research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A long symmetric N⋯H⋯N hydrogen bond in bis­­(4-amino­pyridinium)(1+) azide(1−): redetermination from the original data

CROSSMARK_Color_square_no_text.svg

aInstitute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: fabry@fzu.cz

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 July 2017; accepted 4 August 2017; online 15 August 2017)

The structure of the title mol­ecular salt, C10H13N4+·N3, has been redetermined from the data published by Qian & Huang [Acta Cryst. (2010), E66, o3086; refcode WACMIY (Groom et al., 2016)]. The improvement of the present redetermination consists in a correction of the site-occupancy parameter of the bridging H atom between the pyridine rings, as well as of its position. The present study has shown that the bridging H atom (site symmetry 2) is involved in a symmetric N⋯H⋯N hydrogen bond, which is one of the longest ever observed [N⋯N = 2.678 (3) Å]. In addition, there are also present weaker Nam—H⋯Naz hydrogen bonds (am = amine and az = azide) of moderate strength and π-electron pyridine⋯π-electron inter­actions in the structure. All the azide N atoms also lie on a twofold axis.

1. Chemical context

Structures that contain hydroxyl and secondary and primary amine groups are sometimes determined incorrectly because of an assumed geometry of these groups from which the applied constraints or restraints were inferred. In such cases, the correct geometry is missed as it is not verified by inspection of the difference electron-density maps. Thus, a considerable number of structures could have been determined more accurately – cf. Figs. 1[link] and 2[link] in Fábry et al. (2014[Fábry, J., Dušek, M., Vaněk, P., Rafalovskyi, I., Hlinka, J. & Urban, J. (2014). Acta Cryst. C70, 1153-1160.]). The inclusion of such erroneous structures causes bias in crystallographic databases such as the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

[Scheme 1]
[Figure 1]
Figure 1
View of the constituent mol­ecules of the title structure after the improved refinement. The displacement ellipsoids are depicted at the 30% probability level (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).
[Figure 2]
Figure 2
A view of the title structure along the unit-cell axis a. Symmetry codes: (i) −x + 1, y, −z + [{1\over 2}]; (ii) x + 1, y, z; (iii) x + [{1\over 2}], y − [{1\over 2}], z. Applied colours for atoms: grey = C and H, blue = N; applied colours for bonds: black = covalent bonds, dashed orange = H⋯hydrogen bonds acceptor (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

In the course of recalculation of suspect structures that were retrieved from the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), the structure determination of the title structure by Qian & Huang (2010[Qian, H.-F. & Huang, W. (2010). Acta Cryst. E66, o3086.]) with the pertinent CSD refcode WACMIY became a candidate for a checking recalculation. The reason was that both the primary and secondary amine groups were constrained with distance constraints equal to 0.86 Å, with planar conformation and Uiso(H) = 1.2Ueq(N).

Inspection of the publication of the title structure by Qian & Huang (2010[Qian, H.-F. & Huang, W. (2010). Acta Cryst. E66, o3086.]) has revealed that the bridging hydrogen atom H2a, lying between two symmetry-equivalent nitro­gen atoms related by a crystallographic twofold axis, was modelled by two (undisordered) H atoms both with occupational parameters equal to 1: such a structural motif is impossible. The present article describes the redetermination of bis­(4-amino­pyridinium)(1+) azide(1−), which was reported by Qian & Huang (2010[Qian, H.-F. & Huang, W. (2010). Acta Cryst. E66, o3086.]).

2. Structural commentary

The components of the title mol­ecular salt are shown in Fig. 1[link]. It is seen that the bridging hydrogen atom (H2a) inter­connects symmmetry-related 4-amino­pyridine mol­ecules; the symmetry operation for atoms with the suffix `a' is the same as symmetry code (i) in Table 1[link] and Fig. 2[link], viz. −x + 1, y, −z + [{1\over 2}]. The inter­planar angle between the pyridine rings N2/C1–C5 and N2i/C1i–C5i is 87.90 (7) °.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2a⋯N2i 1.3391 (16) 1.3391 (16) 2.678 (3) 178 (2)
N1—H1a⋯N3ii 0.927 (14) 2.067 (14) 2.990 (2) 173.6 (13)
N1—H1b⋯N5iii 0.857 (16) 2.154 (16) 3.010 (2) 177.9 (14)
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Table 1[link] lists the hydrogen bonds in the structure. The packing of the ions in the unit cell is shown in Fig. 2[link]. Fig. 3[link] shows the difference electron-density map calculated without the bridging hydrogen atom H2a in the region N2⋯(H2a)⋯N2i. A well-defined, single peak in this map indicates that H2a is situated on a twofold axis, i.e. it is involved in a symmetric hydrogen bond while not being disordered. This hydrogen bond is the strongest hydrogen bond in the structure and is one of the family of long symmetric hydrogen bonds N⋯H⋯N as listed in Table 1[link]. As Tables 1[link] and 2[link] show, the title structure contains the second longest known truly symmetric N⋯H⋯N hydrogen bond after CAFHAT01.

Table 2
Structures with long N⋯H⋯N hydrogen bonds (Å, °) with a centred hydrogen

For the search in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), the D—H distance was set in the inter­val 1.30–1.45 Å and the non-bonding distance between the donor and acceptor nitro­gen atoms was set in the inter­val 2.6–3.0 Å.

Refcode D—H H⋯A DA D—H⋯A
BOTXEOa 1.322 (3) 1.515 (3) 2.829 (4) 171.09 (16)
CAFHAT01b 1.34 1.37 2.7018 169.8
CAFHAT01b 1.35 1.35 2.7009 175.3
COFMUF10c 1.35 (10) 1.50 (10) 2.844 (7) 171 (11)
DAHGUO01d 1.33 (6) 1.38 (6) 2.690 (8) 168 (6)
EFAZOBe 1.32 (5) 1.38 (5) 2.692 (5) 176 (4)
EPIWUXf 1.33 (3) 1.33 (2) 2.657 (9) 172 (8)
FISROPg 1.45 (4) 1.51 (4) 2.963 (3) 173 (2)
FOGKAPh 1.31 (4) 1.34 (4) 2.652 (5) 175 (4)
HUJNUWi 1.341 (15) 1.414 (16) 2.68 (2) 152.7 (8)
IYEVOXj 1.33 (7) 1.37 (7) 2.691 (6) 174 (6)
MIJMUNk 1.27 (7) 1.56 (7) 2.812 (7) 165 (5)
MIJMUNk 1.34 (9) 1.52 (10) 2.808 (7) 159 (8)
OBUCOEl 1.33 (3) 1.43 (3) 2.736 (2) 165 (3)
QUHFEGm 1.39 (4) 1.40 (4) 2.792 (10) 176 (5)
SIZSUQn 1.317 (14) 1.319 (14) 2.63 (2) 176.8 (9)
WOFGIIo 1.33 (4) 1.39 (4) 2.706 (4) 167 (3)
XICRIMp 1.31 (4) 1.52 (4) 2.826 (3) 164 (3)
ZEYLIAq 1.32 (4) 1.51 (4) 2.833 (4) 175 (3)
Notes: (a) 2-(1,3-Benzoxazol-2-yl)-1-phenyl­vinyl benzoate (Orozco et al., 2009[Orozco, F., Insuasty, B., Cobo, J. & Glidewell, C. (2009). Acta Cryst. C65, o257-o260.]); (b) hydrogen bis­[bis­(2-{[(imidazol-4-yl)methyl­ene]amino}­eth­yl){2-[(imidazolato)methyl­ene]amino}­eth­yl)amine]­cobalt(III) triperchlorate hepta­hydrate (Marsh & Clemente, 2007[Marsh, R. E. & Clemente, D. A. (2007). Inorg. Chim. Acta, 360, 4017-4024.]); (c) 2,1,3-benzoselena­diazole 2,1,3-benzoselena­diazo­lium penta­iodide (Gieren et al., 1985[Gieren, A., Hubner, T., Lamm, V., Neidlein, R. & Droste, D. (1985). Z. Anorg. Allg. Chem. 523, 33-44.]); (d) bis­{[1,4-diazo­niabi­cyclo­(2.2.2)octa­ne][1-aza-4-azoniabi­cyclo­(2.2.2)octa­ne]} tetra­kis­(tribromide) dibromide (Heravi et al., 2005[Heravi, M. M., Derikvand, F., Ghassemzadeh, M. & Neumüller, B. (2005). Tetrahedron Lett. 46, 6243-6245.]); (e) bis­[(3,5-di­methyl­pyrazole)(3,5-di­methyl­pyrazol­yl)]platinum(II) (Umakoshi et al., 2008[Umakoshi, K., Kojima, T., Saito, K., Akatsu, S., Onishi, M., Ishizaka, S., Kitamura, N., Nakao, Y., Sakaki, S. & Ozawa, Y. (2008). Inorg. Chem. 47, 5033-5035.]); (f) 4-{2-(pyridin-4-yl)­oxy]-1,2-bis­(2,3,5,6-tetra­fluoro-4-iodo­phen­yl)eth­oxy}pyridin-1-ium iodide bis­(nitro­benzene) (Martí-Rujas et al., 2012[Martí-Rujas, J., Colombo, L., Lu, J., Dey, A., Terraneo, G., Metrangolo, P., Pilati, T. & Resnati, G. (2012). Chem. Commun. 48, 8207-8209.]); (g) 5,6:14,15-dibenzo-1,4-dioxa-8-azonia-12-aza­cyclo­penta­deca-5,14-diene 5,6:14,15-dibenzo-1,4-dioxa-8,12-di­aza­cyclo­penta­deca-5,14-diene per­chlorate (Tušek-Božić et al., 2005[Tušek-Božić, L., Višnjevac, A., Marotta, E. & Kojić-Prodić, B. (2005). Polyhedron, 24, 97-111.]); (h) dioxido­tetra­kis­(4-methyl­pyridine)­rhenium(V) 4-methyl­pyridinium 4-methyl­pyridine diodide (Krawczyk et al., 2014[Krawczyk, M. K., Krawczyk, M. S., Siczek, M. & Lis, T. (2014). Inorg. Chim. Acta, 418, 84-92.]); (i) 4-methyl­pyridinium trans-bis­(γ-picoline)tetra­kis­(thio­cyanato)­molybdenum 4-methyl­pyridine (Kitanovski et al., 2009[Kitanovski, N., Golobic, A. & Ceh, B. (2009). Croat. Chem. Acta, 82, 567-571.]); (j) bis­(4,4′-bipyridinium) hexa­kis­(μ2-sulfido)­tetra­germaniumtetra­sulfide 4,4′-bi­pyridine hepta­hydrate (Wang et al., 2003[Wang, M.-S., Chen, W.-T., Cai, L.-Z., Zhou, G.-W., Guo, G.-C. & Huang, J.-S. (2003). J. Cluster Sci. 14, 495-504.]); (k) 4,4′-bipyridinium 4-(pyrid-4-yl)pyridinium 4,4′-bi­pyridine hexa­kis­(iso­thio­cyanato-N)-iron (Wei et al., 2002[Wei, Y., Zhu, Y., Song, Y., Hou, H. & Fan, Y. (2002). Inorg. Chem. Commun. 5, 166-170.]); (l) tris­(2-benzimidazolylmeth­yl)ammonium 3,5-di­nitro­benzoate 3,5-di­nitro­benzoic acid clathrate (Ji et al., 2004[Ji, B., Jian, F., Xiao, H. & Du, V. (2004). Anal. Sci. X-ray Struct. Anal. Online, 20, x101-x102.]); (m) (2R,4S,5R)-9-(hy­droxy­imino)-6′-meth­oxy­cinchonan-1-ium (2R,4S,5R)-N-hy­droxy-6′-meth­oxy­cinchonan-9-imine chloride methanol solvate (Zohri et al., 2015[Zohri, M., Wartchow, R. & Hoffmann, H. M. R. (2015). Private communication. CCDC, Cambridge, England.]); (n) catena-[bis­(μ2-aqua)-(5-cyano-2H-1,2,3-triazole-4-carboxamide)(4-cyano-1,2,3-triazole-5-carboxamide)­sodium] (Al-Azmi et al., 2007[Al-Azmi, A., George, P. & El-Dusouqui, O. M. E. (2007). Heterocycles, 71, 2183-2201.]); (o) (1,1′-hydrogenbis{4-[1′-(4-pyrid­yl)ferrocen-1-yl]pyridine}) 4-[1′-(4-pyrid­yl)ferrocen-1-yl]pyridinium tris­(5-carb­oxy-2-thienyl­carboxyl­ate) bis­(thio­phene-2,5-di­carb­oxy­lic acid) (Braga et al., 2008[Braga, D., Giaffreda, S. L., Grepioni, F., Palladino, G. & Polito, M. (2008). New J. Chem. 32, 820-828.]); (p) cytosinium 4-amino-2-hy­droxy­benzoate cytosine monohydrate (Cherukuvada et al., 2013[Cherukuvada, S., Bolla, G., Sikligar, K. & Nangia, A. (2013). Cryst. Growth Des. 13, 1551-1557.]); (q) cytosinium acetyl­enedi­carboxyl­ate cytosine monohydrate (Perumalla et al., 2013[Perumalla, S. R., Pedireddi, V. R. & Sun, C. C. (2013). Cryst. Growth Des. 13, 429-432.]).
[Figure 3]
Figure 3
A section of the difference electron-density map for the present redetermined title structure, which shows the build up of the electron density between the atoms N and Ni [symmetry code: (i) −x + 1, y, −z + [{1\over 2}]]. Positive and negative electron densities are indicated by continuous and dashed lines, respectively. The increment of electron density between the neighbouring contours is 0.02 e Å−3 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]).

The remaining N—Ham⋯Naz (am = primary amine, az = azide) hydrogen bonds are considerably weaker, though still of moderate strength (Gilli & Gilli, 2009[Gilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond, p. 61. New York: Oxford University Press Inc.]). Atom H1a forms a link to the terminal azide nitro­gen atom N3 while H1b bonds to the other terminal azide atom N5. The graph-set motif is described in the Supra­molecular features section. In addition to the hydrogen-bonding inter­actions, there are also π-electron ring⋯π-electron pyridine inter­actions in the structure. The distance between the ring centroids N2/C1–C5 and N2iv/C1iv–C5iv is 3.7145 (17) Å [symmetry code: (iv) −x + 1, −y + 1, −z + 1].

The primary amine group centered on N1 is almost planar [C3—N1—H1a = 120.0 (9), C3—N1—H1b = 119.1 (9), H1a—N1—H1b = 120.6 (13)°] despite the somewhat lengthened C3—N1 bond [1.345 (2) Å]. The reason may be found in the hydrogen bonds formed by the group with N—H⋯N bond angles being close to 180 °.

Once again, the present redetermination emphasizes the importance of careful examination of the difference electron-density maps during a structure determination.

3. Supra­molecular features

In addition to the above-mentioned symmetric hydrogen bond N2⋯H2a⋯N2i [symmetry code: (i) −x + 1, y, −z + [{1\over 2}]] for which the graph-set motif notation is missing (the donors act simultaneously as acceptors in the title structure; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]) the principal graph-set motif in which the primary amine group as well the azide atoms are involved is R46(20).

In a detail, the atoms involved in this graph-set motif are as follows (Fig. 2[link]): N3v–H1avi–N1vi–H1bvi–N5ii–N4ii–N3ii–H1a–N1–H1b–N5iii–H1bvii–N1vii–H1avii–N3–N4–N5–H1bviii–N1viii–H1aviii [symmetry codes: (ii) x + 1, y, z; (iii) x + [{1\over 2}], y − [{1\over 2}], z; (v) x + [{1\over 2}], y + [{1\over 2}], z; (vi) −x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}]; (vii) −x + 1, y, −z + [{3\over 2}]; (viii) x − [{1\over 2}], y + [{1\over 2}], z].

The hydrogen bonds in this graph set motif are directed along the unit-cell parameter b.

4. Synthesis and crystallization

The preparation of the title compound was described by Qian & Huang et al. (2010[Qian, H.-F. & Huang, W. (2010). Acta Cryst. E66, o3086.]) in the supporting information of their article.

5. Database survey

The structure determination by Qian & Huang (2010[Qian, H.-F. & Huang, W. (2010). Acta Cryst. E66, o3086.]) has been included into the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) under the refcode WACMIY.

6. Refinement

Table 3[link] lists the details regarding the crystal data, data collection and the refinement. The starting structural model was taken from the determination by Qian & Huang (2010[Qian, H.-F. & Huang, W. (2010). Acta Cryst. E66, o3086.]). All hydrogen atoms were discernible in the difference electron-density map. The aryl hydrogen atoms were constrained by Car­yl—Har­yl = 0.93 Å and Uiso(Har­yl) = 1.2Ueq(Car­yl). The positional parameters of the primary amine hydrogen atoms were refined freely while their displacement parameters were constrained by Uiso(HN2) = 1.2Ueq(N2). The bridging hydrogen atom H2a involved in the symmetric hydrogen bond N2⋯H2a⋯N2i was refined freely. Refinements using JANA2006 and SHELXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) with the threshold for observed diffractions I = 2σ(I) led to the same result of the bridging hydrogen atom being located on the twofold axis.

Table 3
Experimental details

Crystal data
Chemical formula C10H13N4+·N3
Mr 231.27
Crystal system, space group Monoclinic, C2/c
Temperature (K) 291
a, b, c (Å) 7.507 (3), 12.247 (5), 13.634 (5)
β (°) 99.278 (5)
V3) 1237.1 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.14 × 0.11 × 0.10
 
Data collection
Diffractometer Bruker SMART 1K CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin. USA.])
Tmin, Tmax 0.988, 0.992
No. of measured, independent and observed [I > 3σ(I)] reflections 3027, 1096, 787
Rint 0.072
(sin θ/λ)max−1) 0.595
 
Refinement
R[F > 3σ(F)], wR(F), S 0.034, 0.085, 1.48
No. of reflections 1096
No. of parameters 87
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.08, −0.07
Computer programs: SMART and SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin. USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and JANA2006 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: JANA2006 (Petříček et al., 2014); molecular graphics: PLATON (Spek, 2009), DIAMOND (Brandenburg & Putz, 2005) and JANA2006 (Petříček et al., 2014); software used to prepare material for publication: JANA2006 (Petříček et al., 2014).

µ-Hydrido-bis(4-aminopyridinium) azide top
Crystal data top
C10H13N4+·N3F(000) = 488
Mr = 231.27Dx = 1.242 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1359 reflections
a = 7.507 (3) Åθ = 3.0–25.4°
b = 12.247 (5) ŵ = 0.08 mm1
c = 13.634 (5) ÅT = 291 K
β = 99.278 (5)°Block, colourless
V = 1237.1 (8) Å30.14 × 0.11 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1096 independent reflections
Radiation source: fine-focus sealed tube787 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.072
φ and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 88
Tmin = 0.988, Tmax = 0.992k = 1214
3027 measured reflectionsl = 1615
Refinement top
Refinement on F218 constraints
R[F > 3σ(F)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F) = 0.085Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
S = 1.48(Δ/σ)max = 0.004
1096 reflectionsΔρmax = 0.08 e Å3
87 parametersΔρmin = 0.07 e Å3
0 restraints
Special details top

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6719 (2)0.44584 (12)0.40174 (12)0.0889 (6)
H10.7320360.4966310.3683310.1067*
C20.72245 (17)0.43524 (10)0.50154 (11)0.0778 (5)
H20.8145140.4784690.5350550.0934*
C30.63529 (16)0.35896 (9)0.55351 (10)0.0702 (5)
C40.49858 (17)0.29730 (11)0.49826 (11)0.0793 (5)
H40.4366980.2453450.5294290.0952*
C50.4560 (2)0.31347 (12)0.39842 (12)0.0936 (6)
H50.3644610.2715680.3627140.1123*
N10.68183 (18)0.34619 (10)0.65226 (9)0.0859 (5)
H1a0.776 (2)0.3866 (12)0.6868 (10)0.1031*
H1b0.631 (2)0.2960 (12)0.6815 (11)0.1031*
N20.54018 (19)0.38706 (11)0.34930 (8)0.0943 (5)
N300.47492 (16)0.750.1020 (8)
N400.57130 (18)0.750.0768 (6)
N500.66663 (17)0.750.1074 (8)
H2a0.50.389 (2)0.250.160 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0946 (10)0.0866 (10)0.0930 (11)0.0183 (8)0.0376 (9)0.0120 (8)
C20.0752 (8)0.0760 (8)0.0853 (10)0.0109 (6)0.0224 (7)0.0054 (7)
C30.0685 (7)0.0688 (7)0.0762 (9)0.0166 (6)0.0205 (6)0.0039 (6)
C40.0762 (8)0.0795 (8)0.0847 (10)0.0065 (6)0.0205 (7)0.0007 (7)
C50.0948 (10)0.0999 (10)0.0854 (11)0.0105 (8)0.0125 (8)0.0094 (8)
N10.0909 (8)0.0865 (8)0.0804 (9)0.0012 (5)0.0144 (6)0.0093 (6)
N20.1093 (9)0.1039 (9)0.0725 (8)0.0233 (7)0.0229 (7)0.0027 (7)
N30.0983 (12)0.0857 (11)0.1212 (15)00.0154 (10)0
N40.0625 (8)0.1024 (13)0.0667 (9)00.0143 (6)0
N50.1140 (14)0.0918 (12)0.1263 (15)00.0495 (12)0
Geometric parameters (Å, º) top
C1—H10.93C5—H50.93
C1—C21.359 (2)C5—N21.340 (2)
C1—N21.334 (2)N1—H1a0.927 (14)
C2—H20.93N1—H1b0.857 (16)
C2—C31.397 (2)H1a—H1b1.55 (2)
C3—C41.3935 (19)N2—H2a1.3391 (16)
C3—N11.345 (2)N3—N41.180 (3)
C4—H40.93N4—N51.168 (3)
C4—C51.362 (2)
H1—C1—C2118.36C4—C5—H5118.53
H1—C1—N2118.36C4—C5—N2122.95 (13)
C2—C1—N2123.27 (14)H5—C5—N2118.53
C1—C2—H2120.21C3—N1—H1a120.0 (9)
C1—C2—C3119.58 (12)C3—N1—H1b119.1 (9)
H2—C2—C3120.21H1a—N1—H1b120.6 (13)
C2—C3—C4116.91 (12)C1—N2—C5117.61 (13)
C2—C3—N1121.21 (11)C1—N2—H2a123.9 (8)
C4—C3—N1121.88 (12)C5—N2—H2a118.2 (9)
C3—C4—H4120.16N3—N4—N5180.0 (5)
C3—C4—C5119.68 (13)N2—H2a—N2i178 (2)
H4—C4—C5120.16
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2a···N2i1.3391 (16)1.3391 (16)2.678 (3)178 (2)
N1—H1a···N3ii0.927 (14)2.067 (14)2.990 (2)173.6 (13)
N1—H1b···N5iii0.857 (16)2.154 (16)3.010 (2)177.9 (14)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y, z; (iii) x+1/2, y1/2, z.
Structures with long N···H···N hydrogen bonds (Å, °) with a centred hydrogen top
For the search in the Cambridge Structural Database (Groom et al., 2016), the D—H distance was set in the interval 1.30–1.45 Å and the non-bonding distance between the donor and acceptor nitrogen atoms was set in the interval 2.6–3.0 Å.
RefcodeD—HH···AD···AD—H···A
BOTXEOa1.322 (3)1.515 (3)2.829 (4)171.09 (16)
CAFHAT01b1.341.372.7018169.8
CAFHAT01b1.351.352.7009175.3
COFMUF10c1.35 (10)1.50 (10)2.844 (7)171 (11)
DAHGUO01d1.33 (6)1.38 (6)2.690 (8)168 (6)
EFAZOBe1.32 (5)1.38 (5)2.692 (5)176 (4)
EPIWUXf1.33 (3)1.33 (2)2.657 (9)172 (8)
FISROPg1.45 (4)1.51 (4)2.963 (3)173 (2)
FOGKAPh1.31 (4)1.34 (4)2.652 (5)175 (4)
HUJNUWi1.341 (15)1.414 (16)2.68 (2)152.7 (8)
IYEVOXj1.33 (7)1.37 (7)2.691 (6)174 (6)
MIJMUNk1.27 (7)1.56 (7)2.812 (7)165 (5)
MIJMUNk1.34 (9)1.52 (10)2.808 (7)159 (8)
OBUCOEl1.33 (3)1.43 (3)2.736 (2)165 (3)
QUHFEGm1.39 (4)1.40 (4)2.792 (10)176 (5)
SIZSUQn1.317 (14)1.319 (14)2.63 (2)176.8 (9)
WOFGIIo1.33 (4)1.39 (4)2.706 (4)167 (3)
XICRIMp1.31 (4)1.52 (4)2.826 (3)164 (3)
ZEYLIAq1.32 (4)1.51 (4)2.833 (4)175 (3)
Notes: (a) 2-(1,3-Benzoxazol-2-yl)-1-phenylvinyl benzoate (Orozco et al., 2009); (b) hydrogen bis[bis(2-{[(imidazol-4-yl)methylene]amino}ethyl){2-[(imidazolato)methylene]amino}ethyl)amine]cobalt(III) triperchlorate heptahydrate (Marsh & Clemente, 2007); (c) 2,1,3-benzoselenadiazole 2,1,3-benzoselenadiazolium pentaiodide (Gieren et al., 1985); (d) bis{[1,4-diazoniabicyclo(2.2.2)octane][1-aza-4-azoniabicyclo(2.2.2)octane]} tetrakis(tribromide) dibromide (Heravi et al., 2005); (e) bis[(3,5-dimethylpyrazole)(3,5-dimethylpyrazolyl)]platinum(II) (Umakoshi et al., 2008); (f) 4-{2-(pyridin-4-yl)oxy]-1,2-bis(2,3,5,6-tetrafluoro-4-iodophenyl)ethoxy}pyridin-1-ium iodide bis(nitrobenzene) (Martí-Rujas et al., 2012); (g) 5,6:14,15-dibenzo-1,4-dioxa-8-azonia-12-azacyclopentadeca-5,14-diene 5,6:14,15-dibenzo-1,4-dioxa-8,12-diazacyclopentadeca-5,14-diene perchlorate (Tušek-Božić et al., 2005); (h) dioxidotetrakis(4-methylpyridine)rhenium(V) 4-methylpyridinium 4-methylpyridine diodide (Krawczyk et al., 2014); (i) 4-methylpyridinium trans-bis(γ-picoline)tetrakis(thiocyanato)molybdenum 4-methylpyridine (Kitanovski et al., 2009); (j) bis(4,4'-bipyridinium) hexakis(µ2-sulfido)tetragermaniumtetrasulfide 4,4'-bipyridine heptahydrate (Wang et al., 2003); (k) 4,4'-bipyridinium 4-(pyrid-4-yl)pyridinium 4,4'-bipyridine hexakis(isothiocyanato-N)-iron (Wei et al., 2002); (l) tris(2-benzimidazolylmethyl)ammonium 3,5-dinitrobenzoate 3,5-dinitrobenzoic acid clathrate (Ji et al., 2004); (m) (2R,4S,5R)-9-(hydroxyimino)-6'-methoxycinchonan-1-ium (2R,4S,5R)-N-hydroxy-6'-methoxycinchonan-9-imine chloride methanol solvate (Zohri et al., 2015); (n) catena-[bis(µ2-aqua)-(5-cyano-2H-1,2,3-triazole-4-carboxamide)(4-cyano-1,2,3-triazole-5-carboxamide)sodium] (Al-Azmi et al., 2007); (o) (1,1'-hydrogenbis{4-[1'-(4-pyridyl)ferrocen-1-yl]pyridine}) 4-[1'-(4-pyridyl)ferrocen-1-yl]pyridinium tris(5-carboxy-2-thienylcarboxylate) bis(thiophene-2,5-dicarboxylic acid) (Braga et al., 2008); (p) cytosinium 4-amino-2-hydroxybenzoate cytosine monohydrate (Cherukuvada et al., 2013); (q) cytosinium acetylenedicarboxylate cytosine monohydrate (Perumalla et al., 2013).
 

Acknowledgements

The support by the grant of the Czech Science Foundation 15–12653S is gratefully acknowledged.

References

First citationAl-Azmi, A., George, P. & El-Dusouqui, O. M. E. (2007). Heterocycles, 71, 2183–2201.  CSD CrossRef CAS Google Scholar
First citationBraga, D., Giaffreda, S. L., Grepioni, F., Palladino, G. & Polito, M. (2008). New J. Chem. 32, 820–828.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin. USA.  Google Scholar
First citationCherukuvada, S., Bolla, G., Sikligar, K. & Nangia, A. (2013). Cryst. Growth Des. 13, 1551–1557.  Web of Science CSD CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFábry, J., Dušek, M., Vaněk, P., Rafalovskyi, I., Hlinka, J. & Urban, J. (2014). Acta Cryst. C70, 1153–1160.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGieren, A., Hubner, T., Lamm, V., Neidlein, R. & Droste, D. (1985). Z. Anorg. Allg. Chem. 523, 33–44.  CSD CrossRef CAS Web of Science Google Scholar
First citationGilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond, p. 61. New York: Oxford University Press Inc.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHeravi, M. M., Derikvand, F., Ghassemzadeh, M. & Neumüller, B. (2005). Tetrahedron Lett. 46, 6243–6245.  Web of Science CSD CrossRef CAS Google Scholar
First citationJi, B., Jian, F., Xiao, H. & Du, V. (2004). Anal. Sci. X-ray Struct. Anal. Online, 20, x101–x102.  CSD CrossRef CAS Google Scholar
First citationKitanovski, N., Golobic, A. & Ceh, B. (2009). Croat. Chem. Acta, 82, 567–571.  CAS Google Scholar
First citationKrawczyk, M. K., Krawczyk, M. S., Siczek, M. & Lis, T. (2014). Inorg. Chim. Acta, 418, 84–92.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarsh, R. E. & Clemente, D. A. (2007). Inorg. Chim. Acta, 360, 4017–4024.  Web of Science CSD CrossRef CAS Google Scholar
First citationMartí-Rujas, J., Colombo, L., Lu, J., Dey, A., Terraneo, G., Metrangolo, P., Pilati, T. & Resnati, G. (2012). Chem. Commun. 48, 8207–8209.  Google Scholar
First citationOrozco, F., Insuasty, B., Cobo, J. & Glidewell, C. (2009). Acta Cryst. C65, o257–o260.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPerumalla, S. R., Pedireddi, V. R. & Sun, C. C. (2013). Cryst. Growth Des. 13, 429–432.  Web of Science CSD CrossRef CAS Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationQian, H.-F. & Huang, W. (2010). Acta Cryst. E66, o3086.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTušek-Božić, L., Višnjevac, A., Marotta, E. & Kojić-Prodić, B. (2005). Polyhedron, 24, 97–111.  Google Scholar
First citationUmakoshi, K., Kojima, T., Saito, K., Akatsu, S., Onishi, M., Ishizaka, S., Kitamura, N., Nakao, Y., Sakaki, S. & Ozawa, Y. (2008). Inorg. Chem. 47, 5033–5035.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, M.-S., Chen, W.-T., Cai, L.-Z., Zhou, G.-W., Guo, G.-C. & Huang, J.-S. (2003). J. Cluster Sci. 14, 495–504.  Web of Science CSD CrossRef Google Scholar
First citationWei, Y., Zhu, Y., Song, Y., Hou, H. & Fan, Y. (2002). Inorg. Chem. Commun. 5, 166–170.  Web of Science CSD CrossRef CAS Google Scholar
First citationZohri, M., Wartchow, R. & Hoffmann, H. M. R. (2015). Private communication. CCDC, Cambridge, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds