research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(μ2-Adipato-κ4O,O′:O′′,O′′′)bis­­[aqua­(benzene-1,2-di­amine-κ2N,N′)­chlorido­cadmium]: crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, bDepartment of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia, cDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, and dResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 August 2017; accepted 8 August 2017; online 21 August 2017)

The full mol­ecule of the binuclear title compound, [Cd2Cl2(C6H8O4)(C6H8N2)2(H2O)2], is generated by the application of a centre of inversion located at the middle of the central CH2—CH2 bond of the adipate dianion; the latter chelates a CdII atom at each end. Along with two carboxyl­ate-O atoms, the CdII ion is coordinated by the two N atoms of the chelating benzene-1,2-di­amine ligand, a Cl anion and an aqua ligand to define a distorted octa­hedral CdClN2O3 coordination geometry with the monodentate ligands being mutually cis. The disparity in the Cd—N bond lengths is related to the relative trans effect exerted by the Cd—O bonds formed by the carboxyl­ate-O and aqua-O atoms. The packing features water-O—H⋯O(carboxyl­ate) and benzene-1,2-di­amine-N—H⋯Cl hydrogen bonds, leading to layers that stack along the a-axis direction. The lack of directional inter­actions between the layers is confirmed by a Hirshfeld surface analysis.

1. Chemical context

In the +II oxidation state, the 4d10 cadmium(II) cation is a favourite of researchers studying coordination polymers/metal–organic frameworks. With the ability to readily coordinate a variety of different donor atoms, i.e. both hard and soft donors, and to adopt a range of coordination geometries, a diverse array of structures can be generated. The motivation for studying cadmium(II) compounds in this context, over and above intellectual curiosity, rests primarily with evaluating their photoluminescence properties (Lestari et al., 2014[Lestari, W. W., Streit, H. C., Lönnecke, P., Wickleder, C. & Hey-Hawkins, E. (2014). Dalton Trans. 43, 8188-8195.]; Xue et al., 2015[Xue, L.-P., Li, Z.-H., Ma, L.-F. & Wang, L.-Y. (2015). CrystEngComm, 17, 6441-6449.]; Seco et al., 2017[Seco, J. M., Rodríguez-Diéguez, A., Padro, D., García, J. A., Ugalde, J. M., San Sebastian, E. & Cepeda, J. (2017). Inorg. Chem. 56, 3149-3152.]).

[Scheme 1]

Our inter­est in cadmium(II) structural chemistry is in the controlled formation (dimensionality and topology) of coordination polymers of di­thio­phosphates (S2P(OR)2; Lai & Tiekink, 2004[Lai, C. S. & Tiekink, E. R. T. (2004). CrystEngComm, 6, 593-605.], 2006[Lai, C. S. & Tiekink, E. R. T. (2006). Z. Kristallogr. 221, 288-293.]), xanthates (S2COR; Tan, Azizuddin et al., 2016[Tan, Y. S., Azizuddin, A. D., Campian, M. V., Haiduc, I. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 155-165.]) and di­thio­carbamates (S2CNR2; Chai et al., 2003[Chai, J., Lai, C. S., Yan, J. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 249-250.]), in particular those substituted with hy­droxy­ethyl groups, capable of forming hydrogen-bonding inter­actions (Tan et al., 2013[Tan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N. Bt A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046-3056.]; Tan, Halim & Tiekink, 2016[Tan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113-126.]). In this connection, we now describe the crystal structure determination and Hirshfeld surface analysis of a cadmium(II) species, (I)[link], with a potentially bridging adipato dianion and an ancillary ligand, benzene-1,2-di­amine, capable of forming hydrogen-bonding inter­actions.

2. Structural commentary

The asymmetric unit of (I)[link] comprises half a mol­ecule of (I)[link], Fig. 1[link], with the full mol­ecule generated about a centre of inversion. The key feature of the structure is the tetra-coordinate mode of coordination of the adipato dianion, linking the two CdII cations. Each carboxyl­ate group forms equivalent Cd—O bonds, the difference in the two bonds being only 0.01 Å, Table 1[link]. More asymmetry is found in the coord­ination of the benzene-1,2-di­amine ligand with the Cd—N1 bond length being 0.05 Å longer than Cd—N2. This may be traced to the different trans effects exerted by the oxygen atoms in that the N1 atom is trans to the carboxyl­ate-O1 atom [N1—Cd—O1 = 166.89 (6)°] whereas N2 is opposite to the coordinating water mol­ecule [N2—Cd—O1W = 149.12 (7)°]. The coordination geometry is completed by the chloride anion which, owing to the presence of two chelating ligands, occupies a position cis to the aqua group. The donor set is ClN2O3 and defines a distorted octa­hedral geometry.

Table 1
Selected bond lengths (Å)

Cd—O1 2.3448 (17) Cd—N2 2.398 (2)
Cd—O2 2.3560 (16) Cd—Cl1 2.5283 (6)
Cd—N1 2.448 (2) Cd—O1W 2.2265 (18)
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level. The mol­ecule is disposed about a centre of inversion and unlabelled atoms are related by the symmetry operation (−x, 2 − y, − z).

As might be expected, the four-membered chelate ring formed by the carboxyl­ate group is strictly planar (r.m.s. deviation = 0.0009 Å). There is a twist in the chain of the di­carboxyl­ate ligand with the bond linking the quaternary atom to the aliphatic group being + anti-clinal, i.e. the O2—C1—C2—C3 torsion angle is 145.7 (3)° but, - anti-periplanar about the central bond, i.e. C1—C2—C3—C3i is −177.6 (3)°; symmetry code: (i) −x, 2 − y, −z. There is a distinct kink in the five-membered ring formed by the benzene-1,2-di­amine ligand. This is readily seen in the dihedral angle of 58.57 (7)° formed between the plane through the CdN2 atoms and the benzene ring.

3. Supra­molecular features

As summarized in Table 2[link], all acidic hydrogen atoms in the mol­ecule of (I)[link] are involved in conventional hydrogen-bonding inter­actions. The water-H atoms each form an hydrogen bond with a carboxyl­ate-O atom to form strands propagating along the b-axis direction, involving the carboxyl­ate-O1 atoms, and along the c-axis direction, involving the carboxyl­ate-O2 atoms. Thereby, a supra­molecular layer is formed parallel to (100), Fig. 2[link]a. Within this framework are benzene-1,2-di­amine-N—H⋯Cl hydrogen bonds involving all the amine-H atoms. This has the result that each chloride anion accepts four N—H⋯Cl hydrogen bonds and, to a first approximation exists in a flat, bowl-shaped environment defined by a CdH4 `donor set'. Layers stack along the a axis with no directional inter­actions between them, Fig. 2[link]b. Given this observation, it was thought worthwhile to perform a Hirshfeld surface analysis to probe the mol­ecular packing in more detail. The results of this analysis are discussed in the next section.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O1i 0.83 (2) 1.90 (2) 2.728 (2) 176 (3)
O1W—H2W⋯O2ii 0.83 (1) 1.84 (1) 2.670 (2) 177 (3)
N1—H1N⋯Cl1i 0.88 (2) 2.57 (2) 3.428 (2) 166 (2)
N1—H2N⋯Cl1iii 0.88 (2) 2.52 (2) 3.374 (2) 165 (2)
N2—H3N⋯Cl1iii 0.87 (2) 2.53 (2) 3.385 (2) 168 (2)
N2—H4N⋯Cl1iv 0.88 (2) 2.52 (2) 3.322 (2) 153 (3)
Symmetry codes: (i) x, y-1, z; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}].
[Figure 2]
Figure 2
Mol­ecular packing in (I)[link]: (a) a view of the supra­molecular layer parallel to (100) sustained by water-O—H⋯O(carboxyl­ate) and benzene-1,2-di­amine-N—H⋯Cl hydrogen bonds and (b) a view of the unit-cell contents in projection down the b axis. The O—H⋯O and N—H⋯Cl hydrogen bonds are shown as orange and blue dashed lines, respectively.

4. Hirshfeld surface analysis

The Hirshfeld surfaces calculated for (I)[link] provide further insight into the supra­molecular associations in the crystal; the calculations were performed according to a recent publication (Jotani et al., 2017[Jotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2017). Z. Kristallogr. 232, 287-298.]). The presence of bright-red spots appearing near water-H atoms, H1W and H2W, and carboxyl­ate oxygen atoms, O1 and O2, on the Hirshfeld surface mapped over dnorm in Fig. 3[link], result from the O—H⋯O hydrogen bonds between these atoms, Table 2[link]. The faint-red spots appearing near each of di­amine-hydrogen atoms, H1N–H4N, and those near the Cl1 atom represent the formation of the four comparatively weak N—H⋯Cl inter­actions. The donors and acceptors of above inter­molecular inter­actions can also be viewed as blue and red regions around the respective atoms on the Hirshfeld surface mapped over the calculated electrostatic potential in Fig. 4[link]. The immediate environment about a reference mol­ecule within the shape-index mapped Hirshfeld surface highlighting inter­molecular O—H⋯O, N—H⋯Cl inter­actions and short inter­atomic H⋯H contacts is illustrated in Fig. 5[link].

[Figure 3]
Figure 3
A view of the Hirshfeld surface for (I)[link] mapped over dnorm in the range −0.597 to +1. 425 au.
[Figure 4]
Figure 4
A view of the Hirshfeld surface for (I)[link] mapped over the electrostatic potential in the range −0.164 to +0.204 a.u. The red and blue regions represent negative and positive electrostatic potentials, respectively.
[Figure 5]
Figure 5
A view of the Hirshfeld surface for (I)[link] mapped with the shape-index property about a reference mol­ecule showing inter­molecular O—H⋯O and N—H⋯Cl contacts as well as short inter­atomic H⋯H contacts as black, white and sky-blue dashed lines, respectively.

The overall two-dimensional fingerprint plot, Fig. 6[link]a, and those delineated into H⋯H, O⋯H/H⋯O,Cl⋯H/H⋯Cl and C⋯H/H⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.]) are illustrated in Fig. 6[link]b–e, respectively. The significant contributions from inter­atomic O⋯H/H⋯O and Cl⋯H/H⋯Cl contacts to the Hirshfeld surfaces, see data in Table 3[link], result from the involvement of water, di­amine, chloride and carboxyl­ate residues in the inter­molecular inter­actions. The relatively high contribution from these atoms decreases the relative importance of inter­atomic H⋯H contacts, i.e. to 45.4%, to the Hirshfeld surface. The presence of a short inter­atomic H⋯H contact between water-H1W and methyl-H3A, Table 4[link], also has an influence upon the mol­ecular packing as shown in Fig. 5[link]. In the fingerprint plot delineated into H⋯H contacts, Fig. 6[link]b, this is viewed as the distribution of points at de + di < sum of their van der Waals radii, i.e. 2.40 Å. Another short inter-atomic H⋯H contact listed in Table 4[link], involving benzene-H8 atoms lying at the surfaces of the layers stacked along the a axis appear to have little impact upon the packing. The inter­molecular O—H⋯O and N—H⋯Cl hydrogen bonding are recognized as the pair of spikes at de + di ∼ 1.8 and 2.5 Å, respectively, together with green points within the distributions in Fig. 6[link]c and d, respectively. The points related to short inter-atomic O⋯H contact between water-O1W and methyl-H3A mentioned above are merged in the plot, Fig. 6[link]c. It can be seen from the fingerprint plot delineated into C⋯H/H⋯C contacts, Fig. 6[link]e, that although these contacts make a significant contribution of 11.2% to the dumbbell-shaped Hirshfeld surface due to the presence of benzene-C atoms, the mol­ecular packing results in inter-atomic C⋯H/H⋯C separations longer than van der Waals contact distances, hence they exert a negligible effect in the crystal. The low contribution from other contacts listed in Table 3[link] have little effect in the structure due to their large inter-atomic separations.

Table 3
Percentage contributions of inter-atomic contacts to the Hirshfeld surfaces for (I)

Contact Percentage contribution
H⋯H 45.4
O⋯H/H⋯O 22.9
Cl⋯H/H⋯Cl 19.0
C⋯H/H⋯C 11.2
C⋯Cl/Cl⋯C 0.7
C⋯C 0.4
Cl⋯O/O⋯Cl 0.3
Cd⋯H/H⋯Cd 0.1

Table 4
Summary of short inter-atomic contacts (Å) in (I)

Contact Distance Symmetry operation
H1W⋯H3A 2.32 x, −1 + y, z
H8⋯H8 2.38 1 − x, − y, 1 − z
O1W⋯H3A 2.64 x, − 1 + y, z
[Figure 6]
Figure 6
(a) The full two-dimensional fingerprint plot for (I)[link] and fingerprint plots delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) Cl⋯H/H⋯Cl and (e) C⋯H/H⋯C contacts.

5. Database survey

A search of the crystallographic literature (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) was undertaken in order to find closely related structures to (I)[link]. Reflecting the inter­est in these structures, there were nearly 50 examples with the adipato dianion. In each case, the dianion bridged two CdII cations via chelating inter­actions in all but one example. Often, the di­carboxyl­ate ligand also bridged other CdII cations, i.e. was found to be coordinating in μ3- and μ4-modes. The most closely related structure in the literature is illustrated in Scheme 2[link], i.e. (II) (Che et al., 2013[Che, G.-B., Wang, S.-S., Zha, X.-L., Li, X.-Y., Liu, C.-B., Zhang, X.-J., Xu, Z.-L. & Wang, Q. W. (2013). Inorg. Chim. Acta, 394, 481-487.]).

[Scheme 2]

The coordination geometry for one of the independent CdII atoms in (II), being defined by two carboxyl­ate-O atoms, derived from a tri-anionic μ2-benzene-1,3,5-tri­carboxyl­ato ligand, two nitro­gen atoms from a chelating imidazo[4,5-f][1,10]phenanthroline ligand, chlorido and water-O atoms resembles that found in (I)[link]; this is illustrated on the left-hand side of Scheme 2[link]. The difference between (I)[link] and (II) is that in (II), the chlorido ligand is bridging, leading to a one-dimensional coordination polymer.

6. Synthesis and crystallization

Benzene-1,2-di­amine (0.4324 g, 4 mmol) was slowly added to an aqueous solution (15 ml) of CdCl2·2H2O (0.4026 g, 2 mmol) resulting in a yellow solution. The mixture was stirred for about 1 h when adipic acid (0.2923 g, 2 mmol) in MeOH (10 ml) was added. The mixture then was stirred for a further 3 h. The resultant solution was reduced and left for crystallization. Brown crystals of (I)[link] were obtained after a few weeks and analysed directly.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The O-bound and N-bound H-atoms were located in difference-Fourier maps but were refined with distance restraints of O—H = 0.84±0.01 Å and N—H = 0.88±0.01 Å, and with Uiso(H) set to 1.5Ueq(O) and 1.2Ueq(N). The maximum and minimum residual electron density peaks of 1.15 and 0.69 e Å−3, respectively, were located 0.90 and 0.87 Å from the CdII cation.

Table 5
Experimental details

Crystal data
Chemical formula [Cd2Cl2(C6H8O4)(C6H8N2)2(H2O)2]
Mr 692.14
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 20.4710 (8), 5.5578 (2), 10.7910 (3)
β (°) 98.122 (3)
V3) 1215.42 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.01
Crystal size (mm) 0.33 × 0.22 × 0.10
 
Data collection
Diffractometer Agilent Technologies SuperNova Dual diffractometer with Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.842, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15862, 3393, 2992
Rint 0.039
(sin θ/λ)max−1) 0.710
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.065, 1.04
No. of reflections 3393
No. of parameters 163
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.15, −0.69
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

2-Adipato-κ4O,O':O'',O''')bis[aqua(benzene-1,2-diamine-κ2N,N')chloridocadmium] top
Crystal data top
[Cd2Cl2(C6H8O4)(C6H8N2)2(H2O)2]F(000) = 684
Mr = 692.14Dx = 1.891 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 20.4710 (8) ÅCell parameters from 7493 reflections
b = 5.5578 (2) Åθ = 3.8–30.0°
c = 10.7910 (3) ŵ = 2.01 mm1
β = 98.122 (3)°T = 100 K
V = 1215.42 (7) Å3Prism, brown
Z = 20.33 × 0.22 × 0.10 mm
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with Atlas detector
3393 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2992 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.039
Detector resolution: 10.4041 pixels mm-1θmax = 30.3°, θmin = 3.0°
ω scanh = 2826
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 77
Tmin = 0.842, Tmax = 1.000l = 1414
15862 measured reflections
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0312P)2 + 0.8274P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max < 0.001
S = 1.04Δρmax = 1.15 e Å3
3393 reflectionsΔρmin = 0.69 e Å3
163 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.20549 (2)0.38825 (3)0.25421 (2)0.01173 (6)
Cl10.26037 (3)0.56615 (11)0.45833 (5)0.01653 (13)
O10.14096 (9)0.7293 (3)0.19608 (15)0.0172 (4)
O20.13895 (9)0.4366 (3)0.05909 (15)0.0155 (4)
O1W0.12696 (9)0.1564 (3)0.31419 (16)0.0155 (4)
H1W0.1293 (15)0.026 (3)0.277 (3)0.023*
H2W0.1321 (15)0.127 (5)0.3906 (11)0.023*
N10.28158 (11)0.0464 (4)0.26867 (19)0.0149 (4)
H1N0.2813 (14)0.063 (4)0.327 (2)0.018*
H2N0.2722 (14)0.009 (5)0.1919 (14)0.018*
N20.29273 (11)0.4407 (4)0.12990 (19)0.0145 (4)
H3N0.2803 (13)0.324 (4)0.078 (2)0.017*
H4N0.2981 (14)0.582 (3)0.097 (3)0.017*
C10.12011 (12)0.6431 (5)0.0893 (2)0.0147 (5)
C20.07303 (14)0.7824 (6)0.0037 (2)0.0240 (6)
H2A0.04850.66670.06270.029*
H2B0.09910.88670.05260.029*
C30.02372 (12)0.9371 (5)0.0503 (2)0.0165 (5)
H3A0.04761.05970.10590.020*
H3B0.00180.83570.10170.020*
C40.34453 (12)0.1628 (4)0.2844 (2)0.0133 (5)
C50.35047 (13)0.3687 (4)0.2120 (2)0.0146 (5)
C60.40716 (12)0.5067 (5)0.2319 (2)0.0169 (5)
H60.41120.64560.18220.020*
C70.45817 (13)0.4418 (5)0.3248 (2)0.0202 (5)
H70.49720.53600.33870.024*
C80.45193 (13)0.2395 (5)0.3971 (2)0.0210 (5)
H80.48660.19730.46160.025*
C90.39589 (13)0.0984 (5)0.3766 (2)0.0177 (5)
H90.39250.04210.42540.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.01482 (10)0.00958 (9)0.01025 (9)0.00074 (6)0.00008 (6)0.00069 (6)
Cl10.0255 (3)0.0120 (3)0.0112 (2)0.0020 (2)0.0006 (2)0.0006 (2)
O10.0224 (9)0.0157 (9)0.0127 (8)0.0044 (7)0.0005 (7)0.0009 (7)
O20.0200 (9)0.0150 (9)0.0111 (8)0.0031 (7)0.0007 (7)0.0010 (6)
O1W0.0210 (9)0.0138 (9)0.0114 (8)0.0019 (7)0.0015 (7)0.0002 (7)
N10.0212 (11)0.0123 (10)0.0109 (9)0.0019 (8)0.0014 (8)0.0008 (8)
N20.0214 (11)0.0097 (10)0.0119 (9)0.0005 (8)0.0007 (8)0.0027 (8)
C10.0156 (12)0.0162 (12)0.0123 (11)0.0028 (9)0.0027 (9)0.0018 (9)
C20.0267 (14)0.0310 (16)0.0133 (11)0.0147 (12)0.0000 (10)0.0009 (11)
C30.0189 (13)0.0156 (12)0.0140 (11)0.0057 (10)0.0018 (9)0.0008 (9)
C40.0161 (12)0.0124 (11)0.0117 (10)0.0026 (9)0.0025 (9)0.0016 (9)
C50.0185 (12)0.0145 (12)0.0112 (11)0.0027 (9)0.0027 (9)0.0012 (9)
C60.0206 (13)0.0132 (12)0.0174 (12)0.0010 (10)0.0047 (9)0.0011 (9)
C70.0164 (13)0.0221 (14)0.0222 (13)0.0039 (10)0.0038 (10)0.0035 (11)
C80.0173 (12)0.0259 (15)0.0188 (12)0.0061 (11)0.0010 (9)0.0014 (10)
C90.0221 (13)0.0165 (13)0.0148 (12)0.0042 (10)0.0034 (10)0.0014 (9)
Geometric parameters (Å, º) top
Cd—O12.3448 (17)C2—C31.505 (4)
Cd—O22.3560 (16)C2—H2A0.9900
Cd—N12.448 (2)C2—H2B0.9900
Cd—N22.398 (2)C3—C3i1.521 (5)
Cd—Cl12.5283 (6)C3—H3A0.9900
Cd—O1W2.2265 (18)C3—H3B0.9900
O1—C11.265 (3)C4—C91.389 (3)
O2—C11.268 (3)C4—C51.400 (3)
O1W—H1W0.834 (10)C5—C61.382 (4)
O1W—H2W0.832 (10)C6—C71.389 (4)
N1—C41.430 (3)C6—H60.9500
N1—H1N0.875 (10)C7—C81.385 (4)
N1—H2N0.879 (10)C7—H70.9500
N2—C51.431 (3)C8—C91.381 (4)
N2—H3N0.871 (10)C8—H80.9500
N2—H4N0.874 (10)C9—H90.9500
C1—C21.504 (3)
O1W—Cd—O198.22 (6)O2—C1—C2118.9 (2)
O1W—Cd—O288.62 (6)O1—C1—Cd59.78 (12)
O1—Cd—O255.66 (6)O2—C1—Cd60.29 (12)
O1W—Cd—N2149.12 (7)C2—C1—Cd179.18 (18)
O1—Cd—N2100.84 (7)C1—C2—C3116.0 (2)
O2—Cd—N282.44 (7)C1—C2—H2A108.3
O1W—Cd—N190.66 (7)C3—C2—H2A108.3
O1—Cd—N1166.89 (6)C1—C2—H2B108.3
O2—Cd—N1115.34 (6)C3—C2—H2B108.3
N2—Cd—N167.19 (7)H2A—C2—H2B107.4
O1W—Cd—Cl1102.90 (5)C2—C3—C3i112.5 (3)
O1—Cd—Cl194.65 (4)C2—C3—H3A109.1
O2—Cd—Cl1149.72 (5)C3i—C3—H3A109.1
N2—Cd—Cl199.52 (5)C2—C3—H3B109.1
N1—Cd—Cl192.72 (5)C3i—C3—H3B109.1
C1—O1—Cd92.43 (14)H3A—C3—H3B107.8
C1—O2—Cd91.84 (14)C9—C4—C5119.6 (2)
Cd—O1W—H1W106 (2)C9—C4—N1123.1 (2)
Cd—O1W—H2W114 (2)C5—C4—N1116.8 (2)
H1W—O1W—H2W107 (3)C6—C5—C4120.3 (2)
C4—N1—Cd102.19 (15)C6—C5—N2122.9 (2)
C4—N1—H1N109.0 (19)C4—C5—N2116.4 (2)
Cd—N1—H1N121 (2)C5—C6—C7119.8 (2)
C4—N1—H2N110.0 (19)C5—C6—H6120.1
Cd—N1—H2N99 (2)C7—C6—H6120.1
H1N—N1—H2N115 (3)C8—C7—C6119.8 (2)
C5—N2—Cd103.59 (14)C8—C7—H7120.1
C5—N2—H3N109 (2)C6—C7—H7120.1
Cd—N2—H3N95.4 (19)C9—C8—C7120.8 (2)
C5—N2—H4N111.2 (19)C9—C8—H8119.6
Cd—N2—H4N119 (2)C7—C8—H8119.6
H3N—N2—H4N117 (3)C8—C9—C4119.7 (2)
O1—C1—O2120.1 (2)C8—C9—H9120.1
O1—C1—C2121.0 (2)C4—C9—H9120.1
Cd—O1—C1—O20.2 (2)C9—C4—C5—N2172.4 (2)
Cd—O1—C1—C2179.7 (2)N1—C4—C5—N20.0 (3)
Cd—O2—C1—O10.2 (2)Cd—N2—C5—C6130.3 (2)
Cd—O2—C1—C2179.7 (2)Cd—N2—C5—C442.1 (2)
O1—C1—C2—C334.4 (4)C4—C5—C6—C70.5 (4)
O2—C1—C2—C3145.7 (3)N2—C5—C6—C7171.6 (2)
C1—C2—C3—C3i177.6 (3)C5—C6—C7—C80.1 (4)
Cd—N1—C4—C9131.4 (2)C6—C7—C8—C91.1 (4)
Cd—N1—C4—C540.8 (2)C7—C8—C9—C41.5 (4)
C9—C4—C5—C60.2 (4)C5—C4—C9—C80.8 (4)
N1—C4—C5—C6172.6 (2)N1—C4—C9—C8171.1 (2)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O1ii0.83 (2)1.90 (2)2.728 (2)176 (3)
O1W—H2W···O2iii0.83 (1)1.84 (1)2.670 (2)177 (3)
N1—H1N···Cl1ii0.88 (2)2.57 (2)3.428 (2)166 (2)
N1—H2N···Cl1iv0.88 (2)2.52 (2)3.374 (2)165 (2)
N2—H3N···Cl1iv0.87 (2)2.53 (2)3.385 (2)168 (2)
N2—H4N···Cl1v0.88 (2)2.52 (2)3.322 (2)153 (3)
Symmetry codes: (ii) x, y1, z; (iii) x, y1/2, z1/2; (iv) x, y1/2, z3/2; (v) x, y+1/2, z3/2.
Percentage contributions of inter-atomic contacts to the Hirshfeld surfaces for (I) top
ContactPercentage contribution
H···H45.4
O···H/H···O22.9
Cl···H/H···Cl19.0
C···H/H···C11.2
C···Cl/Cl···C0.7
C···C0.4
Cl···O/O···Cl0.3
Cd···H/H···Cd0.1
Summary of short inter-atomic contacts (Å) in (I) top
ContactDistanceSymmetry operation
H1W···H3A2.32x, -1 + y, z
H8···H82.381 - x, - y, 1 - z
O1W···H3A2.64x, - 1 + y, z
 

Footnotes

Additional correspondence author, e-mail: nadiahhalim@um.edu.my

Acknowledgements

We are grateful to the University of Malaya's Postgraduate Research Grant scheme (PPP) for Grant No. PG056–2013B.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChai, J., Lai, C. S., Yan, J. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 249–250.  Web of Science CSD CrossRef CAS Google Scholar
First citationChe, G.-B., Wang, S.-S., Zha, X.-L., Li, X.-Y., Liu, C.-B., Zhang, X.-J., Xu, Z.-L. & Wang, Q. W. (2013). Inorg. Chim. Acta, 394, 481–487.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2017). Z. Kristallogr. 232, 287–298.  CAS Google Scholar
First citationLai, C. S. & Tiekink, E. R. T. (2004). CrystEngComm, 6, 593–605.  Web of Science CSD CrossRef CAS Google Scholar
First citationLai, C. S. & Tiekink, E. R. T. (2006). Z. Kristallogr. 221, 288–293.  Web of Science CSD CrossRef CAS Google Scholar
First citationLestari, W. W., Streit, H. C., Lönnecke, P., Wickleder, C. & Hey-Hawkins, E. (2014). Dalton Trans. 43, 8188–8195.  CSD CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.  Google Scholar
First citationSeco, J. M., Rodríguez-Diéguez, A., Padro, D., García, J. A., Ugalde, J. M., San Sebastian, E. & Cepeda, J. (2017). Inorg. Chem. 56, 3149–3152.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, Y. S., Azizuddin, A. D., Campian, M. V., Haiduc, I. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 155–165.  CAS Google Scholar
First citationTan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113–126.  CAS Google Scholar
First citationTan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N. Bt A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046–3056.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, L.-P., Li, Z.-H., Ma, L.-F. & Wang, L.-Y. (2015). CrystEngComm, 17, 6441–6449.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds