5A | 0.9600 |
O1—C5 | 1.445 (4) | C5—H5C | 0.9600 |
O2—C7 | 1.271 (3) | C5—H5B | 0.9600 |
O3—C7 | 1.245 (3) | C6—H6B | 0.9600 |
O4—C9 | 1.345 (3) | C6—H6C | 0.9600 |
O4—H4 | 0.8200 | C6—H6A | 0.9600 |
N1—C2 | 1.359 (3) | C7—C8 | 1.490 (2) |
N1—C1 | 1.354 (3) | C8—C13 | 1.395 (3) |
N2—C1 | 1.317 (3) | C8—C9 | 1.396 (3) |
N3—C1 | 1.335 (2) | C9—C10 | 1.388 (3) |
N3—C4 | 1.318 (3) | C10—C11 | 1.370 (4) |
N1—H1 | 0.8600 | C11—C12 | 1.372 (4) |
N2—H2B | 0.8600 | C12—C13 | 1.375 (3) |
N2—H2A | 0.8600 | C10—H10 | 0.9300 |
C2—C6 | 1.488 (3) | C11—H11 | 0.9300 |
C2—C3 | 1.343 (2) | C12—H12 | 0.9300 |
C3—C4 | 1.400 (3) | C13—H13 | 0.9300 |
C3—H3 | 0.9300 | ||
O1···C3i | 3.374 (3) | C7···H10iv | 2.8800 |
O2···C3ii | 3.411 (2) | C7···H2B | 2.7800 |
O2···N1 | 2.7033 (19) | C7···H1 | 2.7100 |
O2···O4 | 2.534 (2) | C7···H4 | 2.4200 |
O3···N2iii | 2.816 (3) | C9···H5Bvi | 3.0500 |
O3···N2 | 2.830 (2) | C12···H6Aix | 3.0300 |
O4···O2 | 2.534 (2) | C13···H6Aix | 2.9700 |
O1···H3i | 2.4800 | H1···O2 | 1.8400 |
O2···H4 | 1.8100 | H1···O3 | 2.9200 |
O2···H6B | 2.8300 | H1···C7 | 2.7100 |
O2···H1 | 1.8400 | H1···H2B | 2.2600 |
O3···H2B | 1.9900 | H1···H6B | 2.3200 |
O3···H13 | 2.5100 | H2A···O3iii | 2.0000 |
O3···H1 | 2.9200 | H2A···H2Biii | 2.5800 |
O3···H2Aiii | 2.0000 | H2B···O3 | 1.9900 |
O3···H6Cii | 2.8500 | H2B···C7 | 2.7800 |
O3···H10iv | 2.6100 | H2B···H1 | 2.2600 |
O4···H12v | 2.7200 | H2B···H2Aiii | 2.5800 |
O4···H5Bvi | 2.8600 | H3···H6C | 2.5100 |
N1···O2 | 2.7033 (19) | H3···O1i | 2.4800 |
N2···O3 | 2.830 (2) | H3···C3i | 3.0100 |
N2···O3iii | 2.816 (3) | H3···H3i | 2.3600 |
N3···H5C | 2.6800 | H4···O2 | 1.8100 |
N3···H5A | 2.5600 | H4···C7 | 2.4200 |
C2···C11vii | 3.551 (3) | H4···H12v | 2.5700 |
C2···C12vii | 3.582 (3) | H5A···N3 | 2.5600 |
C3···O1i | 3.374 (3) | H5B···O4x | 2.8600 |
C3···C12vii | 3.492 (3) | H5B···C9x | 3.0500 |
C3···C7ii | 3.463 (3) | H5C···N3 | 2.6800 |
C3···O2ii | 3.411 (2) | H6A···C13v | 2.9700 |
C4···C12vii | 3.556 (3) | H6A···C12v | 3.0300 |
C4···C13vii | 3.441 (3) | H6B···O2 | 2.8300 |
C6···C12v | 3.550 (3) | H6B···H1 | 2.3200 |
C7···C3ii | 3.463 (3) | H6C···H3 | 2.5100 |
C11···C2viii | 3.551 (3) | H6C···O3ii | 2.8500 |
C12···C3viii | 3.492 (3) | H10···O3xi | 2.6100 |
C12···C2viii | 3.582 (3) | H10···C7xi | 2.8800 |
C12···C4viii | 3.556 (3) | H12···O4ix | 2.7200 |
C12···C6ix | 3.550 (3) | H12···H4ix | 2.5700 |
C13···C4viii | 3.441 (3) | H13···O3 | 2.5100 |
C3···H3i | 3.0100 | ||
C4—O1—C5 | 118.6 (2) | C2—C6—H6A | 109.00 |
C9—O4—H4 | 109.00 | C2—C6—H6C | 109.00 |
C1—N1—C2 | 121.09 (15) | H6A—C6—H6B | 109.00 |
C1—N3—C4 | 116.52 (18) | C2—C6—H6B | 109.00 |
C1—N1—H1 | 119.00 | H6B—C6—H6C | 110.00 |
C2—N1—H1 | 119.00 | H6A—C6—H6C | 109.00 |
H2A—N2—H2B | 120.00 | O2—C7—C8 | 117.66 (18) |
C1—N2—H2A | 120.00 | O3—C7—C8 | 119.57 (18) |
C1—N2—H2B | 120.00 | O2—C7—O3 | 122.77 (16) |
N2—C1—N3 | 119.68 (19) | C7—C8—C13 | 120.12 (18) |
N1—C1—N3 | 122.16 (19) | C9—C8—C13 | 118.69 (16) |
N1—C1—N2 | 118.17 (16) | C7—C8—C9 | 121.19 (19) |
N1—C2—C6 | 116.68 (16) | O4—C9—C10 | 118.8 (3) |
C3—C2—C6 | 125.0 (2) | C8—C9—C10 | 119.4 (3) |
N1—C2—C3 | 118.35 (19) | O4—C9—C8 | 121.81 (17) |
C2—C3—C4 | 118.0 (2) | C9—C10—C11 | 120.6 (3) |
N3—C4—C3 | 123.91 (16) | C10—C11—C12 | 120.8 (2) |
O1—C4—C3 | 116.42 (19) | C11—C12—C13 | 119.3 (2) |
O1—C4—N3 | 119.67 (18) | C8—C13—C12 | 121.3 (2) |
C2—C3—H3 | 121.00 | C9—C10—H10 | 120.00 |
C4—C3—H3 | 121.00 | C11—C10—H10 | 120.00 |
O1—C5—H5B | 109.00 | C10—C11—H11 | 120.00 |
O1—C5—H5C | 109.00 | C12—C11—H11 | 120.00 |
O1—C5—H5A | 109.00 | C11—C12—H12 | 120.00 |
H5A—C5—H5C | 110.00 | C13—C12—H12 | 120.00 |
H5B—C5—H5C | 109.00 | C8—C13—H13 | 119.00 |
H5A—C5—H5B | 110.00 | C12—C13—H13 | 119.00 |
C5—O1—C4—N3 | 1.9 (3) | O2—C7—C8—C13 | −175.72 (17) |
C5—O1—C4—C3 | −178.55 (18) | O3—C7—C8—C9 | −176.44 (18) |
C2—N1—C1—N2 | −179.22 (17) | O3—C7—C8—C13 | 4.1 (3) |
C2—N1—C1—N3 | 0.8 (3) | C7—C8—C9—O4 | 1.2 (3) |
C1—N1—C2—C3 | −0.4 (2) | C7—C8—C9—C10 | −178.58 (19) |
C1—N1—C2—C6 | −179.52 (16) | C13—C8—C9—O4 | −179.40 (18) |
C4—N3—C1—N1 | −0.5 (3) | C13—C8—C9—C10 | 0.8 (3) |
C4—N3—C1—N2 | 179.56 (17) | C7—C8—C13—C12 | 178.86 (18) |
C1—N3—C4—O1 | 179.29 (16) | C9—C8—C13—C12 | −0.6 (3) |
C1—N3—C4—C3 | −0.3 (3) | O4—C9—C10—C11 | 179.7 (2) |
N1—C2—C3—C4 | −0.3 (3) | C8—C9—C10—C11 | −0.5 (3) |
C6—C2—C3—C4 | 178.73 (18) | C9—C10—C11—C12 | −0.2 (4) |
C2—C3—C4—O1 | −178.88 (16) | C10—C11—C12—C13 | 0.4 (4) |
C2—C3—C4—N3 | 0.7 (3) | C11—C12—C13—C8 | −0.1 (3) |
O2—C7—C8—C9 | 3.7 (3) |
Symmetry codes: (i) −x+3, −y+1, −z+2; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x, −y+3/2, z+1/2; (v) x+1, −y+3/2, z+1/2; (vi) −x+2, y+1/2, −z+3/2; (vii) x+1, y, z+1; (viii) x−1, y, z−1; (ix) x−1, −y+3/2, z−1/2; (x) −x+2, y−1/2, −z+3/2; (xi) x, −y+3/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.86 | 1.84 | 2.7033 (19) | 176 |
N2—H2A···O3iii | 0.86 | 2.00 | 2.816 (3) | 158 |
N2—H2B···O3 | 0.86 | 1.99 | 2.830 (2) | 165 |
O4—H4···O2 | 0.82 | 1.81 | 2.534 (2) | 147 |
C3—H3···O1i | 0.93 | 2.48 | 3.374 (3) | 160 |
Symmetry codes: (i) −x+3, −y+1, −z+2; (iii) −x+1, −y+1, −z+1. |
Footnotes
‡Thomson Reuters ResearcherID: A-5599-2009.
Funding information
PS and KB thank the Department of Science and Technology (DST-SERB), grant No. SB/FT/CS-058/2013, New Delhi, India, for financial support.
References
Aakeröy, B. C., Beffert, K., Desper, J. & Elisabeth, E. (2003). Cryst. Growth Des. 3, 837–846. Google Scholar
Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Condon, M. E., Brady, T. E., Feist, D., Malefyt, T., Marc, P., Quakenbush, L. S., Rodaway, S. J., Shaner, D. L. & Tecle, B. (1993). Brighton Crop Protection Conference on Weeds, pp. 41–46. Alton, Hampshire, England: BCPC Publications. Google Scholar
Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier. Google Scholar
Gilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed., pp. 261–276. Singapore: Addison Wesley Longman. Google Scholar
Glidewell, C., Low, J. N., Melguizo, M. & Quesada, A. (2003). Acta Cryst. C59, o9–o13. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Prakash Kamath, K. (2010). Acta Cryst. E66, o1189–o1190. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jeevaraj, M., Edison, B., Kavitha, S. J., Thanikasalam, K., Britto, S. & Balasubramani, K. (2016). IUCrData, 1, x161010. Google Scholar
Maeno, S., Miura, I., Masuda, K. & Nagata, T. (1990). Brighton Crop Protection Conference on Pests and Diseases, pp. 415–422. Alton, Hampshire, England: BCPC Publications. Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Robert, J. J., Raj, S. B. & Muthiah, P. T. (2001). Acta Cryst. E57, o1206–o1208. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.