research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-amino-4-meth­­oxy-6-methyl­pyrimidinium 2-hy­dr­oxy­benzoate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Government Arts College (Autonomous), Thanthonimalai, Karur 639 005, Tamil Nadu, India, bDepartment of Chemistry, Government Arts College, Tiruchirappalli 620 022, Tamil Nadu, India, and cSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: manavaibala@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 17 July 2017; accepted 31 July 2017; online 8 August 2017)

In the title mol­ecular salt, C6H10N3O+·C7H5O3, the cation is protonated at the N atom lying between the amine and methyl substituents and the dihedral angle between the carboxyl group and its attached ring in the anion is 4.0 (2)°. The anion features an intra­molecular O—H⋯O hydrogen bond, which closes an S(6) ring. The cation and anion are linked by two N—H⋯O hydrogen bonds [R22(8) motif] to generate an ion pair in which the dihedral angle between the aromatic rings is 8.34 (9)°. Crystal symmetry relates two ion pairs bridged by further N—H⋯O hydrogen bonds into a tetra­meric DDAA array. The tetra­mers are linked by pairs of C—H⋯O hydrogen bonds to generate [100] chains. Hirshfeld surface and fingerprint plot analyses are presented.

1. chemical context

Pyrimidine and amino­pyrimidine derivatives have many applications as pesticides and pharmaceutical agents (Condon et al., 1993[Condon, M. E., Brady, T. E., Feist, D., Malefyt, T., Marc, P., Quakenbush, L. S., Rodaway, S. J., Shaner, D. L. & Tecle, B. (1993). Brighton Crop Protection Conference on Weeds, pp. 41-46. Alton, Hampshire, England: BCPC Publications.]). For example, imazosulfuron, ethirmol and mepanipyrim have been commercialized as agrochemicals (Maeno et al., 1990[Maeno, S., Miura, I., Masuda, K. & Nagata, T. (1990). Brighton Crop Protection Conference on Pests and Diseases, pp. 415-422. Alton, Hampshire, England: BCPC Publications.]). Pyrimidine derivatives have also been developed as anti­viral agents, such as AZT, which is the most widely-used anti-AIDS drug (Gilchrist, 1997[Gilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed., pp. 261-276. Singapore: Addison Wesley Longman.]). Hydrogen bonding plays a vital role in mol­ecular recognition. Supra­molecular chemistry plays a pivotal role in biological systems and in artificial systems. It refers to the specific inter­action between two or more motifs through non-covalent inter­actions such as hydrogen bonding, hydro­phobic forces, van der Waals forces, ππ inter­actions etc. The generating of supra­molecular architectures is correlated to the positions and properties of the active groups in mol­ecules (Desiraju et al., 1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]; Steiner et al., 2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]) As part of our studies in these areas, the synthesis and structure of the title mol­ecular salt, (I)[link], is presented here.

[Scheme 1]

2. structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link]. The asymmetric unit contains a 2-amino-4-meth­oxy-6-methyl­pyrimidinium cation and a 2-hy­droxy­benzoate anion. The cation is protonated at N1, which lies between the amine and methyl substituents: this protonation is reflected by an increase in the bond angle at N1 [C1—N1—C2 = 121.09 (15)°], when compared with the unprotonated atom N3 [C1—N3—C4 = 116.52 (18)°], and the corresponding angle of 116.01 (18)° in neutral 2-amino-4-meth­oxy-6-methyl­pyrimidine (Glidewell et al., 2003[Glidewell, C., Low, J. N., Melguizo, M. & Quesada, A. (2003). Acta Cryst. C59, o9-o13.]). An intra­molecular O—H⋯O hydrogen bond occurs within the anion (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 1.84 2.7033 (19) 176
N2—H2A⋯O3i 0.86 2.00 2.816 (3) 158
N2—H2B⋯O3 0.86 1.99 2.830 (2) 165
O4—H4⋯O2 0.82 1.81 2.534 (2) 147
C3—H3⋯O1ii 0.93 2.48 3.374 (3) 160
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+3, -y+1, -z+2.
[Figure 1]
Figure 1
The asymmetric unit of (I)[link], with 50% probability displacement ellipsoids. The hydrogen bonds are indicated by dashed lines.

3. supra­molecular features

The protonated N atom (N1) and 2-amino group (N2) of the cation inter­acts with the O1 and O2 oxygen atoms of the carboxyl­ate anion through a pair of N—H⋯O hydrogen bonds (Table 1[link]), forming an eight-membered ring motif R22(8). Inversion-related R22(8) ring motifs are further bridged by N—H⋯O hydrogen bonds thereby forming a DDAA tetra­mer (D stands for hydrogen-bond donor and A stands for hydrogen-bond acceptor). This set of fused rings can be represented by the graph-set notations R22(8), R42(8) and R22(8). This type of motif has been reported previously in the crystal structures of trimethoprim hydrogen glutarate (Robert et al., 2001[Robert, J. J., Raj, S. B. & Muthiah, P. T. (2001). Acta Cryst. E57, o1206-o1208.]) and 2-amino-4-meth­oxy-6-methyl­pyridinium tri­fluoro­acetate (Jeevaraj et al., 2016[Jeevaraj, M., Edison, B., Kavitha, S. J., Thanikasalam, K., Britto, S. & Balasubramani, K. (2016). IUCrData, 1, x161010.]). These arrays are further linked via pairwise C—H⋯O hydrogen bonds to generate another R22(8) ring motif as part of a [100] chain (Fig. 2[link]).

[Figure 2]
Figure 2
A [100] chain in the crystal of (I)[link] incorporating R22(8), R42(8) and R42(12) ring motifs.

4. Hirshfeld surface analysis

The dnorm parameter takes negative or positive values depending on whether the inter-mol­ecular contact is shorter or longer, respectively, than the van der Waals radii (Spackman & Jayatilaka et al., 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). The dnorm surface of the ion-pair in (I)[link] is shown in Fig. 3[link]: this naturally neglects hydrogen bonds (intra-anion O—H⋯O and N—H⋯O cation-to-anion) that occur within the asymmetric unit. The red points represent closer contacts and negative dnorm values on the surface corresponding to the N—H⋯O and C—H⋯O inter­actions are light red in colour. Two-dimensional fingerprint plots from the Hirshfeld surface analysis, as shown in Fig. 4[link], give a break-down of different contacts as follows: H⋯H (44.2%), C⋯H/H⋯C (19.6%), O⋯H/H⋯O (20.9%), C⋯O/O⋯C (3.0%), C⋯C (2.9%), N⋯H/H⋯N (8.1%) and O⋯O (1.0%). Two `wingtips' in the fingerprint plot are related to the strong H⋯O and O⋯H inter­actions.

[Figure 3]
Figure 3
Three-dimensional Hirshfeld surface of (I)[link].
[Figure 4]
Figure 4
Fingerprint plots for (I)[link].

5. Database survey

A search of the Cambridge Structural Database (Version 5.37, update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 2-amino-4-meth­oxy-6-methyl­pyrimidine yielded seven structures: VAQSOW, VAQSUC, VAQSEM, VAQSIQ, VAQRUB and VAQSAI (Aakeroy et al., 2003[Aakeröy, B. C., Beffert, K., Desper, J. & Elisabeth, E. (2003). Cryst. Growth Des. 3, 837-846.]) and NUQTOJ (Jasinski et al. (2010[Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Prakash Kamath, K. (2010). Acta Cryst. E66, o1189-o1190.]).

6. Synthesis and crystallization

The title compound was synthesized by mixing hot methano­lic solutions (20 ml) of 2-amino-4-meth­oxy-6-methyl­pyrimidine (0.139 mg) and 2-hy­droxy­benzoic acid (0.156 mg) in a 1:1 molar ratio. The mixed solutions were warmed few minutes over a waterbath and then cooled and kept at room temperature for slow evaporation. After a few days, colourless block-shaped crystals of (I)[link] were obtained (yield = 65%).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms were positioned geometrically (N—H = 0.86, O—H = 0.82 and C—H = 0.96 or 0.93 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). A rotating-group model was used for the methyl group.

Table 2
Experimental details

Crystal data
Chemical formula C6H10N3O+·C7H5O3
Mr 277.28
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 9.4291 (12), 15.0620 (19), 12.1595 (11)
β (°) 128.252 (6)
V3) 1356.1 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.55 × 0.33 × 0.16
 
Data collection
Diffractometer Bruker KappaCCD APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.960, 0.984
No. of measured, independent and observed [I > 2σ(I)] reflections 33325, 4033, 2373
Rint 0.042
(sin θ/λ)max−1) 0.708
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.164, 1.02
No. of reflections 4033
No. of parameters 183
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

2-Amino-4-methoxy-6-methylpyrimidinium 2-hydroxybenzoate top
Crystal data top
C6H10N3O+·C7H5O3F(000) = 584
Mr = 277.28Dx = 1.358 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4033 reflections
a = 9.4291 (12) Åθ = 2.5–27.5°
b = 15.0620 (19) ŵ = 0.10 mm1
c = 12.1595 (11) ÅT = 296 K
β = 128.252 (6)°Block, colourless
V = 1356.1 (3) Å30.55 × 0.33 × 0.16 mm
Z = 4
Data collection top
Bruker KappaCCD APEXII
diffractometer
4033 independent reflections
Radiation source: fine-focus sealed tube2373 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω and φ scansθmax = 30.2°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1313
Tmin = 0.960, Tmax = 0.984k = 2121
33325 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.4004P]
where P = (Fo2 + 2Fc2)/3
4033 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.29929 (16)0.42997 (10)1.00372 (13)0.0632 (4)
N10.97381 (17)0.55436 (9)0.63943 (14)0.0475 (4)
N20.72932 (19)0.50804 (12)0.62236 (17)0.0659 (6)
N31.01155 (18)0.46656 (10)0.81604 (14)0.0486 (4)
C10.9058 (2)0.50922 (12)0.69373 (17)0.0482 (5)
C21.1545 (2)0.55729 (11)0.70701 (17)0.0465 (5)
C31.2648 (2)0.51464 (12)0.82987 (18)0.0510 (5)
C41.1868 (2)0.46995 (11)0.88151 (17)0.0472 (5)
C51.2254 (3)0.38111 (18)1.0601 (3)0.0863 (9)
C61.2148 (3)0.60934 (14)0.6387 (2)0.0620 (7)
O20.75239 (17)0.63571 (9)0.38790 (13)0.0593 (4)
O30.51173 (16)0.57024 (9)0.34276 (13)0.0597 (4)
O40.7259 (2)0.72936 (11)0.20277 (15)0.0756 (6)
C70.5836 (2)0.62036 (11)0.30856 (17)0.0459 (5)
C80.4695 (2)0.66507 (10)0.16945 (16)0.0445 (5)
C90.5463 (3)0.71779 (12)0.12434 (19)0.0554 (6)
C100.4349 (4)0.75988 (14)0.0047 (2)0.0723 (8)
C110.2513 (3)0.74946 (14)0.0879 (2)0.0719 (8)
C120.1737 (3)0.69718 (14)0.0458 (2)0.0649 (7)
C130.2822 (2)0.65538 (12)0.08200 (19)0.0529 (6)
H10.901500.581600.560900.0570*
H2A0.682700.479900.654600.0790*
H2B0.660700.535400.543500.0790*
H31.389300.514800.879200.0610*
H5A1.149600.419601.066500.1290*
H5B1.322200.359301.151600.1290*
H5C1.155500.332000.999700.1290*
H6A1.228900.670500.665900.0930*
H6B1.126300.604600.538900.0930*
H6C1.328200.586500.667400.0930*
H40.775900.704800.278700.1130*
H100.485300.795400.035000.0870*
H110.178400.778200.174000.0860*
H120.049000.690100.103000.0780*
H130.229800.619900.110700.0640*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0472 (7)0.0777 (9)0.0528 (7)0.0025 (6)0.0250 (6)0.0194 (6)
N10.0436 (7)0.0531 (8)0.0423 (7)0.0014 (6)0.0249 (6)0.0067 (6)
N20.0418 (8)0.0915 (12)0.0561 (9)0.0001 (8)0.0262 (7)0.0254 (9)
N30.0426 (7)0.0549 (8)0.0442 (8)0.0032 (6)0.0249 (6)0.0054 (6)
C10.0433 (8)0.0543 (10)0.0446 (9)0.0026 (7)0.0260 (8)0.0036 (7)
C20.0468 (9)0.0486 (9)0.0478 (9)0.0061 (7)0.0311 (8)0.0041 (7)
C30.0417 (8)0.0597 (10)0.0492 (9)0.0022 (7)0.0269 (8)0.0016 (8)
C40.0447 (9)0.0496 (9)0.0428 (9)0.0003 (7)0.0248 (7)0.0021 (7)
C50.0666 (13)0.1089 (19)0.0698 (14)0.0019 (12)0.0355 (12)0.0374 (13)
C60.0594 (11)0.0715 (12)0.0613 (11)0.0109 (9)0.0405 (10)0.0042 (9)
O20.0508 (7)0.0703 (8)0.0485 (7)0.0047 (6)0.0266 (6)0.0078 (6)
O30.0537 (7)0.0726 (9)0.0564 (7)0.0029 (6)0.0359 (6)0.0161 (6)
O40.0751 (9)0.0866 (11)0.0666 (9)0.0209 (8)0.0446 (8)0.0052 (8)
C70.0511 (9)0.0460 (9)0.0460 (9)0.0039 (7)0.0328 (8)0.0010 (7)
C80.0540 (9)0.0387 (8)0.0421 (8)0.0046 (7)0.0304 (8)0.0002 (6)
C90.0703 (12)0.0485 (9)0.0518 (10)0.0050 (8)0.0400 (10)0.0011 (8)
C100.1055 (18)0.0579 (12)0.0625 (13)0.0020 (11)0.0565 (13)0.0097 (10)
C110.0920 (16)0.0589 (12)0.0491 (11)0.0191 (11)0.0359 (12)0.0094 (9)
C120.0653 (12)0.0627 (12)0.0528 (11)0.0186 (9)0.0296 (10)0.0042 (9)
C130.0571 (10)0.0490 (10)0.0502 (10)0.0100 (8)0.0320 (9)0.0026 (8)
Geometric parameters (Å, º) top
O1—C41.321 (2)C5—H5A0.9600
O1—C51.445 (4)C5—H5C0.9600
O2—C71.271 (3)C5—H5B0.9600
O3—C71.245 (3)C6—H6B0.9600
O4—C91.345 (3)C6—H6C0.9600
O4—H40.8200C6—H6A0.9600
N1—C21.359 (3)C7—C81.490 (2)
N1—C11.354 (3)C8—C131.395 (3)
N2—C11.317 (3)C8—C91.396 (3)
N3—C11.335 (2)C9—C101.388 (3)
N3—C41.318 (3)C10—C111.370 (4)
N1—H10.8600C11—C121.372 (4)
N2—H2B0.8600C12—C131.375 (3)
N2—H2A0.8600C10—H100.9300
C2—C61.488 (3)C11—H110.9300
C2—C31.343 (2)C12—H120.9300
C3—C41.400 (3)C13—H130.9300
C3—H30.9300
O1···C3i3.374 (3)C7···H10iv2.8800
O2···C3ii3.411 (2)C7···H2B2.7800
O2···N12.7033 (19)C7···H12.7100
O2···O42.534 (2)C7···H42.4200
O3···N2iii2.816 (3)C9···H5Bvi3.0500
O3···N22.830 (2)C12···H6Aix3.0300
O4···O22.534 (2)C13···H6Aix2.9700
O1···H3i2.4800H1···O21.8400
O2···H41.8100H1···O32.9200
O2···H6B2.8300H1···C72.7100
O2···H11.8400H1···H2B2.2600
O3···H2B1.9900H1···H6B2.3200
O3···H132.5100H2A···O3iii2.0000
O3···H12.9200H2A···H2Biii2.5800
O3···H2Aiii2.0000H2B···O31.9900
O3···H6Cii2.8500H2B···C72.7800
O3···H10iv2.6100H2B···H12.2600
O4···H12v2.7200H2B···H2Aiii2.5800
O4···H5Bvi2.8600H3···H6C2.5100
N1···O22.7033 (19)H3···O1i2.4800
N2···O32.830 (2)H3···C3i3.0100
N2···O3iii2.816 (3)H3···H3i2.3600
N3···H5C2.6800H4···O21.8100
N3···H5A2.5600H4···C72.4200
C2···C11vii3.551 (3)H4···H12v2.5700
C2···C12vii3.582 (3)H5A···N32.5600
C3···O1i3.374 (3)H5B···O4x2.8600
C3···C12vii3.492 (3)H5B···C9x3.0500
C3···C7ii3.463 (3)H5C···N32.6800
C3···O2ii3.411 (2)H6A···C13v2.9700
C4···C12vii3.556 (3)H6A···C12v3.0300
C4···C13vii3.441 (3)H6B···O22.8300
C6···C12v3.550 (3)H6B···H12.3200
C7···C3ii3.463 (3)H6C···H32.5100
C11···C2viii3.551 (3)H6C···O3ii2.8500
C12···C3viii3.492 (3)H10···O3xi2.6100
C12···C2viii3.582 (3)H10···C7xi2.8800
C12···C4viii3.556 (3)H12···O4ix2.7200
C12···C6ix3.550 (3)H12···H4ix2.5700
C13···C4viii3.441 (3)H13···O32.5100
C3···H3i3.0100
C4—O1—C5118.6 (2)C2—C6—H6A109.00
C9—O4—H4109.00C2—C6—H6C109.00
C1—N1—C2121.09 (15)H6A—C6—H6B109.00
C1—N3—C4116.52 (18)C2—C6—H6B109.00
C1—N1—H1119.00H6B—C6—H6C110.00
C2—N1—H1119.00H6A—C6—H6C109.00
H2A—N2—H2B120.00O2—C7—C8117.66 (18)
C1—N2—H2A120.00O3—C7—C8119.57 (18)
C1—N2—H2B120.00O2—C7—O3122.77 (16)
N2—C1—N3119.68 (19)C7—C8—C13120.12 (18)
N1—C1—N3122.16 (19)C9—C8—C13118.69 (16)
N1—C1—N2118.17 (16)C7—C8—C9121.19 (19)
N1—C2—C6116.68 (16)O4—C9—C10118.8 (3)
C3—C2—C6125.0 (2)C8—C9—C10119.4 (3)
N1—C2—C3118.35 (19)O4—C9—C8121.81 (17)
C2—C3—C4118.0 (2)C9—C10—C11120.6 (3)
N3—C4—C3123.91 (16)C10—C11—C12120.8 (2)
O1—C4—C3116.42 (19)C11—C12—C13119.3 (2)
O1—C4—N3119.67 (18)C8—C13—C12121.3 (2)
C2—C3—H3121.00C9—C10—H10120.00
C4—C3—H3121.00C11—C10—H10120.00
O1—C5—H5B109.00C10—C11—H11120.00
O1—C5—H5C109.00C12—C11—H11120.00
O1—C5—H5A109.00C11—C12—H12120.00
H5A—C5—H5C110.00C13—C12—H12120.00
H5B—C5—H5C109.00C8—C13—H13119.00
H5A—C5—H5B110.00C12—C13—H13119.00
C5—O1—C4—N31.9 (3)O2—C7—C8—C13175.72 (17)
C5—O1—C4—C3178.55 (18)O3—C7—C8—C9176.44 (18)
C2—N1—C1—N2179.22 (17)O3—C7—C8—C134.1 (3)
C2—N1—C1—N30.8 (3)C7—C8—C9—O41.2 (3)
C1—N1—C2—C30.4 (2)C7—C8—C9—C10178.58 (19)
C1—N1—C2—C6179.52 (16)C13—C8—C9—O4179.40 (18)
C4—N3—C1—N10.5 (3)C13—C8—C9—C100.8 (3)
C4—N3—C1—N2179.56 (17)C7—C8—C13—C12178.86 (18)
C1—N3—C4—O1179.29 (16)C9—C8—C13—C120.6 (3)
C1—N3—C4—C30.3 (3)O4—C9—C10—C11179.7 (2)
N1—C2—C3—C40.3 (3)C8—C9—C10—C110.5 (3)
C6—C2—C3—C4178.73 (18)C9—C10—C11—C120.2 (4)
C2—C3—C4—O1178.88 (16)C10—C11—C12—C130.4 (4)
C2—C3—C4—N30.7 (3)C11—C12—C13—C80.1 (3)
O2—C7—C8—C93.7 (3)
Symmetry codes: (i) x+3, y+1, z+2; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x, y+3/2, z+1/2; (v) x+1, y+3/2, z+1/2; (vi) x+2, y+1/2, z+3/2; (vii) x+1, y, z+1; (viii) x1, y, z1; (ix) x1, y+3/2, z1/2; (x) x+2, y1/2, z+3/2; (xi) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.842.7033 (19)176
N2—H2A···O3iii0.862.002.816 (3)158
N2—H2B···O30.861.992.830 (2)165
O4—H4···O20.821.812.534 (2)147
C3—H3···O1i0.932.483.374 (3)160
Symmetry codes: (i) x+3, y+1, z+2; (iii) x+1, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Funding information

PS and KB thank the Department of Science and Technology (DST-SERB), grant No. SB/FT/CS-058/2013, New Delhi, India, for financial support.

References

First citationAakeröy, B. C., Beffert, K., Desper, J. & Elisabeth, E. (2003). Cryst. Growth Des. 3, 837–846.  Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCondon, M. E., Brady, T. E., Feist, D., Malefyt, T., Marc, P., Quakenbush, L. S., Rodaway, S. J., Shaner, D. L. & Tecle, B. (1993). Brighton Crop Protection Conference on Weeds, pp. 41–46. Alton, Hampshire, England: BCPC Publications.  Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationGilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed., pp. 261–276. Singapore: Addison Wesley Longman.  Google Scholar
First citationGlidewell, C., Low, J. N., Melguizo, M. & Quesada, A. (2003). Acta Cryst. C59, o9–o13.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Prakash Kamath, K. (2010). Acta Cryst. E66, o1189–o1190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJeevaraj, M., Edison, B., Kavitha, S. J., Thanikasalam, K., Britto, S. & Balasubramani, K. (2016). IUCrData, 1, x161010.  Google Scholar
First citationMaeno, S., Miura, I., Masuda, K. & Nagata, T. (1990). Brighton Crop Protection Conference on Pests and Diseases, pp. 415–422. Alton, Hampshire, England: BCPC Publications.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationRobert, J. J., Raj, S. B. & Muthiah, P. T. (2001). Acta Cryst. E57, o1206–o1208.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds