research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of aqua­bis­­(nicotinamide-κN1)bis­­(2,4,6-tri­methyl­benzoato-κO)zinc

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, and cDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, International Scientific Research Centre, Baku State University, 1148 Baku, Azerbaijan
*Correspondence e-mail:

Edited by H. Ishida, Okayama University, Japan (Received 21 July 2017; accepted 9 August 2017; online 21 August 2017)

The asymmetric unit of the title complex, [Zn(C10H11O2)2(C6H6N2O)2(H2O)], contains one half of the complex mol­ecule, and the ZnII cation and the water O atom lie on a twofold rotation axis. The ZnII cation is coordinated by two carboxyl­ate O atoms of the two symmetry-related 2,4,6-tri­methyl­benzoate (TMB) anions and by the water O atom at distances of 2.0311 (16) and 2.076 (2) Å to form a slightly distorted trigonal–planar arrangement, while the distorted trigonal–bipyramidal coordination sphere is completed by the two pyridine N atoms of the two symmetry-related monodentate nicotinamide (NA) ligands at distances of 2.2066 (19) Å in the axial positions. In the crystal, mol­ecules are linked via inter­molecular N—H⋯O and O—H⋯O hydrogen bonds with R22(12), R33(10) and R33(16) ring motifs, forming a double-column structure running along the c-axis direction. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (58.4%), H⋯C/C⋯H (20.3%) and H⋯O/O⋯H (18.3%) inter­actions.

1. Chemical context

Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). The NA ring is the reactive part of nicotinamide adenine dinucleotide (NAD) and its phosphate (NADP), which are the major electron carriers in many biological oxidation-reduction reactions (You et al., 1978[You, K.-S., Arnold, L. J. Jr, Allison, W. S. & Kaplan, N. O. (1978). Trends Biochem. Sci. 3, 265-268.]). A nicotinic acid derivative, N,N-di­ethyl­nicotinamide (DENA), is an important respiratory stimulant (Bigoli et al., 1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]).

The transition metal complexes with ligands of biochemical inter­est as imidazole and some N-protected amino acids show inter­esting physical and/or chemical properties, through which they may find applications in biological systems (Antolini et al., 1982[Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.]). Crystal structures of metal complexes with benzoic acid derivatives have been reported extensively because of the varieties of the coordination modes [for example, Co and Cd complexes with 4-amino­benzoic acid (Chen & Chen, 2002[Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13-21.])]. The structures of some mononuclear complexes obtained from the reactions of transition metal(II) ions with nicotinamide (NA) and some benzoic acid derivatives as ligands, e.g. [Zn(C7H5O3)2(C6H6N2O)2] [(II); Necefoğlu et al., 2002[Necefoğlu, H., Hökelek, T., Ersanlı, C. C. & Erdönmez, A. (2002). Acta Cryst. E58, m758-m761.]], [Mn(C7H4ClO2)2(C10H14N2O)2(H2O)2] [(III); Hökelek et al., 2008[Hökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m505-m506.]], [Zn(C8H8NO2)2(C6H6N2O)2]·H2O [(IV); Hökelek et al., 2009a[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1365-m1366.]], [Mn(C9H10NO2)2(C6H6N2O)(H2O)2] [(V); Hökelek et al., 2009b[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1037-m1038.]], [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2] [(VI); Hökelek et al., 2009c[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m466-m467.]] and [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2] [(VII); Hökelek et al., 2009d[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009d). Acta Cryst. E65, m607-m608.]], have been determined previously. The structure determination of the title compound, [Zn(C10H11O2)2(C6H6ON2)2(H2O)] (I)[link], a zinc complex with two 2,4,6-tri­methyl­benzoate (TMB) and two nicotinamide (NA) ligands and one coordinating water mol­ecule, was undertaken in order to compare the results obtained with those reported previously. In this context, we synthesized the title compound and report herein its crystal and mol­ecular structures along with the Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the crystal structure of the mononuclear title complex contains one ZnII cation (site symmetry 2), one 2,4,6-tri­methyl­benzoate (TMB) anion and one nicotinamide (NA) mol­ecule together with one water mol­ecule (point group symmetry 2), all ligands coordinating in a monodentate manner (Fig. 1[link]). The ZnII cation is penta-coordinated via two nitro­gen atoms of NA and two oxygen atoms of TMB anions and one oxygen atom of the water mol­ecule. The two carboxyl­ate O atoms [O2 and O2i; symmetry code: (i) 1 − x, y, [{1\over 2}] − z] of the two symmetry-related monodentate TMB anions and the coordinating water O atom (O4) are at distances of 2.0311 (16) and 2.076 (2) Å, respectively, around the Zn1 atom and form a slightly distorted triangular planar arrangement. The sum of the bond angles O2—Zn1—O2i [95.38 (9)°], O2—Zn1—O4 [132.31 (5)°] and O2—Zn1—O4i [132.31 (5)°] in the basal plane around ZnII cation is 360°. This confirms the presence of the ZnII cation with very slight deviation from the basal plane. The slightly distorted trigonal–bipyramidal coordination sphere is completed by the two pyridine N atoms (N1 and N1i) of the two symmetry-related monodentate NA ligands at distances of 2.2066 (19) Å in the axial positions. The index of trigonality τ [where τ = (β - α)/60, in which α and β are the two largest coordination angles; Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.])] was calculated as 0.65 by taking N1—Zn1—N1 as β [171.42 (8)°] and O2—Zn1—O4 as α [132.31 (5)°]. In general, τ = 0 for an ideal square pyramidal and τ = 1 for an ideal trigonal–pyramidal geometry. In the present case, the obtained τ value is slightly closer to a trigonal–pyramidal geometry.

[Figure 1]
Figure 1
The mol­ecular structure of the title complex, with the atom-numbering scheme. Unlabelled atoms are related to labelled ones by the symmetry operation (1 − x, y, [{1\over 2}] − z). Displacement ellipsoids are drawn at the 40% probability level.

The near equalities of the C1—O1 [1.240 (3) Å] and C1—O2 [1.259 (3) Å] bonds in the carboxyl­ate groups indicate delocalized bonding arrangements rather than localized single and double bonds. The O2—C1—O1 bond angle [121.8 (2)°] seems to be slightly decreased than that present in a free acid [122.2°], in which the O2—C1—O1 bond angle may be compared with the corresponding values of 123.5 (2) and 120.4 (2)° in (II), 125.2 (5)° in (III), 119.2 (3) and 123.8 (2)° in (IV), 123.6 (3) and 119.4 (3)° in (V), 124.4 (2)° in (VI) and 124.3 (2)° in (VII), where the benzoate ions coordinate to the metal atoms only monodentately in (III), (VI) and (VII), and both monodentately and bidentately in (II), (IV) and (V). The Zn1 atom lies 0.0817 (1) Å above of the planar (O1/O2/C1) carboxyl­ate group. In the TMB anion, the carboxyl­ate group is twisted away from the attached benzene C2–C7 ring by 61.32 (14)°, while the benzene ring and the pyridine N1/C11–C15 ring are oriented at a dihedral angle of 81.90 (8)°.

3. Supra­molecular features

In the crystal, the NH2 group links to the non-coordinating carboxyl­ate and NA oxygen atoms via inter­molecular N—H⋯O hydrogen bonds, and the water mol­ecule links to the NA oxygen atoms via inter­molecular O—H⋯O hydrogen bonds (Table 1[link]). These hydrogen bonds, enclosing R22(12), R33(10) and R33(16) ring motifs, link the mol­ecules into a network consisting of a double-column structure running along the c-axis direction (Fig. 2[link]). No significant ππ, C—H⋯π or C—H⋯O inter­actions are observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O1i 0.91 (3) 1.88 (3) 2.766 (3) 165 (3)
N2—H22⋯O3ii 0.87 (3) 2.34 (3) 3.013 (2) 134 (2)
O4—H41⋯O3iii 0.81 (3) 1.93 (3) 2.719 (2) 165 (3)
Symmetry codes: (i) [-x+1, y, -z+{\script{3\over 2}}]; (ii) [x, -y+2, z+{\script{1\over 2}}]; (iii) [x, -y+2, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Part of the crystal structure. O—HcoordW⋯ONA, N—HNA⋯Oc and N—HNA⋯ONA (coordW = coordinating water, c = carboxyl­ate and NA = nicotinamide) hydrogen bonds, enclosing R22(12), R33(10) and R33(16) ring motifs, are shown as dashed lines. Non-bonding H atoms have been omitted for clarity.

4. Hirshfeld surface analysis

A Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out by using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) in order to visualize the inter­molecular inter­actions in the crystal of the title complex. In the HS plotted over dnorm (Fig. 3[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The bright-red spots appearing near atoms O1, O3, H21, H22 and H41 indicate their role as the respective donors and acceptors in the dominant O—H⋯O and N—H⋯O hydrogen bonds. These O and H atoms also appear as blue and red regions, respectively, corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/]) as shown in Fig. 4[link]. The blue regions indicate the positive electrostatic potential (hydrogen bond donors), while the red regions indicate the negative electrostatic potential (hydrogen bond acceptors). The overall two-dimensional fingerprint plot and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N⋯H, C⋯C, O⋯C/C⋯O, O⋯N/N⋯O and O⋯O contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 5[link] ai, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H contributing 58.4% to the overall crystal packing, which is reflected in Fig. 5[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule. In the absence of C—H⋯π inter­actions in the crystal, the pair of characteristic wings resulting in the fingerprint plot delineated into H⋯C/C⋯H contacts with 20.3% contribution to the HS, Fig. 5[link]c, and the pair of thin edges at de + di ∼2.9 Å result from short inter­atomic H⋯C/C⋯H contacts. In the fingerprint plot delineated into H⋯O/O⋯H contacts (Fig. 5[link]d), the 18.3% contribution to the HS arises from the inter­molecular O—H⋯O hydrogen bonding and is viewed as pair of spikes with the tip at de + di ∼1.9 Å. The short H⋯O/O⋯H contacts are masked by strong O—H⋯O hydrogen bonding in this plot. The H⋯N/N⋯H contacts in the structure with 1.9% contribution to the HS has a symmetrical distribution of points with the tips at de + di ∼2.8 Å arising from the short inter­atomic H⋯N/N⋯H contact (Fig. 5[link]e). The HSs mapped over shape-index, curvedness and those with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H inter­actions are shown in Figs. s1–s3 in the Supporting Information.

[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title complex plotted over dnorm in the range −0.6568 to 1.4993 a.u.
[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title complex plotted over electrostatic potential energy in the range −0.1036 to 0.2354 a.u. using the STO-3G basis set at the Hartree–Fock level of theory. N—H⋯O and O—H⋯O hydrogen-bond donors and acceptors are viewed as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
[Figure 5]
Figure 5
The full two-dimensional fingerprint plots for the title complex, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯N/N⋯H, (f) C⋯C, (g) O⋯C/C⋯O, (h) O⋯N/N⋯O and (i) O⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

5. Synthesis and crystallization

The title compound was prepared by the reaction of ZnSO4·7H2O (0.72 g, 2.5 mmol) in H2O (50 ml) and nicotinamide (0.61 g, 5 mmol) in H2O (25 ml) with sodium 2,4,6-tri­methyl­benzoate (0.93 g, 5 mmol) in H2O (150 ml) at room temperature. The mixture was set aside to crystallize at ambient temperature for ten weeks, giving colourless single crystals (yield: 1.39 g, 85%). FT–IR: 3396, 3111, 2953, 2919, 2740, 2321, 1947, 1693, 1665, 1621, 1601, 1584, 1445, 1397, 1199, 1113, 1047, 860, 839, 797, 731, 647, 614, 545, 559 cm−1.

6. Refinement

The experimental details including the crystal data, data collection and refinement are summarized in Table 2[link]. The H atom of the water mol­ecule was located in a difference-Fourier map and refined freely. H atoms of the NH2 group were also located in a difference Fourier map and the positions were refined with Uiso(H) = 1.5Ueq(N). The C-bound H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å for aromatic and methyl H-atoms, respectively, and refined as riding with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and k = 1.2 for aromatic H-atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C10H11O2)2(C6H6N2O)2(H2O)]
Mr 654.02
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 296
a, b, c (Å) 23.4004 (5), 15.1685 (4), 9.2353 (3)
V3) 3278.06 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.80
Crystal size (mm) 0.42 × 0.36 × 0.21
 
Data collection
Diffractometer Bruker SMART BREEZE CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.730, 0.850
No. of measured, independent and observed [I > 2σ(I)] reflections 44050, 4104, 3310
Rint 0.036
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.127, 1.08
No. of reflections 4104
No. of parameters 213
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.32
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2015).

Aquabis(nicotinamide-κN1)bis(2,4,6-trimethylbenzoato-κO)zinc top
Crystal data top
[Zn(C10H11O2)2(C6H6N2O)2(H2O)]F(000) = 1368
Mr = 654.02Dx = 1.325 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 9891 reflections
a = 23.4004 (5) Åθ = 2.7–28.4°
b = 15.1685 (4) ŵ = 0.80 mm1
c = 9.2353 (3) ÅT = 296 K
V = 3278.06 (15) Å3Block, colourless
Z = 40.42 × 0.36 × 0.21 mm
Data collection top
Bruker SMART BREEZE CCD
diffractometer
4104 independent reflections
Radiation source: fine-focus sealed tube3310 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 28.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 2931
Tmin = 0.730, Tmax = 0.850k = 2018
44050 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0569P)2 + 1.7904P]
where P = (Fo2 + 2Fc2)/3
4104 reflections(Δ/σ)max = 0.001
213 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.74469 (2)0.25000.04143 (13)
O10.41787 (9)0.77620 (12)0.4394 (2)0.0656 (5)
O20.44479 (7)0.65455 (11)0.33298 (16)0.0544 (4)
O30.57370 (8)0.99041 (10)0.66283 (17)0.0589 (4)
O40.50000.88159 (15)0.25000.0502 (5)
H410.5262 (12)0.9122 (18)0.222 (3)0.057 (8)*
N10.55509 (9)0.75557 (11)0.4431 (2)0.0449 (4)
N20.58656 (10)0.91889 (14)0.8743 (2)0.0522 (5)
H210.5893 (13)0.867 (2)0.924 (3)0.078*
H220.5842 (13)0.969 (2)0.920 (3)0.078*
C10.41195 (9)0.69614 (15)0.4166 (2)0.0436 (5)
C20.36403 (9)0.64607 (14)0.4853 (2)0.0433 (5)
C30.30732 (11)0.6708 (2)0.4566 (3)0.0657 (7)
C40.26398 (12)0.6235 (3)0.5224 (4)0.0879 (10)
H40.22630.63960.50410.106*
C50.27421 (13)0.5537 (3)0.6139 (4)0.0834 (10)
C60.33025 (13)0.53126 (19)0.6414 (3)0.0664 (7)
H60.33790.48460.70380.080*
C70.37565 (10)0.57607 (14)0.5789 (2)0.0481 (5)
C80.43568 (12)0.5514 (2)0.6170 (3)0.0692 (7)
H8A0.43540.51170.69800.104*
H8B0.45680.60350.64200.104*
H8C0.45340.52310.53560.104*
C90.29388 (16)0.7462 (3)0.3543 (5)0.1093 (15)
H9A0.25330.75550.35140.164*
H9B0.30740.73190.25890.164*
H9C0.31240.79880.38770.164*
C100.22443 (18)0.5042 (4)0.6832 (6)0.144 (2)
H10A0.19010.53840.67320.217*
H10B0.23230.49490.78400.217*
H10C0.21960.44840.63580.217*
C110.55380 (9)0.82679 (13)0.5282 (2)0.0431 (5)
H110.52940.87260.50260.052*
C120.58642 (9)0.83658 (13)0.6518 (2)0.0396 (4)
C130.62260 (11)0.76826 (16)0.6900 (3)0.0521 (5)
H130.64490.77180.77320.063*
C140.62482 (12)0.69502 (16)0.6023 (3)0.0605 (7)
H140.64920.64850.62480.073*
C150.59098 (11)0.69098 (15)0.4816 (2)0.0524 (6)
H150.59300.64100.42350.063*
C160.58181 (9)0.92186 (14)0.7316 (2)0.0427 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0472 (2)0.02853 (19)0.0485 (2)0.0000.00026 (14)0.000
O10.0772 (12)0.0463 (10)0.0733 (12)0.0103 (9)0.0122 (10)0.0028 (9)
O20.0569 (9)0.0608 (10)0.0456 (8)0.0090 (8)0.0146 (7)0.0075 (7)
O30.0898 (12)0.0369 (8)0.0499 (9)0.0059 (8)0.0028 (8)0.0006 (7)
O40.0559 (14)0.0318 (11)0.0630 (14)0.0000.0037 (11)0.000
N10.0525 (11)0.0331 (9)0.0490 (10)0.0057 (7)0.0026 (8)0.0027 (7)
N20.0718 (13)0.0428 (11)0.0422 (10)0.0075 (9)0.0027 (9)0.0030 (8)
C10.0462 (11)0.0490 (12)0.0355 (9)0.0037 (9)0.0004 (8)0.0012 (8)
C20.0450 (11)0.0459 (11)0.0389 (10)0.0030 (9)0.0039 (8)0.0067 (8)
C30.0488 (13)0.087 (2)0.0613 (15)0.0026 (13)0.0020 (11)0.0045 (14)
C40.0415 (14)0.135 (3)0.088 (2)0.0110 (17)0.0016 (13)0.002 (2)
C50.0654 (18)0.105 (3)0.080 (2)0.0333 (17)0.0173 (15)0.0014 (19)
C60.0767 (18)0.0598 (16)0.0626 (15)0.0218 (13)0.0108 (13)0.0010 (12)
C70.0555 (13)0.0386 (11)0.0501 (11)0.0058 (9)0.0068 (10)0.0057 (9)
C80.0644 (16)0.0619 (16)0.0814 (18)0.0082 (13)0.0039 (14)0.0188 (14)
C90.070 (2)0.142 (4)0.116 (3)0.021 (2)0.014 (2)0.046 (3)
C100.091 (3)0.186 (5)0.157 (4)0.069 (3)0.034 (3)0.024 (4)
C110.0447 (11)0.0342 (10)0.0506 (11)0.0086 (8)0.0034 (9)0.0035 (8)
C120.0422 (10)0.0376 (10)0.0391 (9)0.0020 (8)0.0046 (8)0.0031 (8)
C130.0596 (14)0.0548 (13)0.0420 (11)0.0116 (11)0.0022 (10)0.0076 (10)
C140.0782 (17)0.0474 (13)0.0559 (13)0.0274 (12)0.0024 (12)0.0056 (10)
C150.0722 (15)0.0354 (11)0.0497 (12)0.0134 (10)0.0015 (11)0.0015 (9)
C160.0467 (11)0.0384 (11)0.0431 (10)0.0022 (8)0.0034 (8)0.0006 (8)
Geometric parameters (Å, º) top
Zn1—O2i2.0311 (16)C6—C51.379 (5)
Zn1—O22.0311 (16)C6—H60.9300
Zn1—O42.076 (2)C7—C61.387 (3)
Zn1—N12.2066 (19)C7—C81.496 (4)
Zn1—N1i2.2066 (19)C8—H8A0.9600
O1—C11.240 (3)C8—H8B0.9600
O2—C11.259 (3)C8—H8C0.9600
O3—C161.233 (3)C9—H9A0.9600
O4—H410.81 (3)C9—H9B0.9600
N1—C111.336 (3)C9—H9C0.9600
N1—C151.338 (3)C10—H10A0.9600
N2—C161.324 (3)C10—H10B0.9600
N2—H210.91 (3)C10—H10C0.9600
N2—H220.87 (3)C11—H110.9300
C2—C11.496 (3)C12—C111.382 (3)
C2—C31.404 (3)C12—C131.384 (3)
C2—C71.396 (3)C12—C161.493 (3)
C3—C41.383 (4)C13—C141.376 (3)
C3—C91.516 (4)C13—H130.9300
C4—H40.9300C14—H140.9300
C5—C41.375 (5)C15—C141.369 (3)
C5—C101.526 (4)C15—H150.9300
O2i—Zn1—O295.38 (9)C6—C7—C8119.9 (2)
O2—Zn1—O4132.31 (5)C7—C8—H8A109.5
O2i—Zn1—O4132.31 (5)C7—C8—H8B109.5
O2—Zn1—N196.72 (7)C7—C8—H8C109.5
O2i—Zn1—N189.07 (7)H8A—C8—H8B109.5
O2—Zn1—N1i89.07 (7)H8A—C8—H8C109.5
O2i—Zn1—N1i96.72 (7)H8B—C8—H8C109.5
O4—Zn1—N185.71 (4)C3—C9—H9A109.5
O4—Zn1—N1i85.71 (4)C3—C9—H9B109.5
N1—Zn1—N1i171.42 (8)C3—C9—H9C109.5
C1—O2—Zn1106.41 (14)H9A—C9—H9B109.5
Zn1—O4—H41125 (2)H9A—C9—H9C109.5
C11—N1—Zn1121.50 (14)H9B—C9—H9C109.5
C11—N1—C15116.7 (2)C5—C10—H10A109.5
C15—N1—Zn1121.76 (15)C5—C10—H10B109.5
C16—N2—H21122.6 (19)C5—C10—H10C109.5
C16—N2—H22117 (2)H10A—C10—H10B109.5
H21—N2—H22121 (3)H10A—C10—H10C109.5
O1—C1—O2121.8 (2)H10B—C10—H10C109.5
O1—C1—C2120.6 (2)N1—C11—C12124.08 (19)
O2—C1—C2117.6 (2)N1—C11—H11118.0
C3—C2—C1119.5 (2)C12—C11—H11118.0
C7—C2—C1120.20 (19)C11—C12—C13117.9 (2)
C7—C2—C3120.3 (2)C11—C12—C16117.47 (18)
C2—C3—C9121.0 (3)C13—C12—C16124.6 (2)
C4—C3—C2118.1 (3)C12—C13—H13120.7
C4—C3—C9120.9 (3)C14—C13—C12118.5 (2)
C3—C4—H4118.6C14—C13—H13120.7
C5—C4—C3122.8 (3)C13—C14—H14120.2
C5—C4—H4118.6C15—C14—C13119.6 (2)
C4—C5—C6118.0 (3)C15—C14—H14120.2
C4—C5—C10120.2 (4)N1—C15—C14123.1 (2)
C6—C5—C10121.8 (4)N1—C15—H15118.4
C5—C6—C7122.0 (3)C14—C15—H15118.4
C5—C6—H6119.0O3—C16—N2123.7 (2)
C7—C6—H6119.0O3—C16—C12119.17 (18)
C2—C7—C8121.3 (2)N2—C16—C12117.14 (19)
C6—C7—C2118.8 (2)
O2i—Zn1—O2—C1166.98 (17)C7—C2—C3—C9179.5 (3)
O4—Zn1—O2—C113.02 (17)C1—C2—C7—C6179.7 (2)
N1—Zn1—O2—C177.29 (14)C1—C2—C7—C82.2 (3)
N1i—Zn1—O2—C196.36 (14)C3—C2—C7—C60.6 (3)
O2—Zn1—N1—C11106.95 (18)C3—C2—C7—C8176.9 (2)
O2i—Zn1—N1—C11157.75 (18)C2—C3—C4—C50.2 (5)
O2—Zn1—N1—C1572.40 (19)C9—C3—C4—C5178.8 (4)
O2i—Zn1—N1—C1522.91 (19)C6—C5—C4—C30.7 (6)
O4—Zn1—N1—C1125.19 (17)C10—C5—C4—C3180.0 (4)
O4—Zn1—N1—C15155.46 (19)C7—C6—C5—C40.7 (5)
Zn1—O2—C1—O12.4 (3)C7—C6—C5—C10179.9 (3)
Zn1—O2—C1—C2175.91 (15)C2—C7—C6—C50.1 (4)
Zn1—N1—C11—C12178.69 (16)C8—C7—C6—C5177.5 (3)
C15—N1—C11—C120.7 (3)C13—C12—C11—N10.1 (3)
Zn1—N1—C15—C14178.6 (2)C16—C12—C11—N1177.5 (2)
C11—N1—C15—C140.8 (4)C11—C12—C13—C140.9 (3)
C3—C2—C1—O160.0 (3)C16—C12—C13—C14176.5 (2)
C3—C2—C1—O2118.4 (2)C11—C12—C16—O333.6 (3)
C7—C2—C1—O1119.1 (2)C11—C12—C16—N2146.1 (2)
C7—C2—C1—O262.5 (3)C13—C12—C16—O3143.8 (2)
C1—C2—C3—C4179.6 (3)C13—C12—C16—N236.4 (3)
C1—C2—C3—C91.4 (4)C12—C13—C14—C150.9 (4)
C7—C2—C3—C40.5 (4)N1—C15—C14—C130.0 (4)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O1ii0.91 (3)1.88 (3)2.766 (3)165 (3)
N2—H22···O3iii0.87 (3)2.34 (3)3.013 (2)134 (2)
O4—H41···O3iv0.81 (3)1.93 (3)2.719 (2)165 (3)
Symmetry codes: (ii) x+1, y, z+3/2; (iii) x, y+2, z+1/2; (iv) x, y+2, z1/2.
 

Acknowledgements

The authors acknowledge the Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for the use of the Bruker D8 QUEST diffractometer.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAntolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationChen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m505–m506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1365–m1366.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1037–m1038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m466–m467.  CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009d). Acta Cryst. E65, m607–m608.  CSD CrossRef IUCr Journals Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNecefoğlu, H., Hökelek, T., Ersanlı, C. C. & Erdönmez, A. (2002). Acta Cryst. E58, m758–m761.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar
First citationYou, K.-S., Arnold, L. J. Jr, Allison, W. S. & Kaplan, N. O. (1978). Trends Biochem. Sci. 3, 265–268.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds