research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and DFT study of bis­­{(S)-2-[(2-hy­dr­oxy­benzyl)­amino]-4-methyl­penta­noato-κ2N,O}(1,10-phenanthroline-κ2N,N′)nickel(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36 Al-Khod 123, Muscat, Sultanate of Oman, bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Atakum–Samsun, Turkey, and cDepartment of Chemistry, National Taras Shevchenko University of Kiev, 64/13, Volodymyrska Street, City of Kyiv, 01601, Ukraine
*Correspondence e-mail: malinachem88@gmail.com

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 19 July 2017; accepted 18 August 2017; online 30 August 2017)

In the title compound, [Ni(C13H18NO3)2(C12H8N2)], the NiII cation shows a distorted octa­hedral coordination environment. It is formed by two N atoms from the phenanthroline ligand, as well as two N and two O atoms belonging to two 2-[(2-hy­droxy­benz­yl)amino]-4-methyl­penta­noate ligands. Complex mol­ecules are connected into layers propagating along the ab plane via hydrogen bonds formed by O atoms of carboxyl­ate and phenoxide groups, which are further connected into a three-dimensional motif.

1. Chemical context

The design and synthesis of metal complexes have attracted considerable attention for their potential applications in catalysis, magnetism, materials science and pharmaceutical chemistry (Che & Siu, 2010[Che, C. M. & Siu, F. M. (2010). Curr. Opin. Chem. Biol. 14, 255-261.]). Mononuclear ethyl­enedi­aminedi­acetate complexes can be used to bind and cleave DNA under physiological conditions (An et al., 2006[An, Y., Liu, S. D., Deng, S. Y., Ji, L. N. & Mao, Z. W. J. (2006). J. Inorg. Biochem. 100, 1586-1593.]) and binuclear complexes containing bipyridyl or phenanthroline units in their structure show anti­viral activity, as well as inhibition of proviral DNA synthesis (Rajendiran et al., 2007[Rajendiran, V., Karthik, R., Palaniandavar, M., Stoeckli-Evans, H., Periasamy, V. S., Akbarsha, M. A., Srinag, B. S. & Krishnamurthy, H. (2007). Inorg. Chem. 46, 8208-8221.]). On the other hand, using bifunctional ligands that are capable of simultaneously coordinating to a metal centre and providing hydrogen bonding gives important experimental data for a better understanding of the key tools in crystal engineering (Burrows, 2004[Burrows, A. D. (2004). Struct. Bond. 108, 55-96.]). Metal complexes of 1,10-phenanthroline (phen) and its derivatives are of increasing inter­est because of their versatile roles in many fields, such as analytical chemistry (Chalk & Tyson, 1994[Chalk, S. J. & Tyson, J. F. (1994). Anal. Chem. 66, 660-666.]), catalysis (Samnani et al., 1996[Samnani, P. B., Bhattacharya, P. K., Ganeshpure, P. A., Koshy, V. J. & Satish, N. (1996). J. Mol. Catal. A Chem. 110, 89-94.]), electrochemical polymerization (Bachas et al., 1997[Bachas, L. G., Cullen, L., Hutchins, R. S. & Scott, D. L. (1997). J. Chem. Soc. Dalton Trans. pp. 1571-1578.]) and biochemistry (Sammes & Yahioglu, 1994[Sammes, P. G. & Yahioglu, G. (1994). Chem. Soc. Rev. 23, 327-350.]). 1,10-Phenanthroline is a bidentate chelating ligand with notable coordination ability for transition metal cations. Over the last few decades, the complex formation of transition metal ions with amino acids has also been studied extensively (Auclair et al., 1984[Auclair, C., Voisin, E., Banoun, H., Paoletti, C., Bernadou, J. & Meunier, B. (1984). J. Med. Chem. 27, 1161-1166.]). Amino acid–metallic ion inter­actions are found to be responsible for enzymatic activity and the stability of protein structures (Dinelli et al., 2010[Dinelli, L. R., Bezerra, T. M. & Sene, J. J. (2010). Curr. Res. Chem, 2, 18-23.]). Nickel is also essential for the healthy life of animals since it is associated with several enzymes (Poellot et al., 1990[Poellot, R. A., Shuler, T. R., Uthus, E. O. & Nielsen, F. H. (1990). Proc. Natl Acad. Sci. USA, 44, 80-97.]) and plays a role in physiological processes as a cofactor in the absorption of iron from the intestine (Nielsen, 1980[Nielsen, F. H. (1980). J. Nutr. 110, 965-973.]). Any change in its concentration leads to metabolic disorder (Kolodziej, 1994[Kolodziej, A. F. (1994). Progress in Inorganic Chemistry, Vol. 41, edited by K. D. Karlin, pp. 493-523. New York: Wiley.]). With the discovery of the biological importance of nickel, it is essential to study its complex formation with amino acids in order to gain a better understanding of the functions of their complexes (Faizi & Sharkina, 2015[Faizi, M. S. H. & Sharkina, N. O. (2015). Acta Cryst. E71, 195-198.]). Therefore, we report here the preparation and the crystal structure of a nickel(II) complex with the formula: [Ni(C13H18NO3)2(C12H8N2)], (I).

[Scheme 1]

2. Structural commentary

The complex mol­ecule of I, represented in Fig. 1[link], contains one crystallographically independent NiII cation, which is octahedrally coordinated by two mol­ecules of deprotonated 2-[(2-hy­droxy­benz­yl)amino]-4-methyl­penta­noic acid via their N atoms and one of the carboxylate atoms each. The coordination environment is com­pleted by one bidentate phenanthroline ligand. The C—O bond lengths in the deprotonated carb­oxy­lic acid groups differ significantly [1.239 (2) and 1.292 (2) Å], which is typical for monodentate carboxyl­ate groups (Wörl et al., 2005a[Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005a). Dalton Trans. pp. 27-29.],b[Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005b). Eur. J. Inorg. Chem. pp. 759-765.]).

[Figure 1]
Figure 1
The mol­ecular structure of compound I, showing the atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

The values of the Ni—O bond lengths are similar to those reported in the literature for octa­hedral carboxyl­ate nickel(II) complexes II–IV (see §5[link]). However, the corresponding Ni—N separations of 2.101 (3)–2.149 (3) Å are somewhat shorter than found for III–IV and similar to that observed in II.

Consequently, the slightly distorted octa­hedral coordination is stabilized by intra­molecular N1—H1A⋯O1 and N2—H2A⋯O2 hydrogen bonds between O atoms of phenoxide moieties and amino groups (Table 1[link] and Fig. 1[link]) and a weak ππ inter­action between the phenanthroline ligand and the phenoxide unit [centroid(N4/C27–C30/C38)⋯centroid(C20–C25) = 3.530 (2) Å].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O6i 0.82 1.82 2.597 (5) 158
O1—H1⋯O3ii 0.82 1.90 2.686 (5) 161
N2—H2A⋯O2 0.98 2.13 2.856 (5) 129
N1—H1A⋯O1 0.98 2.45 3.082 (5) 122
C2—H2B⋯O3ii 0.93 2.56 3.187 (6) 125
C9—H9A⋯O5 0.97 2.38 3.212 (6) 143
C16—H16B⋯O4 0.97 2.31 3.140 (7) 143
C27—H27⋯O4 0.93 2.58 3.094 (5) 116
C36—H36⋯O5 0.93 2.62 3.132 (6) 115
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

3. Supra­molecular features

As shown in Fig. 2[link], mol­ecules of I are united into layers along the ab plane via hydrogen bonds formed between the O atoms of carboxyl­ate and phenoxide groups (Table 1[link]). The layers are stacked via weak C—H⋯π inter­actions between the H atoms of phenanthroline ligands and phenoxide moieties [H32⋯centroid(C1–C6) = 3.390 (5) Å and H23⋯centroid(C1–C6) = 3.477 (3) Å] (Fig. 3[link]).

[Figure 2]
Figure 2
A view of the O—H⋯O hydrogen bonds (dashed lines; see Table 1[link]) in the crystal of compound I, forming layers that are parallel to the ab plane. All H atoms have been omitted for clarity.
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of compound I. The C—H⋯π inter­actions are illustrated by dashed lines. All H atoms have been omitted for clarity.

4. DFT study

The mol­ecular structure used in the theoretical studies of the Ni complex was taken from the X-ray diffraction results, keeping all distances, angles and dihedral angles frozen. Single-point DFT calculations have been carried out using the scalar zeroth-order regular approximation Hamiltonian (Wüllen, 1998[Wüllen, C. (1998). J. Chem. Phys. 109, 392-399.]). Single-point ground-state calculations were carried out using the hybrid B3LYP functional as implemented in ORCA (Lee et al., 1988[Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785-789.]). The present calculation was performed using the additional approximation that the Coulomb integrals are approximated by sum of atom centred s, p, d functions, the auxiliary (or fitting) basis set (Yilmaz et al., 2006[Yilmaz, V. T., Hamamci, S. & Gumus, S. (2006). Chem. Phys. Lett. 425, 361-366.]). This allows for efficient treatment of the Coulomb inter­actions and hence reduces calculation times. The Def2-TZVP main and Def2-TZVP/J auxiliary basis sets were used (Pantazis et al., 2008[Pantazis, D. A., Chen, X. Y., Landis, C. R. & Neese, F. (2008). J. Chem. Theory Comput. 4, 908-915.]). The main basis set is of [5s3p2d] quality for Ni, (5s2p1d) for C, N and O, and (2s) for H (Weigend & Ahlrichs, 2005[Weigend, F. & Ahlrichs, R. (2005). Phys. Chem. Chem. Phys. 7, 3297-3305.]).

The LUMO and HOMO orbital energy parameters are significantly accountable for the charge transfer, chemical reactivity and kinetic/thermodynamic stability of a mol­ecule. Metal complexes with a small energy gap (ΔE) between the HOMO and LUMO are more polarizable, thereby acting as soft mol­ecules with higher chemical reactivity. However, complexes with a large energy gap offer greater stability and low chemical reactivity compared to those with a small HOMO–LUMO energy gap. The DFT study of I revealed that the HOMO and HOMO-1 are localized on the N1, N2, O4, O5, O3, O6, C13 and C14 atoms of the amino acid ligand. In addition, the respective mol­ecular orbitals are also partially localized on the NiII cation, namely in the dx2-y2 orbital (Fig. 4[link]). In contrast, LUMO and LUMO+1 are totally delocalized over the phenanthroline moiety. It could therefore be stated that the HOMO and LUMO are mainly composed of σ- and π-type orbitals, respectively, and that intra­molecular charge transfer occurs from the amino acid moiety to the phenanthroline ligand. The HOMO–LUMO gap of I was calculated to 0.04212 a.u. and the frontier mol­ecular orbital energies of I are also given in Fig. 4[link]. A comparison of selected geometric data for I[link] from calculated (DFT) and X-ray data is given in Table 2[link].

Table 2
Comparison of selected geometric data for I[link] (Å, °) from calculated (DFT) and X-ray data

Bonds X-ray B3LYP/6–311G(d,p)
Ni1—N3 2.101 (3) 2.100
Ni1—N4 2.105 (3) 2.105
Ni1—N1 2.141 (3) 2.142
Ni1—N2 2.149 (3) 2.149
Ni1—O5 2.044 (2) 2.044
Ni1—O4 2.051 (3) 2.051
O5—Ni1—O4 101.77 (11) 101.771
N3—Ni1—N2 101.52 (15) 101.510
[Figure 4]
Figure 4
Electron distribution of the HOMO-1, HOMO, LUMO and LUMO+1 energy levels for I.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.38, update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed the structures of three similar compounds, viz. (II) (IVIKOO; Ji et al., 2011[Ji, J.-L., Huang, L.-Q., Cai, Y., Yu, L.-J. & Zhou, Z.-H. (2011). J. Mol. Struct. 994, 70-74.]), (III) (FATQAT; Ma et al., 2004[Ma, L.-F., Liang, F.-P., Qin, H.-C., Hu, R.-X. & Zhang, M.-B. (2004). Chin. J. Struct. Chem. (Jiegou Huaxue), 23, 1376.]) and (IV) (YOWKEA; Skoulika et al., 1995[Skoulika, S., Michaelides, A. & Aubry, A. (1995). Acta Cryst. C51, 843-846.]); all three nickel(II) complexes have similar N4O2 coordination environments formed by amino­carboxyl­ate and phenanthroline ligands.

6. Synthesis and crystallization

For the preparation of 2-[(2-hy­droxy­benz­yl)amino]-4-methyl­penta­noic acid (HAMA), L-leucine (1.00 g, 6.71 mmol) and LiOH·H2O (0.284 g, 6.77 mmol) in anhydrous methanol (30 ml) were stirred for 30 min to dissolve. A methano­lic solution of salicyl­aldehyde (1.44 g, 6.72 mmol) was added dropwise to the above solution. The solution was stirred for 1 h and then treated with sodium borohydride (0.248 g, 6.71 mmol) with constant stirring. The solvent was evaporated and the resulting sticky mass was dissolved in water. A cloudy solution was obtained, which was then acidified with dilute HCl. By maintaining the pH of the solution in the range 5–7 the ligand precipitated as a colourless solid. The solid was filtered off, washed thoroughly with water and finally dried inside a vacuum desiccator (yield 2.08 g, 85%).

For the preparation of the title compound, HAMA (0.500 g, 1.43 mmol) was deprotonated with LiOH·H2O (0.060 g, 1.44 mmol) in anhydrous methanol (25 ml), which resulted in a clear colourless solution after 30 min. A methano­lic solution of Ni(NO3)2·6H2O (0.17 g, 0.71 mmol) was added dropwise to the ligand solution with stirring. The colour of the solution changed to green immediately. Phenanthroline (0.13 g, 0.71 mmol) was then added and the reaction mixture was stirred at room temperature for 16 h. The solution was evaporated to dryness with a rotary evaporator. Blue block-shaped crystals, suitable for single-crystal X-ray analysis, were obtained by slow diffusion of diethyl ether into a methano­lic solution of the crude solid over a period of 2–3 d. The crystals were filtered off and washed with diethyl ether (yield 74%).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The N—H hydrogens were located in a difference Fourier map and refined without constraints. The O—H hydrogens were also located in a difference Fourier map but were constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(O). The C-bound H atoms were included in calculated positions and treated as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.2–1.5Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C13H18NO3)2(C12H8N2)]
Mr 711.48
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 12.9336 (4), 14.5249 (4), 19.9141 (5)
V3) 3741.05 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.57
Crystal size (mm) 0.30 × 0.22 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.848, 0.895
No. of measured, independent and observed [I > 2σ(I)] reflections 29587, 8568, 6012
Rint 0.029
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.133, 0.95
No. of reflections 8568
No. of parameters 449
No. of restraints 18
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.76, −0.29
Absolute structure Refined as an inversion twin
Absolute structure parameter −0.010 (18)
Computer programs: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b) and PLATON (Spek, 2009).

Bis{(S)-2-[(2-hydroxybenzyl)amino]-4-methylpentanoato-κ2N,O}(1,10-phenanthroline-κ2N,N')nickel(II) top
Crystal data top
[Ni(C13H18NO3)2(C12H8N2)]Dx = 1.263 Mg m3
Mr = 711.48Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9936 reflections
a = 12.9336 (4) Åθ = 0.9–0.9°
b = 14.5249 (4) ŵ = 0.57 mm1
c = 19.9141 (5) ÅT = 296 K
V = 3741.05 (18) Å3Block, blue
Z = 40.30 × 0.22 × 0.20 mm
F(000) = 1504
Data collection top
Bruker APEXII CCD area detector
diffractometer
8568 independent reflections
Radiation source: fine-focus sealed tube, x-ray6012 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
phi and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
multi-scan
h = 1616
Tmin = 0.848, Tmax = 0.895k = 1818
29587 measured reflectionsl = 2525
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0876P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.133(Δ/σ)max = 0.001
S = 0.95Δρmax = 0.76 e Å3
8568 reflectionsΔρmin = 0.29 e Å3
449 parametersAbsolute structure: Refined as an inversion twin
18 restraintsAbsolute structure parameter: 0.010 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.52225 (3)0.50277 (4)0.46103 (2)0.04058 (16)
O50.6501 (2)0.5145 (2)0.52079 (13)0.0468 (7)
O20.3621 (3)0.7541 (3)0.41899 (14)0.0724 (10)
H20.3114770.7872760.4136230.109*
O10.6688 (2)0.2074 (2)0.43473 (17)0.0571 (8)
H10.7208270.1754500.4316920.086*
O40.4054 (2)0.5004 (3)0.53063 (12)0.0514 (6)
O60.7370 (2)0.6064 (2)0.58909 (15)0.0616 (9)
O30.3183 (3)0.4110 (3)0.60140 (16)0.0679 (9)
N40.4109 (2)0.4992 (3)0.38398 (15)0.0475 (7)
N20.5284 (3)0.6495 (2)0.47445 (15)0.0419 (8)
H2A0.4571260.6701310.4816190.050*
N30.6159 (3)0.4852 (3)0.37583 (17)0.0503 (9)
N10.5230 (3)0.3595 (2)0.48649 (15)0.0435 (8)
H1A0.5954720.3415730.4925090.052*
C380.4518 (3)0.4861 (3)0.3217 (2)0.0502 (10)
C370.5622 (4)0.4787 (3)0.3174 (2)0.0483 (10)
C10.5863 (3)0.1533 (3)0.45023 (19)0.0478 (10)
C200.4058 (4)0.7348 (3)0.3577 (2)0.0517 (11)
C250.5103 (4)0.7109 (3)0.35645 (19)0.0482 (10)
C60.4888 (3)0.1959 (3)0.45109 (18)0.0470 (9)
C140.6642 (3)0.5909 (3)0.54962 (19)0.0459 (9)
C130.3911 (3)0.4256 (3)0.5619 (2)0.0469 (10)
C20.5965 (4)0.0606 (3)0.4652 (2)0.0603 (12)
H2B0.6616910.0335350.4658670.072*
C330.6104 (5)0.4661 (3)0.2544 (2)0.0616 (13)
C70.4781 (3)0.2962 (3)0.4355 (2)0.0482 (9)
H7A0.5110750.3082240.3926330.058*
H7B0.4051760.3103680.4305820.058*
C90.5481 (4)0.3555 (4)0.6112 (2)0.0568 (12)
H9A0.5939900.4073100.6035340.068*
H9B0.5097240.3679620.6520280.068*
C300.3934 (4)0.4825 (3)0.2632 (2)0.0652 (14)
C80.4719 (3)0.3501 (3)0.55296 (18)0.0464 (10)
H80.4369470.2902950.5546660.056*
C150.5844 (3)0.6659 (3)0.5380 (2)0.0488 (9)
H150.6206960.7249080.5343880.059*
C210.3505 (4)0.7395 (3)0.2990 (2)0.0633 (12)
H210.2804400.7539630.3001200.076*
C240.5575 (4)0.6950 (3)0.2947 (2)0.0569 (11)
H240.6273290.6798600.2932890.068*
C50.4047 (4)0.1405 (4)0.4663 (2)0.0647 (13)
H50.3392530.1669230.4676030.078*
C160.5130 (5)0.6701 (4)0.5987 (2)0.0756 (15)
H16A0.5546930.6682470.6391880.091*
H16B0.4690590.6160330.5986680.091*
C40.4145 (5)0.0476 (4)0.4798 (3)0.0767 (17)
H40.3562500.0123250.4890770.092*
C230.5026 (5)0.7013 (3)0.2357 (2)0.0642 (13)
H230.5352430.6913610.1947120.077*
C220.3988 (5)0.7226 (4)0.2379 (2)0.0678 (14)
H220.3608830.7257030.1982370.081*
C320.5485 (6)0.4609 (4)0.1963 (3)0.0774 (16)
H320.5798030.4517340.1548330.093*
C260.5726 (4)0.7091 (3)0.4201 (2)0.0526 (10)
H26A0.6417370.6874880.4096100.063*
H26B0.5786540.7714770.4369470.063*
C340.7167 (5)0.4601 (4)0.2532 (3)0.0755 (16)
H340.7512730.4514360.2127470.091*
C280.2451 (4)0.5091 (4)0.3321 (3)0.0772 (15)
H280.1744360.5187300.3372090.093*
C310.4447 (7)0.4688 (4)0.1996 (2)0.086 (2)
H310.4057900.4654120.1604420.104*
C30.5097 (5)0.0080 (4)0.4792 (2)0.0736 (14)
H30.5166350.0544680.4883180.088*
C290.2855 (5)0.4945 (5)0.2700 (3)0.0809 (16)
H290.2427230.4925160.2325410.097*
C270.3098 (3)0.5095 (4)0.3884 (2)0.0614 (12)
H270.2803720.5173930.4305890.074*
C360.7183 (4)0.4780 (4)0.3723 (3)0.0621 (13)
H360.7565730.4804330.4117650.075*
C100.6139 (4)0.2694 (4)0.6222 (3)0.0733 (15)
H100.6436330.2521490.5787630.088*
C350.7705 (5)0.4669 (4)0.3114 (3)0.0821 (17)
H350.8423170.4641020.3107350.098*
C110.7018 (5)0.2873 (6)0.6694 (3)0.105 (2)
H11A0.7411470.3390420.6536070.157*
H11B0.7455480.2339660.6713620.157*
H11C0.6751800.3003900.7133300.157*
C120.5484 (7)0.1884 (5)0.6466 (4)0.118 (3)
H12A0.5319730.1966110.6932230.177*
H12B0.5864030.1321590.6409020.177*
H12C0.4856210.1855090.6209370.177*
C170.4436 (7)0.7575 (8)0.6008 (3)0.127 (2)
H170.4172950.7711650.5556910.153*
C190.3515 (8)0.7320 (10)0.6487 (5)0.198 (5)
H19A0.3457220.6662320.6517900.297*
H19B0.2884080.7569820.6310460.297*
H19C0.3641860.7571470.6924860.297*
C180.5090 (12)0.8401 (8)0.6272 (5)0.193 (4)
H18A0.5321400.8271740.6720690.290*
H18B0.4673150.8947850.6274290.290*
H18C0.5677410.8491360.5985440.290*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0418 (2)0.0431 (3)0.0368 (2)0.0001 (3)0.00271 (18)0.0003 (2)
O50.0454 (13)0.0433 (19)0.0517 (14)0.0012 (14)0.0096 (11)0.0007 (13)
O20.082 (2)0.090 (3)0.0458 (17)0.040 (2)0.0103 (15)0.0084 (16)
O10.0533 (16)0.0481 (19)0.0699 (19)0.0028 (15)0.0016 (15)0.0030 (15)
O40.0505 (14)0.0540 (18)0.0497 (14)0.0091 (18)0.0030 (11)0.0002 (18)
O60.0625 (18)0.056 (2)0.0662 (19)0.0065 (15)0.0276 (16)0.0032 (15)
O30.0606 (18)0.074 (2)0.070 (2)0.0105 (17)0.0182 (17)0.0040 (17)
N40.0471 (16)0.0445 (19)0.0510 (17)0.001 (2)0.0075 (13)0.0064 (19)
N20.0456 (18)0.0416 (19)0.0386 (16)0.0022 (16)0.0017 (15)0.0042 (13)
N30.0548 (19)0.050 (3)0.0459 (17)0.0001 (18)0.0046 (14)0.0006 (17)
N10.0477 (19)0.045 (2)0.0383 (16)0.0025 (17)0.0040 (15)0.0011 (13)
C380.072 (3)0.037 (3)0.043 (2)0.004 (2)0.0118 (17)0.0045 (17)
C370.070 (2)0.034 (3)0.041 (2)0.0006 (19)0.0002 (19)0.0013 (16)
C10.061 (2)0.042 (2)0.041 (2)0.007 (2)0.0039 (18)0.0013 (17)
C200.069 (3)0.042 (3)0.044 (2)0.013 (2)0.003 (2)0.0062 (18)
C250.066 (3)0.036 (2)0.042 (2)0.002 (2)0.0048 (19)0.0047 (16)
C60.055 (2)0.046 (2)0.040 (2)0.005 (2)0.0035 (18)0.0070 (17)
C140.051 (2)0.046 (3)0.041 (2)0.0065 (19)0.0032 (17)0.0009 (18)
C130.044 (2)0.056 (3)0.040 (2)0.009 (2)0.0013 (17)0.0047 (19)
C20.082 (3)0.044 (3)0.055 (3)0.003 (2)0.004 (2)0.002 (2)
C330.101 (4)0.037 (3)0.047 (2)0.000 (2)0.007 (3)0.0041 (18)
C70.054 (2)0.047 (3)0.043 (2)0.003 (2)0.0104 (19)0.0044 (17)
C90.074 (3)0.059 (3)0.038 (2)0.006 (2)0.003 (2)0.0003 (19)
C300.095 (4)0.045 (3)0.055 (3)0.011 (3)0.025 (2)0.006 (2)
C80.055 (2)0.046 (3)0.038 (2)0.0071 (19)0.0025 (17)0.0020 (16)
C150.058 (2)0.046 (2)0.043 (2)0.0005 (19)0.008 (2)0.0009 (18)
C210.077 (3)0.058 (3)0.055 (3)0.011 (3)0.008 (2)0.009 (2)
C240.072 (3)0.050 (3)0.049 (2)0.004 (2)0.014 (2)0.008 (2)
C50.065 (3)0.072 (4)0.057 (3)0.016 (3)0.008 (2)0.016 (3)
C160.083 (3)0.099 (4)0.044 (2)0.026 (3)0.003 (2)0.016 (2)
C40.097 (4)0.062 (4)0.071 (3)0.035 (3)0.021 (3)0.015 (3)
C230.097 (4)0.052 (3)0.044 (2)0.008 (3)0.012 (2)0.0053 (19)
C220.100 (4)0.062 (3)0.041 (2)0.001 (3)0.011 (2)0.007 (2)
C320.126 (5)0.058 (3)0.048 (3)0.009 (3)0.000 (3)0.007 (2)
C260.059 (2)0.047 (3)0.051 (2)0.001 (2)0.004 (2)0.0077 (19)
C340.104 (4)0.061 (3)0.061 (3)0.001 (3)0.033 (3)0.008 (2)
C280.057 (2)0.072 (4)0.103 (4)0.010 (3)0.031 (3)0.015 (4)
C310.159 (6)0.060 (4)0.040 (3)0.002 (4)0.029 (3)0.003 (2)
C30.119 (4)0.043 (3)0.059 (3)0.021 (4)0.014 (3)0.001 (2)
C290.096 (4)0.068 (4)0.078 (3)0.013 (4)0.044 (3)0.013 (3)
C270.057 (2)0.058 (3)0.069 (3)0.005 (3)0.006 (2)0.014 (3)
C360.055 (2)0.068 (4)0.063 (3)0.004 (2)0.010 (2)0.001 (2)
C100.073 (3)0.088 (4)0.059 (3)0.015 (3)0.012 (3)0.011 (3)
C350.074 (3)0.085 (5)0.087 (4)0.000 (3)0.026 (3)0.019 (3)
C110.084 (4)0.155 (7)0.075 (4)0.013 (4)0.019 (3)0.025 (4)
C120.150 (7)0.074 (5)0.129 (6)0.005 (5)0.048 (5)0.043 (4)
C170.133 (5)0.179 (6)0.069 (3)0.056 (4)0.008 (3)0.025 (4)
C190.143 (7)0.323 (12)0.128 (6)0.110 (8)0.014 (6)0.057 (8)
C180.293 (11)0.140 (8)0.147 (7)0.083 (8)0.016 (9)0.040 (6)
Geometric parameters (Å, º) top
Ni1—O52.044 (2)C15—C161.522 (7)
Ni1—O42.051 (3)C15—H150.9800
Ni1—N32.101 (3)C21—C221.390 (7)
Ni1—N42.105 (3)C21—H210.9300
Ni1—N12.141 (3)C24—C231.376 (7)
Ni1—N22.149 (3)C24—H240.9300
O5—C141.262 (5)C5—C41.382 (8)
O2—C201.373 (5)C5—H50.9300
O2—H20.8200C16—C171.555 (10)
O1—C11.360 (5)C16—H16A0.9700
O1—H10.8200C16—H16B0.9700
O4—C131.265 (6)C4—C31.359 (8)
O6—C141.247 (5)C4—H40.9300
O3—C131.245 (5)C23—C221.379 (8)
N4—C271.318 (5)C23—H230.9300
N4—C381.362 (5)C22—H220.9300
N2—C151.477 (5)C32—C311.348 (9)
N2—C261.500 (5)C32—H320.9300
N2—H2A0.9800C26—H26A0.9700
N3—C361.330 (6)C26—H26B0.9700
N3—C371.359 (5)C34—C351.355 (9)
N1—C81.486 (5)C34—H340.9300
N1—C71.489 (5)C28—C291.359 (8)
N1—H1A0.9800C28—C271.398 (6)
C38—C301.389 (6)C28—H280.9300
C38—C371.433 (6)C31—H310.9300
C37—C331.414 (6)C3—H30.9300
C1—C21.386 (6)C29—H290.9300
C1—C61.405 (6)C27—H270.9300
C20—C211.373 (6)C36—C351.397 (7)
C20—C251.395 (7)C36—H360.9300
C25—C241.392 (6)C10—C111.497 (8)
C25—C261.502 (6)C10—C121.529 (9)
C6—C51.386 (6)C10—H100.9800
C6—C71.496 (6)C35—H350.9300
C14—C151.519 (6)C11—H11A0.9600
C13—C81.525 (6)C11—H11B0.9600
C2—C31.386 (7)C11—H11C0.9600
C2—H2B0.9300C12—H12A0.9600
C33—C341.377 (9)C12—H12B0.9600
C33—C321.408 (8)C12—H12C0.9600
C7—H7A0.9700C17—C191.570 (14)
C7—H7B0.9700C17—C181.560 (15)
C9—C101.529 (8)C17—H170.9800
C9—C81.524 (6)C19—H19A0.9600
C9—H9A0.9700C19—H19B0.9600
C9—H9B0.9700C19—H19C0.9600
C30—C291.413 (8)C18—H18A0.9600
C30—C311.444 (8)C18—H18B0.9600
C8—H80.9800C18—H18C0.9600
O5—Ni1—O4101.77 (11)C20—C21—C22120.2 (5)
O5—Ni1—N390.80 (12)C20—C21—H21119.9
O4—Ni1—N3165.66 (13)C22—C21—H21119.9
O5—Ni1—N4168.45 (12)C23—C24—C25121.1 (4)
O4—Ni1—N489.30 (11)C23—C24—H24119.4
N3—Ni1—N478.64 (13)C25—C24—H24119.4
O5—Ni1—N186.54 (13)C4—C5—C6122.5 (5)
O4—Ni1—N180.03 (14)C4—C5—H5118.7
N3—Ni1—N194.04 (15)C6—C5—H5118.7
N4—Ni1—N198.73 (16)C15—C16—C17113.8 (5)
O5—Ni1—N279.32 (13)C15—C16—H16A108.8
O4—Ni1—N287.72 (14)C17—C16—H16A108.8
N3—Ni1—N2101.52 (15)C15—C16—H16B108.8
N4—Ni1—N298.07 (16)C17—C16—H16B108.8
N1—Ni1—N2159.02 (12)H16A—C16—H16B107.7
C14—O5—Ni1117.1 (3)C3—C4—C5119.6 (5)
C20—O2—H2109.5C3—C4—H4120.2
C1—O1—H1109.5C5—C4—H4120.2
C13—O4—Ni1117.1 (3)C22—C23—C24119.4 (4)
C27—N4—C38117.5 (3)C22—C23—H23120.3
C27—N4—Ni1128.8 (3)C24—C23—H23120.3
C38—N4—Ni1113.6 (2)C23—C22—C21120.3 (4)
C15—N2—C26109.8 (3)C23—C22—H22119.8
C15—N2—Ni1106.5 (2)C21—C22—H22119.8
C26—N2—Ni1119.8 (3)C31—C32—C33121.5 (5)
C15—N2—H2A106.7C31—C32—H32119.3
C26—N2—H2A106.7C33—C32—H32119.3
Ni1—N2—H2A106.7N2—C26—C25114.5 (4)
C36—N3—C37117.3 (4)N2—C26—H26A108.6
C36—N3—Ni1128.8 (3)C25—C26—H26A108.6
C37—N3—Ni1113.9 (3)N2—C26—H26B108.6
C8—N1—C7112.1 (3)C25—C26—H26B108.6
C8—N1—Ni1107.4 (2)H26A—C26—H26B107.6
C7—N1—Ni1115.9 (2)C35—C34—C33119.6 (5)
C8—N1—H1A107.0C35—C34—H34120.2
C7—N1—H1A107.0C33—C34—H34120.2
Ni1—N1—H1A107.0C29—C28—C27119.9 (5)
N4—C38—C30123.9 (4)C29—C28—H28120.0
N4—C38—C37116.9 (3)C27—C28—H28120.0
C30—C38—C37119.2 (4)C32—C31—C30120.8 (5)
N3—C37—C33122.9 (4)C32—C31—H31119.6
N3—C37—C38117.0 (4)C30—C31—H31119.6
C33—C37—C38120.1 (4)C4—C3—C2120.2 (5)
O1—C1—C2122.4 (4)C4—C3—H3119.9
O1—C1—C6116.9 (4)C2—C3—H3119.9
C2—C1—C6120.7 (4)C28—C29—C30119.1 (4)
O2—C20—C21122.1 (4)C28—C29—H29120.4
O2—C20—C25117.8 (4)C30—C29—H29120.4
C21—C20—C25120.1 (4)N4—C27—C28122.7 (5)
C20—C25—C24118.8 (4)N4—C27—H27118.7
C20—C25—C26120.6 (4)C28—C27—H27118.7
C24—C25—C26120.5 (4)N3—C36—C35122.4 (5)
C5—C6—C1116.8 (4)N3—C36—H36118.8
C5—C6—C7122.6 (4)C35—C36—H36118.8
C1—C6—C7120.6 (4)C11—C10—C12110.8 (5)
O6—C14—O5123.7 (4)C11—C10—C9111.8 (5)
O6—C14—C15118.6 (4)C12—C10—C9111.5 (5)
O5—C14—C15117.6 (3)C11—C10—H10107.5
O3—C13—O4124.6 (4)C12—C10—H10107.5
O3—C13—C8118.0 (4)C9—C10—H10107.5
O4—C13—C8117.3 (3)C34—C35—C36120.2 (5)
C3—C2—C1120.1 (5)C34—C35—H35119.9
C3—C2—H2B120.0C36—C35—H35119.9
C1—C2—H2B120.0C10—C11—H11A109.5
C34—C33—C32123.4 (5)C10—C11—H11B109.5
C34—C33—C37117.6 (5)H11A—C11—H11B109.5
C32—C33—C37118.9 (5)C10—C11—H11C109.5
N1—C7—C6115.1 (3)H11A—C11—H11C109.5
N1—C7—H7A108.5H11B—C11—H11C109.5
C6—C7—H7A108.5C10—C12—H12A109.5
N1—C7—H7B108.5C10—C12—H12B109.5
C6—C7—H7B108.5H12A—C12—H12B109.5
H7A—C7—H7B107.5C10—C12—H12C109.5
C10—C9—C8115.3 (4)H12A—C12—H12C109.5
C10—C9—H9A108.4H12B—C12—H12C109.5
C8—C9—H9A108.4C19—C17—C16105.2 (8)
C10—C9—H9B108.4C19—C17—C18112.8 (8)
C8—C9—H9B108.4C16—C17—C18108.8 (7)
H9A—C9—H9B107.5C19—C17—H17110.0
C38—C30—C29116.9 (5)C16—C17—H17110.0
C38—C30—C31119.4 (5)C18—C17—H17110.0
C29—C30—C31123.7 (5)C17—C19—H19A109.5
N1—C8—C13110.0 (3)C17—C19—H19B109.5
N1—C8—C9112.6 (3)H19A—C19—H19B109.5
C13—C8—C9108.5 (3)C17—C19—H19C109.5
N1—C8—H8108.5H19A—C19—H19C109.5
C13—C8—H8108.5H19B—C19—H19C109.5
C9—C8—H8108.5C17—C18—H18A109.5
N2—C15—C16112.9 (4)C17—C18—H18B109.5
N2—C15—C14110.4 (3)H18A—C18—H18B109.5
C16—C15—C14108.7 (4)C17—C18—H18C109.5
N2—C15—H15108.3H18A—C18—H18C109.5
C16—C15—H15108.3H18B—C18—H18C109.5
C14—C15—H15108.3
C27—N4—C38—C300.5 (7)C26—N2—C15—C16138.5 (4)
Ni1—N4—C38—C30179.2 (4)Ni1—N2—C15—C1690.4 (4)
C27—N4—C38—C37177.6 (5)C26—N2—C15—C1499.6 (4)
Ni1—N4—C38—C371.2 (5)Ni1—N2—C15—C1431.5 (4)
C36—N3—C37—C330.8 (7)O6—C14—C15—N2159.8 (3)
Ni1—N3—C37—C33179.5 (3)O5—C14—C15—N223.3 (5)
C36—N3—C37—C38179.7 (4)O6—C14—C15—C1675.8 (5)
Ni1—N3—C37—C380.9 (5)O5—C14—C15—C16101.1 (5)
N4—C38—C37—N30.2 (7)O2—C20—C21—C22177.6 (5)
C30—C38—C37—N3178.3 (4)C25—C20—C21—C221.6 (7)
N4—C38—C37—C33179.4 (4)C20—C25—C24—C230.9 (6)
C30—C38—C37—C331.2 (7)C26—C25—C24—C23176.4 (4)
O2—C20—C25—C24177.1 (4)C1—C6—C5—C40.4 (6)
C21—C20—C25—C242.1 (7)C7—C6—C5—C4179.0 (4)
O2—C20—C25—C261.6 (6)N2—C15—C16—C1770.1 (6)
C21—C20—C25—C26177.6 (4)C14—C15—C16—C17167.1 (5)
O1—C1—C6—C5179.5 (4)C6—C5—C4—C31.1 (7)
C2—C1—C6—C51.1 (6)C25—C24—C23—C220.8 (7)
O1—C1—C6—C70.0 (5)C24—C23—C22—C211.4 (8)
C2—C1—C6—C7179.5 (4)C20—C21—C22—C230.2 (8)
Ni1—O5—C14—O6177.6 (3)C34—C33—C32—C31178.7 (5)
Ni1—O5—C14—C150.9 (5)C37—C33—C32—C310.8 (8)
Ni1—O4—C13—O3173.8 (3)C15—N2—C26—C25169.7 (3)
Ni1—O4—C13—C89.4 (4)Ni1—N2—C26—C2566.6 (4)
O1—C1—C2—C3178.6 (4)C20—C25—C26—N255.0 (6)
C6—C1—C2—C32.0 (7)C24—C25—C26—N2129.5 (4)
N3—C37—C33—C340.0 (7)C32—C33—C34—C35179.2 (5)
C38—C37—C33—C34179.6 (5)C37—C33—C34—C350.3 (7)
N3—C37—C33—C32179.5 (4)C33—C32—C31—C300.3 (8)
C38—C37—C33—C320.0 (7)C38—C30—C31—C320.9 (8)
C8—N1—C7—C662.0 (5)C29—C30—C31—C32177.7 (6)
Ni1—N1—C7—C6174.2 (3)C5—C4—C3—C20.1 (8)
C5—C6—C7—N1112.1 (4)C1—C2—C3—C41.4 (7)
C1—C6—C7—N168.5 (5)C27—C28—C29—C301.7 (9)
N4—C38—C30—C290.9 (7)C38—C30—C29—C280.2 (8)
C37—C38—C30—C29177.1 (5)C31—C30—C29—C28178.5 (5)
N4—C38—C30—C31179.7 (5)C38—N4—C27—C281.1 (8)
C37—C38—C30—C311.7 (7)Ni1—N4—C27—C28177.4 (4)
C7—N1—C8—C1398.4 (4)C29—C28—C27—N42.3 (9)
Ni1—N1—C8—C1330.0 (4)C37—N3—C36—C351.8 (8)
C7—N1—C8—C9140.4 (4)Ni1—N3—C36—C35179.7 (4)
Ni1—N1—C8—C991.2 (4)C8—C9—C10—C11167.2 (4)
O3—C13—C8—N1155.4 (4)C8—C9—C10—C1268.1 (6)
O4—C13—C8—N127.6 (5)C33—C34—C35—C361.3 (8)
O3—C13—C8—C980.9 (5)N3—C36—C35—C342.1 (9)
O4—C13—C8—C996.1 (4)C15—C16—C17—C19159.5 (6)
C10—C9—C8—N175.5 (5)C15—C16—C17—C1879.4 (7)
C10—C9—C8—C13162.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O6i0.821.822.597 (5)158
O1—H1···O3ii0.821.902.686 (5)161
N2—H2A···O20.982.132.856 (5)129
N1—H1A···O10.982.453.082 (5)122
C2—H2B···O3ii0.932.563.187 (6)125
C9—H9A···O50.972.383.212 (6)143
C16—H16B···O40.972.313.140 (7)143
C27—H27···O40.932.583.094 (5)116
C36—H36···O50.932.623.132 (6)115
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z+1.
Comparison of selected geometric data for (I) (Å, °) from calculated (DFT) and X-ray data top
BondsX-rayB3LYP/6–311G(d,p)
Ni1—N32.101 (3)2.100
Ni1—N42.105 (3)2.105
Ni1—N12.141 (3)2.142
Ni1—N22.149 (3)2.149
Ni1—O52.044 (2)2.044
Ni1—O42.051 (3)2.051
O5—Ni1—O4101.77 (11)101.771
N3—Ni1—N2101.52 (15)101.51
 

Acknowledgements

The authors are grateful to the Ondokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, Samsun, Turkey, for the X-ray data collection and Department of Chemistry, National Taras Shevchenko University of Kiev, for financial support.

References

First citationAn, Y., Liu, S. D., Deng, S. Y., Ji, L. N. & Mao, Z. W. J. (2006). J. Inorg. Biochem. 100, 1586–1593.  CrossRef PubMed CAS Google Scholar
First citationAuclair, C., Voisin, E., Banoun, H., Paoletti, C., Bernadou, J. & Meunier, B. (1984). J. Med. Chem. 27, 1161–1166.  CrossRef CAS PubMed Google Scholar
First citationBachas, L. G., Cullen, L., Hutchins, R. S. & Scott, D. L. (1997). J. Chem. Soc. Dalton Trans. pp. 1571–1578.  CrossRef Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurrows, A. D. (2004). Struct. Bond. 108, 55–96.  Web of Science CrossRef CAS Google Scholar
First citationChalk, S. J. & Tyson, J. F. (1994). Anal. Chem. 66, 660–666.  CrossRef CAS Google Scholar
First citationChe, C. M. & Siu, F. M. (2010). Curr. Opin. Chem. Biol. 14, 255–261.  CrossRef CAS PubMed Google Scholar
First citationDinelli, L. R., Bezerra, T. M. & Sene, J. J. (2010). Curr. Res. Chem, 2, 18–23.  CAS Google Scholar
First citationFaizi, M. S. H. & Sharkina, N. O. (2015). Acta Cryst. E71, 195–198.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJi, J.-L., Huang, L.-Q., Cai, Y., Yu, L.-J. & Zhou, Z.-H. (2011). J. Mol. Struct. 994, 70–74.  CrossRef CAS Google Scholar
First citationKolodziej, A. F. (1994). Progress in Inorganic Chemistry, Vol. 41, edited by K. D. Karlin, pp. 493–523. New York: Wiley.  Google Scholar
First citationLee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789.  CrossRef CAS Web of Science Google Scholar
First citationMa, L.-F., Liang, F.-P., Qin, H.-C., Hu, R.-X. & Zhang, M.-B. (2004). Chin. J. Struct. Chem. (Jiegou Huaxue), 23, 1376.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNielsen, F. H. (1980). J. Nutr. 110, 965–973.  CAS PubMed Google Scholar
First citationPantazis, D. A., Chen, X. Y., Landis, C. R. & Neese, F. (2008). J. Chem. Theory Comput. 4, 908–915.  CrossRef CAS PubMed Google Scholar
First citationPoellot, R. A., Shuler, T. R., Uthus, E. O. & Nielsen, F. H. (1990). Proc. Natl Acad. Sci. USA, 44, 80–97.  Google Scholar
First citationRajendiran, V., Karthik, R., Palaniandavar, M., Stoeckli-Evans, H., Periasamy, V. S., Akbarsha, M. A., Srinag, B. S. & Krishnamurthy, H. (2007). Inorg. Chem. 46, 8208–8221.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSammes, P. G. & Yahioglu, G. (1994). Chem. Soc. Rev. 23, 327–350.  CrossRef CAS Google Scholar
First citationSamnani, P. B., Bhattacharya, P. K., Ganeshpure, P. A., Koshy, V. J. & Satish, N. (1996). J. Mol. Catal. A Chem. 110, 89–94.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkoulika, S., Michaelides, A. & Aubry, A. (1995). Acta Cryst. C51, 843–846.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeigend, F. & Ahlrichs, R. (2005). Phys. Chem. Chem. Phys. 7, 3297–3305.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005b). Eur. J. Inorg. Chem. pp. 759–765.  Google Scholar
First citationWörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005a). Dalton Trans. pp. 27–29.  Google Scholar
First citationWüllen, C. (1998). J. Chem. Phys. 109, 392–399.  Google Scholar
First citationYilmaz, V. T., Hamamci, S. & Gumus, S. (2006). Chem. Phys. Lett. 425, 361–366.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds