research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2,6-di­benzyl­pyrrolo­[3,4-f]iso­indole-1,3,5,7(2H,6H)-tetra­thione

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry (BK21 plus) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea, and bDirector of Planning Center, Gyeongsang National University Academy and Industry Collaboration, 501 Jinjudaero, Jinjusi 52828, Republic of Korea
*Correspondence e-mail: woo@gnu.ac.kr

Edited by P. C. Healy, Griffith University, Australia (Received 14 August 2017; accepted 22 August 2017; online 25 August 2017)

The title compound, C24H16N2S4, consists of a central pyromellitic di­imide substituted with an S atom and terminal benzyl groups. The mol­ecule lies on a crystallographic inversion centre so that the asymmetric unit contains half of the mol­ecule. The mol­ecule was prepared by thio­nation of N,N′-di­benzyl­pyromellitic di­imide with Lawesson's reagent and has an S-shaped conformation similar to other compounds of this type. The phenyl groups are tilted by 72.69 (8)° with respect to the plane of the central arene ring. In the crystal, mol­ecules are connected by C—H⋯π inter­actions and weak short S⋯S contacts, forming supra­molecular layers extending paralled to the ab plane. The crystal studied was found to be non-merohedrally twinned, with the minor component being 0.113 (3).

1. Chemical context

Recently, pyromellitic di­imide derivatives have been spotlighted due to their use in energy-storage materials (Nalluri et al. 2016[Nalluri, S. K. M., Liu, Z. C., Wu, Y. L., Hermann, K. R., Samanta, A., Kim, D. J., Krzyaniak, M. D., Wasielewski, M. R. & Stoddart, J. F. (2016). J. Am. Chem. Soc. 138, 5968-5977.]). They also show potential applications in photovoltaic devices (Kanosue et al., 2016[Kanosue, K., Augulis, R., Peckus, D., Karpicz, R., Tamulevičus, T., Tamulevičius, S., Gulbinas, V. & Ando, S. (2016). Macromolecules, 49, 1848-1857.]) and organic semiconductors (Zheng et al., 2008[Zheng, Q., Huang, J., Sarjeant, A. & Katz, H. E. (2008). J. Am. Chem. Soc. 130, 14410-14411.]). Not only pyromellitic di­imide derivatives, but also pyromellitic di­imides substituted with sulfur have potential applications in organic semiconductors (Yang et al., 2015[Yang, T.-F., Huang, S.-H., Chiu, Y.-P., Chen, B.-H., Shih, Y.-W., Chang, Y.-C., Yao, J.-Y., Lee, Y.-J. & Kuo, M.-Y. (2015). Chem. Commun. 51, 13772-13775.]). We have reported copper(I) coordination polymers based on pyromellitic diimide derivatives (Park et al., 2011[Park, G., Yang, H., Kim, T. H. & Kim, J. (2011). Inorg. Chem. 50, 961-968.]), which showed colour change owing to intermolecular halogen–π interactions. In addition, we have found that reversible solvent exchange and crystal transformations were possible in the crystals (Kang et al., 2015[Kang, G., Jeon, Y., Lee, K. Y., Kim, J. & Kim, T. H. (2015). Cryst. Growth Des. 15, 5183-5187.]). In an extension of previous research, we have synthesized the pyromellitic di­imide in which the O atoms are replaced with S atoms, by the reaction of N,N′-di­benzyl­pyromellitic di­imide with Lawesson's reagent, and report its crystal structure here.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound consists of a central pyromellitic di­imide substituted with S atoms and two terminal benzyl groups (Fig. 1[link]). The mol­ecule possesses a crystallographic inversion centre and thus the asymmetric unit of the title compound is composed of half a mol­ecule. The mol­ecule exhibits an intra­molecular C6—H6B⋯S2 short contact (Table 1[link]). In the mol­ecule, the terminal phenyl groups point in opposite directions and their planes are tilted by 72.69 (8)° with respect to the plane of the central arene ring, forming an elongated S-shaped mol­ecule.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯S2 0.99 2.75 3.208 (3) 109
C6—H6BCg1i 0.99 2.66 3.498 (3) 142
Symmetry code: (i) x, y+1, z.
[Figure 1]
Figure 1
The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius and yellow dashed lines represent intra­molecular C—H⋯S short contacts. Unlabelled atoms are generated by the symmetry operation (−x + 2, −y + 1, −z).

3. Supra­molecular features

In the crystal, C6—H6BCg1i (Cg1 is the centroid of the C7–C12 ring) inter­actions between neighbouring mol­ecules generate a one-dimensional loop chain (yellow dashed lines in Fig. 2[link], and Table 1[link]). Moreover, adjacent mol­ecules are connected by a weak short S1⋯ S2 contact [3.5921 (10) Å], resulting in the formation of a two-dimensional network (yellow and black dashed lines in Fig. 3[link]).

[Figure 2]
Figure 2
Inter­molecular C—H⋯π inter­actions (yellow dashed lines) forming one-dimensional loop chains.
[Figure 3]
Figure 3
The packing diagram for the title compound, showing the two-dimensional network formed by C—H⋯π inter­actions (yellow dashed lines) and weak short S⋯S contacts (black dashed lines). H atoms not involved in inter­molecular inter­actions have been omitted for clarity.

4. Synthesis and crystallization

N,N′-Di­benzyl­pyromellitic di­imide was synthesized by the reaction of pyromellitic dianhydride with 2-phenyl­ethyl­amine according to the literature procedure of Im et al. (2017[Im, H., Choi, M. Y., Moon, C. J. & Kim, T. H. (2017). Acta Cryst. E73, 838-841.]). To a stirred solution of N,N′-di­benzyl­pyromellitic di­imide (0.25 g, 0.63 mmol) in anhydrous toluene (100 ml) was added Lawesson's reagent (2.00 g, 4.90 mmol), and the resulting mixture was stirred under reflux for 36 h. It was then cooled to room temperature and concentrated in vacuo, followed by purification by silica-gel flash column chromatography (CH2Cl2n-hexane, 1:3 v/v). Crystals suitable for X-ray diffaction analysis were obtained by slow evaporation of a di­chloro­methane solution of the title compound.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H groups, and C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for Csp3—H groups. Non-merohedral twinning was identified in the crystal (TwinRotMat within PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); the twin law is −0.999 0 0.002, 0 −1 0, 1 0 0.999 and the final refined BASF parameter was determined to be 0.113 (3).

Table 2
Experimental details

Crystal data
Chemical formula C24H16N2S4
Mr 460.63
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 6.8571 (4), 4.7724 (3), 32.0010 (17)
β (°) 95.916 (4)
V3) 1041.65 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.47
Crystal size (mm) 0.43 × 0.34 × 0.01
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.646, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 1829, 1829, 1640
Rint 0.059
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.089, 1.05
No. of reflections 1829
No. of parameters 137
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.23
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

2,6-Dibenzylpyrrolo[3,4-f]isoindole-1,3,5,7(2H,6H)-tetrathione top
Crystal data top
C24H16N2S4F(000) = 476
Mr = 460.63Dx = 1.469 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.8571 (4) ÅCell parameters from 3915 reflections
b = 4.7724 (3) Åθ = 2.6–25.5°
c = 32.0010 (17) ŵ = 0.47 mm1
β = 95.916 (4)°T = 173 K
V = 1041.65 (11) Å3Plate, brown
Z = 20.43 × 0.34 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
1640 reflections with I > 2σ(I)
φ and ω scansRint = 0.059
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 25.0°, θmin = 1.3°
Tmin = 0.646, Tmax = 0.746h = 88
1829 measured reflectionsk = 55
1829 independent reflectionsl = 638
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.037P)2 + 0.6197P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1829 reflectionsΔρmax = 0.26 e Å3
137 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50612 (10)0.30438 (16)0.05735 (2)0.0259 (2)
S21.10897 (11)0.99091 (17)0.10558 (2)0.0299 (2)
N10.7913 (3)0.6607 (5)0.08677 (6)0.0192 (5)
C10.7132 (4)0.4707 (6)0.05665 (7)0.0189 (6)
C20.9678 (4)0.7718 (6)0.07722 (7)0.0199 (6)
C31.0046 (4)0.6467 (6)0.03656 (7)0.0182 (6)
C40.8521 (4)0.4592 (6)0.02468 (7)0.0184 (6)
C51.1572 (4)0.6945 (6)0.01231 (7)0.0199 (6)
H51.26040.82250.02040.024*
C60.6888 (4)0.7471 (6)0.12291 (8)0.0232 (6)
H6A0.55030.78880.11300.028*
H6B0.74930.92180.13480.028*
C70.6944 (4)0.5277 (6)0.15724 (8)0.0235 (6)
C80.5208 (5)0.4058 (6)0.16745 (9)0.0300 (7)
H80.39930.45760.15250.036*
C90.5252 (5)0.2086 (7)0.19950 (10)0.0411 (9)
H90.40690.12520.20640.049*
C100.7023 (5)0.1345 (7)0.22125 (9)0.0423 (9)
H100.70520.00040.24330.051*
C110.8741 (5)0.2531 (7)0.21127 (9)0.0383 (8)
H110.99520.20000.22630.046*
C120.8711 (4)0.4503 (6)0.17935 (8)0.0289 (7)
H120.99010.53260.17260.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0227 (3)0.0291 (4)0.0261 (3)0.0078 (3)0.0038 (3)0.0008 (3)
S20.0311 (4)0.0301 (5)0.0291 (4)0.0100 (3)0.0063 (3)0.0092 (3)
N10.0213 (11)0.0168 (13)0.0198 (10)0.0010 (10)0.0041 (9)0.0010 (9)
C10.0212 (13)0.0160 (15)0.0193 (12)0.0008 (11)0.0013 (10)0.0051 (11)
C20.0235 (14)0.0158 (16)0.0210 (12)0.0014 (12)0.0046 (10)0.0024 (11)
C30.0208 (13)0.0153 (15)0.0184 (12)0.0035 (12)0.0022 (10)0.0026 (11)
C40.0196 (13)0.0156 (16)0.0202 (12)0.0001 (11)0.0024 (10)0.0046 (11)
C50.0208 (13)0.0177 (16)0.0209 (13)0.0005 (12)0.0012 (10)0.0021 (11)
C60.0279 (14)0.0180 (17)0.0249 (13)0.0020 (12)0.0089 (11)0.0020 (12)
C70.0359 (16)0.0163 (16)0.0197 (12)0.0004 (13)0.0094 (11)0.0036 (11)
C80.0359 (16)0.0259 (19)0.0304 (15)0.0014 (14)0.0145 (13)0.0022 (13)
C90.057 (2)0.029 (2)0.0427 (17)0.0066 (17)0.0301 (16)0.0013 (15)
C100.070 (2)0.032 (2)0.0276 (16)0.0005 (18)0.0169 (16)0.0040 (14)
C110.053 (2)0.033 (2)0.0273 (15)0.0034 (17)0.0005 (14)0.0030 (14)
C120.0365 (16)0.0238 (18)0.0272 (14)0.0037 (14)0.0068 (12)0.0010 (13)
Geometric parameters (Å, º) top
S1—C11.629 (3)C6—H6A0.9900
S2—C21.635 (3)C6—H6B0.9900
N1—C21.384 (3)C7—C121.388 (4)
N1—C11.390 (3)C7—C81.394 (4)
N1—C61.473 (3)C8—C91.390 (4)
C1—C41.469 (3)C8—H80.9500
C2—C31.477 (3)C9—C101.382 (5)
C3—C51.384 (4)C9—H90.9500
C3—C41.399 (4)C10—C111.374 (5)
C4—C5i1.388 (3)C10—H100.9500
C5—C4i1.388 (3)C11—C121.388 (4)
C5—H50.9500C11—H110.9500
C6—C71.515 (4)C12—H120.9500
C2—N1—C1112.3 (2)N1—C6—H6B108.9
C2—N1—C6124.4 (2)C7—C6—H6B108.9
C1—N1—C6123.1 (2)H6A—C6—H6B107.7
N1—C1—C4106.0 (2)C12—C7—C8119.4 (3)
N1—C1—S1125.63 (19)C12—C7—C6120.6 (2)
C4—C1—S1128.3 (2)C8—C7—C6120.0 (2)
N1—C2—C3105.8 (2)C9—C8—C7120.1 (3)
N1—C2—S2127.14 (19)C9—C8—H8120.0
C3—C2—S2127.06 (19)C7—C8—H8120.0
C5—C3—C4122.7 (2)C10—C9—C8119.7 (3)
C5—C3—C2129.4 (2)C10—C9—H9120.1
C4—C3—C2107.9 (2)C8—C9—H9120.1
C5i—C4—C3122.5 (2)C11—C10—C9120.5 (3)
C5i—C4—C1129.6 (2)C11—C10—H10119.8
C3—C4—C1107.9 (2)C9—C10—H10119.8
C3—C5—C4i114.8 (2)C10—C11—C12120.2 (3)
C3—C5—H5122.6C10—C11—H11119.9
C4i—C5—H5122.6C12—C11—H11119.9
N1—C6—C7113.4 (2)C11—C12—C7120.1 (3)
N1—C6—H6A108.9C11—C12—H12119.9
C7—C6—H6A108.9C7—C12—H12119.9
C2—N1—C1—C40.2 (3)S1—C1—C4—C5i0.3 (4)
C6—N1—C1—C4175.6 (2)N1—C1—C4—C31.2 (3)
C2—N1—C1—S1178.89 (19)S1—C1—C4—C3177.4 (2)
C6—N1—C1—S13.1 (3)C4—C3—C5—C4i0.3 (4)
C1—N1—C2—C31.5 (3)C2—C3—C5—C4i180.0 (2)
C6—N1—C2—C3174.3 (2)C2—N1—C6—C7108.7 (3)
C1—N1—C2—S2177.3 (2)C1—N1—C6—C776.0 (3)
C6—N1—C2—S27.0 (4)N1—C6—C7—C1264.7 (3)
N1—C2—C3—C5177.5 (3)N1—C6—C7—C8116.7 (3)
S2—C2—C3—C53.8 (4)C12—C7—C8—C90.0 (4)
N1—C2—C3—C42.2 (3)C6—C7—C8—C9178.7 (3)
S2—C2—C3—C4176.5 (2)C7—C8—C9—C100.1 (5)
C5—C3—C4—C5i0.3 (4)C8—C9—C10—C110.3 (5)
C2—C3—C4—C5i180.0 (2)C9—C10—C11—C120.4 (5)
C5—C3—C4—C1177.6 (2)C10—C11—C12—C70.3 (5)
C2—C3—C4—C12.1 (3)C8—C7—C12—C110.1 (4)
N1—C1—C4—C5i179.0 (3)C6—C7—C12—C11178.8 (3)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···S20.992.753.208 (3)109
C6—H6B···Cg1ii0.992.663.498 (3)142
Symmetry code: (ii) x, y+1, z.
 

Funding information

Funding for this research was provided by: Ministry of Education, Science and Technology (Basic Science Program through the National Research Foundation of Korea (NRF); grant No. 2015R1D1A4A01020317); Ministry of Trade, Industry and Energy (MOTIE, Korea), Industrial Human Resources and Skill Development Program (award No. N0001415, Display Expert Training Project for Advanced Display equipments and components engineer).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIm, H., Choi, M. Y., Moon, C. J. & Kim, T. H. (2017). Acta Cryst. E73, 838–841.  CSD CrossRef IUCr Journals Google Scholar
First citationKang, G., Jeon, Y., Lee, K. Y., Kim, J. & Kim, T. H. (2015). Cryst. Growth Des. 15, 5183–5187.  Web of Science CSD CrossRef CAS Google Scholar
First citationKanosue, K., Augulis, R., Peckus, D., Karpicz, R., Tamulevičus, T., Tamulevičius, S., Gulbinas, V. & Ando, S. (2016). Macromolecules, 49, 1848–1857.  CrossRef CAS Google Scholar
First citationNalluri, S. K. M., Liu, Z. C., Wu, Y. L., Hermann, K. R., Samanta, A., Kim, D. J., Krzyaniak, M. D., Wasielewski, M. R. & Stoddart, J. F. (2016). J. Am. Chem. Soc. 138, 5968–5977.  CSD CrossRef CAS PubMed Google Scholar
First citationPark, G., Yang, H., Kim, T. H. & Kim, J. (2011). Inorg. Chem. 50, 961–968.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, T.-F., Huang, S.-H., Chiu, Y.-P., Chen, B.-H., Shih, Y.-W., Chang, Y.-C., Yao, J.-Y., Lee, Y.-J. & Kuo, M.-Y. (2015). Chem. Commun. 51, 13772–13775.  CSD CrossRef CAS Google Scholar
First citationZheng, Q., Huang, J., Sarjeant, A. & Katz, H. E. (2008). J. Am. Chem. Soc. 130, 14410–14411.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds