research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 2-amino-4,4,7,7-tetra­methyl-4,5,6,7-tetra­hydro-1,3-benzo­thia­zol-3-ium benzoate and 2-amino-4,4,7,7-tetra­methyl-4,5,6,7-tetra­hydro-1,3-benzo­thia­zol-3-ium picrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India, bCentre for Biological Sciences (Bioinformatics), School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Patna 800 014, India, and cSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: yathirajan@hotmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 27 July 2017; accepted 3 August 2017; online 8 August 2017)

In both 2-amino-4,4,7,7-tetra­methyl-4,5,6,7-tetra­hydro-1,3- benzo­thia­zol-3-ium benzoate, C11H19N2S+·C7H5O2, (I), and 2-amino-4,4,7,7-tetra­methyl-4,5,6,7-tetra­hydro-1,3-benzo­thia­zol-3-ium picrate (2,4,6-tri­nitro­phenolate), C11H19N2S+·C6H2N3O7, (II), the cations are conformationally chiral as the six-membered rings adopt half-chair conformations, which are disordered over two sets of atomic sites giving approximately enanti­omeric disorder. For both cations, the bond lengths indicate delocalization of the positive charge comparable to that in an amidinium cation. The bond lengths in the picrate anion in (II) are consistent with extensive delocalization of the negative charge into the ring and onto the nitro groups, in two of which the O atoms are disordered over two sets of sites. In (I), the ionic components are linked by N—H⋯O hydrogen bonds to form a chain of rings, and in (II), the N—H⋯O hydrogen bonds link the components into centrosymmetric four-ion aggregates containing seven hydrogen bonded rings of four different types.

1. Chemical context

Benzo­thia­zoles are an important class of heterocyclic compounds which possess a wide spectrum of biological properties, including analgesic, anti­convulsant, anti­helmintic, anti-inflammatory anti­malarial, anti­microbial, anti­tubercular, and anti­tumour, activity, as well as anti­oxidant and fungicidal activity (Imramovský et al., 2013[Imramovský, A., Pejchal, V., Štěpánková, S., Šárka, , Vorčáková, K., Jampílek, J., Vančo, J., Šimůnek, P., Královec, K., Brůčková, L., Mandíková, J. & Trejtnar, F. (2013). Bioorg. Med. Chem. 21, 1735-1748.]; Smita Revankar et al., 2014[Smita Revankar, D., Jyoti, C. A., Revanasiddappa, M., Veerabhadra Swamy, M. & Shankar, S. (2014). J. Applicable Chem. 3, 1447-1459.]; Naga Raju et al., 2015[Naga Raju, G., Bhavya Sai, K., Chandana, K., Gudipati, M., Suresh, P. V. & Ramarao, N. (2015). Indo American J. Pharm Res. 5, 1288-1296.]; Ranga et al., 2015[Ranga, M. G., Rao, J. M. R. & Gudla, C. S. (2015). International Patent WO2015/107549 A1; PCT /IN2015/ 000010.]). In addition, substituted 2-amino­thia­zole derivatives are important as potent and selective human adenosine A3 receptor antagonists (Jung et al., 2004[Jung, K.-Y., Kim, S.-K., Gao, Z.-G., Gross, A. S., Melman, N., Jacobson, K. A. & Kim, Y.-C. (2004). Bioorg. Med. Chem. 12, 613-623.]). Prompted by the importance of benzo­thia­zoles in general, we have now determined the mol­ecular and supra­molecular structures of two salts derived from a substituted benzo­thia­zole, 2-amino-4,4,7,7-tetra­methyl-4,5,6,7-tetra­hydro-1,3-benzo­thia­zole, namely 2-amino-4,4,7,7-tetra­methyl-4,5,6,7-tetra­hydro-1,3-benzo­thia­zol-3-ium benz­oate (I)[link] and 2-amino-4,4,7,7- tetra­methyl-4,5,6,7-tetra­hydro-1,3-benzo­thia­zol-3-ium picrate (2,4,6-tri­nitro­phenolate) (II)[link], which we report here. The compounds were prepared by acid–base reactions between the neutral benzo­thia­zole and the appropriate acid in methano­lic solution.

[Scheme 1]

2. Structural commentary

Compound (I)[link] consists of a reduced benzo­thia­zolium cation in which protonation has occurred exclusively at atom N13, and a benzoate anion and the two ions within the selected asymmetric unit are linked by two fairly short and nearly linear N—H⋯O hydrogen bonds, forming an R22(8) motif (Fig. 1[link] and Table 1[link]). In the cation, the six-membered ring is disordered over two sets of atomic sites with occupancies 0.721 (5) and 0.279 (5), and each disorder component adopts a half-chair conformation (Fig. 2[link]). The ring-puckering parameters calculated for the atom sequence (Cx3A,Cx4,Cx5,Cx6,Cx7,Cx7A), where x = 1 for the major conformer and x = 2 for the minor form, of Q = 0.452 (5) Å, θ = 47.3 (8)° and φ = 146.1 (10)° when x = 1, with corresponding values Q = 0.453 (13) Å, θ = 138.5 (19)° and φ = 340 (3)° when x = 2. For an idealized half-chair form the puckering angles are θ = 50.8° and φ = (60k + 30)°, where k represents an integer. In each of (I)[link] and (II)[link], in fact, the cation exhibits no inter­nal symmetry and hence is conformationally chiral: in each case the space group confirms the presence of equal numbers of the two conformational enanti­omers. In the benzoate anion in (I)[link], the carboxyl group makes a dihedral angle of 10.5 (2)° with the aryl ring, and the two C—O distances are identical within experimental uncertainty, 1.252 (3) and 1.255 (3) Å, consistent with the complete transfer of a proton from the acid component to atom N13, as deduced from difference maps and confirmed by the refinement.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H12A⋯O32 0.86 2.10 2.918 (8) 158
N12—H12B⋯O32i 0.86 1.97 2.785 (9) 158
N13—H13⋯O31 0.86 1.77 2.621 (10) 174
N22—H22A⋯O32 0.86 2.13 2.86 (2) 142
N22—H22B⋯O32i 0.86 2.13 2.92 (2) 152
N23—H23⋯O31 0.86 1.74 2.56 (3) 157
Symmetry code: (i) [x, -y+1, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The independent ionic components of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level, and the two N—H⋯O hydrogen bonds within the selected asymmetric unit are shown as dashed lines.
[Figure 2]
Figure 2
The disordered cation in compound (I)[link], showing the approximately enanti­omorphic nature of the two disorder components. For the sake of clarity the H atoms and most of the atom labels have been omitted: the major form is drawn as solid lines and the minor form as broken lines.

Compound (II)[link] contains the same cation as (I)[link] along with a picrate (2,4,6-tri­nitro­phenolate) anion, and the two ions in the selected asymmetric unit are linked by a two-centre N—H⋯O hydrogen bond and a three-centre N—H⋯(O)2 hydrogen bond, generating two edge-fused rings of R21(6) and R12(6) types (Fig. 3[link] and Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H12A⋯O32i 0.86 2.57 3.219 (10) 133
N12—H12A⋯O33i 0.86 2.31 3.039 (10) 142
N12—H12A⋯O42i 0.86 2.41 3.166 (16) 147
N12—H12A⋯O43i 0.86 2.58 3.197 (15) 129
N22—H22A⋯O32i 0.86 2.34 3.154 (14) 158
N22—H22A⋯O33i 0.86 2.40 3.143 (14) 146
N22—H22A⋯O42i 0.86 2.36 3.190 (19) 163
N22—H22A⋯O43i 0.86 2.46 3.197 (18) 144
N12—H12B⋯O31 0.86 2.11 2.855 (9) 145
N12—H12B⋯O32 0.86 2.20 2.870 (9) 134
N12—H12B⋯O42 0.86 2.30 2.932 (13) 131
N22—H22B⋯O31 0.86 1.97 2.704 (14) 142
N22—H22B⋯O32 0.86 2.14 2.768 (14) 130
N22—H22B⋯O42 0.86 2.16 2.730 (17) 123
N13—H13⋯O31 0.86 2.19 2.891 (14) 138
N23—H23⋯O31 0.86 2.15 2.81 (2) 134
Symmetry code: (i) -x+1, -y, -z+1.
[Figure 3]
Figure 3
The independent ionic components of compound (II)[link], showing the atom-labelling scheme. For the sake of clarity, only the major disorder components are shown. Displacement ellipsoids are drawn at the 30% probability level, and the N—H⋯O hydrogen bonds within the selected asymmetric unit are shown as dashed lines.

The cation again exhibits conformational disorder over two sets of atomic sites having occupancies 0.575 (4) and 0.425 (4). For the major conformer, the ring-puckering parameters, calculated for the atom sequence (Cx3A,Cx4,Cx5,Cx6,Cx7,Cx7A) are Q = 0.444 (10) Å, θ = 41.9 (15)° and φ = 150 (2) when x = 1 and Q = 0.441 (14) Å, θ = 136 (2)° and φ = 328 (3)° when x = 2, so that the ring- puckering parameters are very similar to those found in compound (I)[link]. Thus in each compound the puckering amplitude for the two conformers are very similar, and the puckering angles, related approximately by θmin = (180 − θmaj) and φmin = (180 + φmaj), where min and maj refer to the minor and major components, indicate clearly the approximately enanti­omorphic relationship between the two conformers (Fig. 2[link]).

In both compounds the bond distances C12—N12 and C12—N13 are nearly identical, 1.329 (6) and 1.323 (3) Å respectively in (I)[link] and 1.312 (3) and 1.336 (9) Å in (II)[link], indicative of significant delocalization of the positive charge into the amino group with significant contributions to the electronic structure from the forms (A) and (B), comparable to an amidinium cation (see Scheme). This explains not only why the site of protonation is exclusively at the ring N atom, since protonation of the amino group would not permit any charge delocalization, but also the observation that the amino N atom does not act as a hydrogen-bond acceptor.

In the picrate anion of (II)[link], two of the three independent nitro groups adopt two different orientations and the occupancies for the two orientations bonded to atoms C32 and C36 are 0.769 (7) and 0.231 (7), and 0.789 (6) and 0.211 (6) respectively (Fig. 4[link]). The major and minor conformations at C32 make dihedral angles of 17.9 (3) and 27.2 (7)° with the ring, with an angle of 44.9 (7)° between the two orientations, and the corresponding values for the nitro group at C36 are 12.0 (2), 39.0 (8) and 50.4 (8)°. By contrast, the fully ordered nitro group at C34 makes a dihedral angle of only 4.5 (2)° with the ring. The C—O distance, 1.241 (3), is short for its type [mean value (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]) 1.362 Å, lower quartile value 1.353 Å], and the C—N distances, range 1.442 (3)–1.458 (3) Å, are all somewhat short for their type (mean value 1.468 Å, lower quartile value 1.460 Å): in addition, the bonds C31—C32 and C31—C36 are significantly longer than the other C—C distances in this ring. These observation, taken together, indicate that the quinonoid form (D), and its o-quinonoid isomers, and the ketonic form (E) are significant contributors to the overall electronic structure of the anion in addition to the classically delocalized form (C) (see Scheme).

[Figure 4]
Figure 4
The disordered anion in compound (II)[link], showing the two orientations of two of the nitro groups: for the sake of clarity the H atoms have been omitted,

3. Supra­molecular inter­actions

The major and minor conformers of the cation in (I)[link] and those of both ions in (II)[link] are involved in very similar patterns of hydrogen bonding (Tables 1[link] and 2[link]), so that it is necessary to discuss only those formed by the major conformers. Because of the charge delocalization in both ions in each of (I)[link] and (II)[link], as noted above, all of the N—H⋯O inter­actions in both compounds can be regarded as charge-assisted hydrogen bonds (Gilli et al., 1994[Gilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (1994). J. Am. Chem. Soc. 116, 909-915.]). In addition to the two N—H⋯O hydrogen bonds within the selected asymmetric unit of compound (I)[link] (Fig. 1[link]), the structure contains a third such inter­action which links the cation-anion pairs which are related by the c-glide plane at y = 0.5 into a C21(4) C21(8)[R22(8)] chain of rings running parallel to the [001] direction (Fig. 5[link]).

[Figure 5]
Figure 5
Part of the crystal structure of compound (I)[link] showing the formation of a chain of rings running parallel to [001]. Hydrogen bonds are shown as dashed lines and for the sake of clarity the H atoms bonded to C atoms have been omitted.

In addition, the N—H⋯O hydrogen bonds within the selected asymmetric unit of (II)[link] (Fig. 3[link]), the structure contains one further three-centre N—H⋯(O)2 hydrogen bond, and the hydrogen bonds together generate a four-ion aggregate in which a centrosymmetric R224(8) ring is surrounded by three inversion-related pairs of rings, one each of R12(4), R12(6) and R21(6) types, so that, in total, there are seven hydrogen-bonded rings of four different types in the aggregate (Fig. 6[link]). It is notable that only one of the nitro groups in (II)[link] participates in the hydrogen bonding, and that both C—H⋯π(arene) and aromatic ππ stacking inter­actions are absent from both structures.

[Figure 6]
Figure 6
Part of the crystal structure of compound (II)[link] showing the formation of a centrosymmetric four-ion aggregate. For the sake of clarity, only the major disorder components are shown, and the H atoms bonded to C atoms and the unit cell outline have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, −y, 1 − z).

4. Database survey

It is of inter­est briefly to survey the structures of some related amino-substituted benzo-1,3-thia­zoles. In the structure of 2-amino-6-nitro­benzo-1,3-thia­zole (Glidewell et al., 2001[Glidewell, C., Low, J. N., McWilliam, S. A., Skakle, J. M. S. & Wardell, J. L. (2001). Acta Cryst. C57, 1209-1211.]), a combination of N—H⋯N and N—H⋯O hydrogen bonds generates a three-dimensional framework structure, while the monohydrate of the same benzo­thia­zole, also forms a three-dimensional framework structure, but now built from a combination of N—H⋯N, N—H⋯O and O—H⋯O hydrogen bonds (Lynch, 2002[Lynch, D. E. (2002). Acta Cryst. E58, o1139-o1141.]): in neither of these structures does the amino N atom act as a hydrogen-bond acceptor, just as found here in the structures of (I)[link] and (II)[link]. We note also that in trans-bis­(2-amino-6-nitro­benzo-1,3-thia­zole)di­chloro­platinum(II), which crystallizes as a tetra­kis­(di­methyl­formamide) solvate (Lynch & Duckhouse, 2001[Lynch, D. E. & Duckhouse, H. L. (2001). Acta Cryst. C57, 1036-1038.]), the benzothiazole ligand coordinates to the metal centre via the ring N atom, rather than via the amino N atom. Finally in 2-amino-6-nitro­benzo-1.3-thia­zol-3-ium hydrogen sulfate (Qian & Huang, 2011[Qian, H.-F. & Huang, W. (2011). Acta Cryst. E67, o2044.]), the protonation of the benzo­thia­zole component occurs exclusively at the ring N atoms and the ions are linked by a combination of N—H⋯O and O—H⋯O hydrogen bonds to form a sheet structure, again with the amino group acting as a double donor of hydrogen bonds, but not as an acceptor.

5. Synthesis and crystallization

2-Amino-4,4,7,7-tetra­methyl-4,5,6,7-tetra­hydro-1,3-benzo­thia­zole (200 mg, 0.94 mmol) and the equivalent amount of the respective acid i.e. benzoic acid (119.4 mg, 0.94 mmol) for (I)[link] and picric acid (229 mg, 0.94 mmol) for (II)[link] were dissolved together in hot methanol. The resulting solutions were allowed to cool slowly to ambient temperature, and the crystalline products were collected by filtration and dried in air. Crystals suitable for single-crystal X-ray diffraction were selected directly from the samples as prepared; m.p. (I)[link] 457 K, (II)[link] 483 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. It was apparent from an early stage in the refinements that in both (I)[link] and (II)[link] the cation was disordered over two sets of atomic sights corresponding to two different conformations of the six-membered ring, and that two of the nitro groups in the anion of (II)[link] were disordered, again over two sets of atomic sites corresponding to different orientations relative to the aryl ring. For the minor conformers of the cations, the bonded distances and the one-angle non-bonded distances were restrained to be the same as the corresponding distances in the major conformer, subject to s.u.s of 0.005 and 0.01 Å, respectively; similar restraints were applied to the minor conformations of the disordered nitro groups in the anion of (II)[link]. In addition, the anisotropic displacement parameters for pairs of atoms occupying essentially the same physical space were constrained to be identical. Subject to these conditions, the occupancies of the two cation conformations in (I)[link] refined to 0.721 (5) and 0.279 (5), and those in (II)[link] refined to 0.575 (4) and 0.425 (4), while those of the nitro groups in (II)[link] bonded to C32 and C36 refined to 0.769 (7) and 0.231 (7), and 0.789 (6) and 0.211 (6) respectively.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C11H19N2S+·C7H5O2 C11H19N2S+·C6H2N3O7
Mr 332.45 439.45
Crystal system, space group Monoclinic, Cc Monoclinic, P21/n
Temperature (K) 296 296
a, b, c (Å) 10.6089 (3), 22.7141 (5), 8.8959 (2) 10.7928 (2), 6.9591 (1), 28.0176 (5)
β (°) 122.211 (1) 97.408 (1)
V3) 1813.73 (8) 2086.79 (6)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 1.67 1.82
Crystal size (mm) 0.20 × 0.20 × 0.12 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII Bruker Kappa APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.796, 0.819 0.696, 0.712
No. of measured, independent and observed [I > 2σ(I)] reflections 12953, 3209, 3138 40786, 4122, 3099
Rint 0.028 0.060
(sin θ/λ)max−1) 0.619 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.072, 1.05 0.053, 0.139, 1.07
No. of reflections 3209 4122
No. of parameters 260 336
No. of restraints 42 46
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.14, −0.10 0.25, −0.23
Absolute structure Flack x determined using 1373 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.061 (7)
Computer programs: APEX2 and SAINT-Plus (Bruker, 2012[Bruker (2012). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

All H were treated as riding atoms in geometrically idealized positions with distances C—H = 0.93 Å (aromatic), 0.96 Å (CH3) or 0.97 Å (CH2) and N—H = 0.86 Å, and with Uiso(H) = kUeq (C), where k = 1.5 for the methyl groups which were permitted to rotate but not to tilt and 1.2 for all other H atoms. One bad outlier reflection (39[\overline{1}]) was omitted from the final refinement of (I)[link].

The correct orientation of the structure of (I)[link], relative to the polar axis direction, was established by means of the Flack x parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), calculated (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) using 1373 quotients of the type [(I+)−(I)]/[(I+)+(I)], and by means of the Hooft y parameter (Hooft et al., 2010[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2010). J. Appl. Cryst. 43, 665-668.]): x = 0.061 (7) and y = 0.0561 (8): use of the TWIN/BASF procedure in SHELXL for the determination of the Flack x parameter gave a less well defined value, x = 0.053 (18). In the final analysis of variance for compound (II)[link], there was a large value, 6.892, of K = [mean(Fo2)/mean(Fc2)] for the group of 433 very weak reflections having Fc/Fc(max) in the range 0 < Fc/Fc(max) < 0.006.

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2012); cell refinement: APEX2 (Bruker, 2012); data reduction: SAINT-Plus (Bruker, 2012); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 and PLATON.

2-Amino-4,4,7,7-tetramethyl-4,5,6,7-tetrahydro-1,3-benzothiazol-3-ium benzoate (I) top
Crystal data top
C11H19N2S+·C7H5O2F(000) = 712
Mr = 332.45Dx = 1.217 Mg m3
Monoclinic, CcCu Kα radiation, λ = 1.54178 Å
a = 10.6089 (3) ÅCell parameters from 3210 reflections
b = 22.7141 (5) Åθ = 7.7–72.5°
c = 8.8959 (2) ŵ = 1.67 mm1
β = 122.211 (1)°T = 296 K
V = 1813.73 (8) Å3Block, colourless
Z = 40.20 × 0.20 × 0.12 mm
Data collection top
Bruker Kappa APEXII
diffractometer
3138 reflections with I > 2σ(I)
Radiation source: fine focus sealed tubeRint = 0.028
φ and ω scansθmax = 72.5°, θmin = 7.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1213
Tmin = 0.796, Tmax = 0.819k = 2828
12953 measured reflectionsl = 1011
3209 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.035P)2 + 0.3018P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.028(Δ/σ)max < 0.001
wR(F2) = 0.072Δρmax = 0.14 e Å3
S = 1.05Δρmin = 0.10 e Å3
3209 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
260 parametersExtinction coefficient: 0.0076 (13)
42 restraintsAbsolute structure: Flack x determined using 1373 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.061 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S110.4896 (6)0.4724 (3)0.9010 (5)0.0475 (7)0.721 (5)
C120.397 (2)0.4487 (11)0.6831 (14)0.0401 (6)0.721 (5)
N130.4673 (17)0.4048 (8)0.6615 (8)0.0420 (9)0.721 (5)
H130.43130.38630.56260.050*0.721 (5)
C13A0.6050 (6)0.3910 (3)0.8127 (5)0.0386 (11)0.721 (5)
C140.7022 (5)0.34297 (18)0.8119 (5)0.0483 (9)0.721 (5)
C150.8542 (5)0.3483 (2)0.9885 (5)0.0665 (11)0.721 (5)
H15A0.91080.31261.00590.080*0.721 (5)
H15B0.90890.38080.97910.080*0.721 (5)
C160.8442 (6)0.35787 (19)1.1501 (5)0.0700 (12)0.721 (5)
H16A0.94430.35861.25490.084*0.721 (5)
H16B0.79250.32471.16190.084*0.721 (5)
C170.7639 (5)0.4147 (2)1.1447 (5)0.0534 (6)0.721 (5)
C17A0.6315 (6)0.4208 (3)0.9579 (6)0.0427 (5)0.721 (5)
N120.2707 (7)0.4723 (4)0.5525 (10)0.0471 (15)0.721 (5)
H12A0.23030.45900.44600.057*0.721 (5)
H12B0.22960.50090.57440.057*0.721 (5)
C1410.6274 (8)0.2830 (2)0.7895 (8)0.0755 (16)0.721 (5)
H14A0.69090.25230.79210.113*0.721 (5)
H14B0.53380.28200.67780.113*0.721 (5)
H14C0.61080.27710.88450.113*0.721 (5)
C1420.7241 (7)0.3516 (3)0.6554 (6)0.0628 (12)0.721 (5)
H14D0.79860.32460.66700.094*0.721 (5)
H14E0.75570.39120.65600.094*0.721 (5)
H14F0.63180.34420.54560.094*0.721 (5)
C1710.7103 (7)0.4101 (3)1.2740 (7)0.0862 (18)0.721 (5)
H17B0.79130.39761.38820.129*0.721 (5)
H17C0.63070.38201.22950.129*0.721 (5)
H17D0.67530.44781.28500.129*0.721 (5)
C1720.8684 (5)0.4675 (2)1.1937 (7)0.0728 (14)0.721 (5)
H17E0.95100.46341.31390.109*0.721 (5)
H17F0.81520.50311.18270.109*0.721 (5)
H17G0.90450.46921.11510.109*0.721 (5)
S210.488 (2)0.4759 (8)0.882 (2)0.0475 (7)0.279 (5)
C220.392 (6)0.447 (3)0.670 (4)0.0401 (6)0.279 (5)
N230.468 (5)0.405 (2)0.652 (2)0.0420 (9)0.279 (5)
H230.44530.39080.55040.050*0.279 (5)
C23A0.5892 (17)0.3843 (8)0.8131 (15)0.0386 (11)0.279 (5)
C240.6860 (12)0.3350 (5)0.8173 (12)0.0483 (9)0.279 (5)
C250.8079 (12)0.3238 (4)1.0135 (12)0.0665 (11)0.279 (5)
H25A0.76630.29981.06680.080*0.279 (5)
H25B0.88780.30151.01790.080*0.279 (5)
C260.8729 (12)0.3791 (4)1.1235 (14)0.0700 (12)0.279 (5)
H26A0.91730.40261.07250.084*0.279 (5)
H26B0.95170.36811.24260.084*0.279 (5)
C270.7586 (12)0.4170 (5)1.1352 (14)0.0534 (6)0.279 (5)
C27A0.6271 (16)0.4222 (8)0.9477 (16)0.0427 (5)0.279 (5)
N220.255 (2)0.4633 (12)0.544 (3)0.0471 (15)0.279 (5)
H22A0.20990.44550.44330.057*0.279 (5)
H22B0.21110.49130.56390.057*0.279 (5)
C2410.590 (2)0.2806 (7)0.725 (2)0.0755 (16)0.279 (5)
H24A0.65280.24750.74350.113*0.279 (5)
H24B0.52650.28810.59940.113*0.279 (5)
H24C0.52930.27210.77260.113*0.279 (5)
C2420.7596 (19)0.3538 (9)0.7150 (19)0.0628 (12)0.279 (5)
H24D0.82930.32410.72830.094*0.279 (5)
H24E0.81090.39040.76170.094*0.279 (5)
H24F0.68440.35840.59140.094*0.279 (5)
C2710.712 (2)0.3858 (8)1.251 (2)0.0862 (18)0.279 (5)
H27B0.78620.39191.37380.129*0.279 (5)
H27C0.70050.34441.22480.129*0.279 (5)
H27D0.61840.40171.22550.129*0.279 (5)
C2720.8240 (16)0.4773 (5)1.214 (2)0.0728 (14)0.279 (5)
H27E0.91070.47261.33080.109*0.279 (5)
H27F0.75120.50051.21990.109*0.279 (5)
H27G0.85140.49701.13950.109*0.279 (5)
C310.2485 (3)0.35915 (10)0.0457 (3)0.0502 (5)
C320.3287 (4)0.30983 (13)0.0538 (5)0.0740 (8)
H320.39230.29170.16260.089*
C330.3148 (6)0.28750 (18)0.0981 (6)0.1000 (13)
H330.36830.25420.09210.120*
C340.2215 (6)0.31457 (19)0.2594 (6)0.0990 (13)
H340.21330.29980.36170.119*
C350.1415 (5)0.36271 (17)0.2695 (4)0.0819 (10)
H350.07790.38050.37880.098*
C360.1545 (3)0.38549 (13)0.1169 (4)0.0613 (6)
H360.09980.41850.12430.074*
C370.2680 (3)0.38409 (10)0.2139 (3)0.0494 (5)
O310.3392 (3)0.35292 (8)0.3508 (3)0.0804 (7)
O320.2140 (2)0.43361 (7)0.2089 (3)0.0545 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S110.0441 (3)0.0619 (8)0.0344 (11)0.0061 (4)0.0196 (7)0.0073 (8)
C120.0386 (15)0.0491 (16)0.0332 (19)0.0017 (15)0.0196 (14)0.0011 (18)
N130.0469 (9)0.0461 (8)0.0322 (10)0.0001 (7)0.0206 (12)0.0033 (12)
C13A0.0416 (16)0.0388 (18)0.0389 (10)0.0033 (15)0.0238 (10)0.0019 (9)
C140.0578 (16)0.0395 (15)0.0527 (14)0.0071 (12)0.0328 (12)0.0066 (11)
C150.060 (2)0.071 (3)0.062 (2)0.0243 (18)0.0287 (17)0.0097 (18)
C160.077 (3)0.068 (3)0.0466 (19)0.023 (2)0.0205 (16)0.0172 (17)
C170.0462 (12)0.0668 (14)0.0373 (12)0.0025 (10)0.0157 (10)0.0018 (10)
C17A0.0409 (10)0.0495 (11)0.0370 (12)0.0014 (9)0.0202 (9)0.0003 (9)
N120.0397 (18)0.056 (3)0.0379 (13)0.002 (2)0.0158 (12)0.0027 (15)
C1410.101 (4)0.0433 (15)0.092 (5)0.001 (2)0.058 (4)0.004 (3)
C1420.072 (3)0.0707 (17)0.059 (3)0.016 (2)0.044 (3)0.004 (3)
C1710.075 (2)0.147 (6)0.032 (2)0.003 (4)0.0249 (18)0.010 (3)
C1720.048 (3)0.077 (2)0.062 (2)0.003 (2)0.008 (2)0.0082 (17)
S210.0441 (3)0.0619 (8)0.0344 (11)0.0061 (4)0.0196 (7)0.0073 (8)
C220.0386 (15)0.0491 (16)0.0332 (19)0.0017 (15)0.0196 (14)0.0011 (18)
N230.0469 (9)0.0461 (8)0.0322 (10)0.0001 (7)0.0206 (12)0.0033 (12)
C23A0.0416 (16)0.0388 (18)0.0389 (10)0.0033 (15)0.0238 (10)0.0019 (9)
C240.0578 (16)0.0395 (15)0.0527 (14)0.0071 (12)0.0328 (12)0.0066 (11)
C250.060 (2)0.071 (3)0.062 (2)0.0243 (18)0.0287 (17)0.0097 (18)
C260.077 (3)0.068 (3)0.0466 (19)0.023 (2)0.0205 (16)0.0172 (17)
C270.0462 (12)0.0668 (14)0.0373 (12)0.0025 (10)0.0157 (10)0.0018 (10)
C27A0.0409 (10)0.0495 (11)0.0370 (12)0.0014 (9)0.0202 (9)0.0003 (9)
N220.0397 (18)0.056 (3)0.0379 (13)0.002 (2)0.0158 (12)0.0027 (15)
C2410.101 (4)0.0433 (15)0.092 (5)0.001 (2)0.058 (4)0.004 (3)
C2420.072 (3)0.0707 (17)0.059 (3)0.016 (2)0.044 (3)0.004 (3)
C2710.075 (2)0.147 (6)0.032 (2)0.003 (4)0.0249 (18)0.010 (3)
C2720.048 (3)0.077 (2)0.062 (2)0.003 (2)0.008 (2)0.0082 (17)
C310.0518 (12)0.0551 (12)0.0448 (12)0.0198 (10)0.0266 (10)0.0130 (9)
C320.090 (2)0.0652 (16)0.0702 (19)0.0049 (14)0.0451 (17)0.0100 (13)
C330.127 (3)0.089 (2)0.102 (3)0.004 (2)0.073 (3)0.031 (2)
C340.136 (3)0.111 (3)0.081 (3)0.032 (3)0.078 (3)0.040 (2)
C350.091 (2)0.109 (2)0.0433 (15)0.0306 (19)0.0335 (16)0.0161 (14)
C360.0566 (14)0.0769 (16)0.0412 (13)0.0154 (12)0.0198 (11)0.0109 (11)
C370.0532 (12)0.0525 (12)0.0377 (11)0.0156 (10)0.0211 (10)0.0090 (9)
O310.1175 (18)0.0597 (10)0.0402 (10)0.0012 (10)0.0260 (11)0.0053 (7)
O320.0614 (9)0.0582 (9)0.0454 (9)0.0052 (7)0.0294 (8)0.0068 (7)
Geometric parameters (Å, º) top
S11—C121.726 (3)C23A—C241.506 (5)
S11—C17A1.756 (3)C24—C2411.534 (7)
C12—N131.323 (3)C24—C251.541 (7)
C12—N121.329 (6)C24—C2421.542 (7)
N13—C13A1.396 (5)C25—C261.513 (7)
N13—H130.8600C25—H25A0.9700
C13A—C17A1.348 (4)C25—H25B0.9700
C13A—C141.504 (3)C26—C271.535 (7)
C14—C1411.535 (5)C26—H26A0.9700
C14—C1421.542 (4)C26—H26B0.9700
C14—C151.543 (5)C27—C27A1.504 (5)
C15—C161.513 (5)C27—C2721.528 (7)
C15—H15A0.9700C27—C2711.533 (7)
C15—H15B0.9700N22—H22A0.8600
C16—C171.534 (5)N22—H22B0.8600
C16—H16A0.9700C241—H24A0.9600
C16—H16B0.9700C241—H24B0.9600
C17—C17A1.505 (3)C241—H24C0.9600
C17—C1721.530 (5)C242—H24D0.9600
C17—C1711.534 (5)C242—H24E0.9600
N12—H12A0.8600C242—H24F0.9600
N12—H12B0.8600C271—H27B0.9600
C141—H14A0.9600C271—H27C0.9600
C141—H14B0.9600C271—H27D0.9600
C141—H14C0.9600C272—H27E0.9600
C142—H14D0.9600C272—H27F0.9600
C142—H14E0.9600C272—H27G0.9600
C142—H14F0.9600C31—C361.381 (4)
C171—H17B0.9600C31—C321.385 (4)
C171—H17C0.9600C31—C371.508 (3)
C171—H17D0.9600C32—C331.376 (5)
C172—H17E0.9600C32—H320.9300
C172—H17F0.9600C33—C341.379 (7)
C172—H17G0.9600C33—H330.9300
S21—C221.726 (6)C34—C351.357 (6)
S21—C27A1.754 (5)C34—H340.9300
C22—N231.323 (6)C35—C361.389 (4)
C22—N221.328 (8)C35—H350.9300
N23—C23A1.399 (8)C36—H360.9300
N23—H230.8600C37—O321.252 (3)
C23A—C27A1.350 (6)C37—O311.255 (3)
C12—S11—C17A90.29 (17)C23A—C24—C25107.5 (6)
N13—C12—N12124.1 (4)C241—C24—C25113.1 (7)
N13—C12—S11111.6 (2)C23A—C24—C242109.5 (7)
N12—C12—S11124.3 (3)C241—C24—C242107.9 (7)
C12—N13—C13A114.4 (3)C25—C24—C242109.3 (7)
C12—N13—H13122.8C26—C25—C24114.4 (7)
C13A—N13—H13122.8C26—C25—H25A108.7
C17A—C13A—N13112.8 (3)C24—C25—H25A108.7
C17A—C13A—C14125.1 (3)C26—C25—H25B108.7
N13—C13A—C14121.8 (3)C24—C25—H25B108.7
C13A—C14—C141109.7 (3)H25A—C25—H25B107.6
C13A—C14—C142110.3 (3)C25—C26—C27113.8 (7)
C141—C14—C142108.1 (3)C25—C26—H26A108.8
C13A—C14—C15106.6 (3)C27—C26—H26A108.8
C141—C14—C15112.9 (3)C25—C26—H26B108.8
C142—C14—C15109.3 (3)C27—C26—H26B108.8
C16—C15—C14114.4 (3)H26A—C26—H26B107.7
C16—C15—H15A108.6C27A—C27—C272111.3 (7)
C14—C15—H15A108.6C27A—C27—C271109.8 (7)
C16—C15—H15B108.6C272—C27—C271109.8 (7)
C14—C15—H15B108.6C27A—C27—C26105.5 (6)
H15A—C15—H15B107.6C272—C27—C26110.5 (7)
C15—C16—C17114.3 (3)C271—C27—C26109.8 (7)
C15—C16—H16A108.7C23A—C27A—C27126.6 (6)
C17—C16—H16A108.7C23A—C27A—S21110.4 (5)
C15—C16—H16B108.7C27—C27A—S21122.7 (5)
C17—C16—H16B108.7C22—N22—H22A120.0
H16A—C16—H16B107.6C22—N22—H22B120.0
C17A—C17—C172110.5 (3)H22A—N22—H22B120.0
C17A—C17—C171109.5 (3)C24—C241—H24A109.5
C172—C17—C171110.0 (4)C24—C241—H24B109.5
C17A—C17—C16106.7 (3)H24A—C241—H24B109.5
C172—C17—C16110.1 (4)C24—C241—H24C109.5
C171—C17—C16109.9 (4)H24A—C241—H24C109.5
C13A—C17A—C17127.4 (3)H24B—C241—H24C109.5
C13A—C17A—S11110.5 (2)C24—C242—H24D109.5
C17—C17A—S11122.1 (2)C24—C242—H24E109.5
C12—N12—H12A120.0H24D—C242—H24E109.5
C12—N12—H12B120.0C24—C242—H24F109.5
H12A—N12—H12B120.0H24D—C242—H24F109.5
C14—C141—H14A109.5H24E—C242—H24F109.5
C14—C141—H14B109.5C27—C271—H27B109.5
H14A—C141—H14B109.5C27—C271—H27C109.5
C14—C141—H14C109.5H27B—C271—H27C109.5
H14A—C141—H14C109.5C27—C271—H27D109.5
H14B—C141—H14C109.5H27B—C271—H27D109.5
C14—C142—H14D109.5H27C—C271—H27D109.5
C14—C142—H14E109.5C27—C272—H27E109.5
H14D—C142—H14E109.5C27—C272—H27F109.5
C14—C142—H14F109.5H27E—C272—H27F109.5
H14D—C142—H14F109.5C27—C272—H27G109.5
H14E—C142—H14F109.5H27E—C272—H27G109.5
C17—C171—H17B109.5H27F—C272—H27G109.5
C17—C171—H17C109.5C36—C31—C32119.1 (2)
H17B—C171—H17C109.5C36—C31—C37121.1 (2)
C17—C171—H17D109.5C32—C31—C37119.8 (2)
H17B—C171—H17D109.5C33—C32—C31120.4 (3)
H17C—C171—H17D109.5C33—C32—H32119.8
C17—C172—H17E109.5C31—C32—H32119.8
C17—C172—H17F109.5C32—C33—C34119.9 (4)
H17E—C172—H17F109.5C32—C33—H33120.0
C17—C172—H17G109.5C34—C33—H33120.0
H17E—C172—H17G109.5C35—C34—C33120.3 (3)
H17F—C172—H17G109.5C35—C34—H34119.8
C22—S21—C27A90.2 (4)C33—C34—H34119.8
N23—C22—N22124.3 (10)C34—C35—C36120.2 (3)
N23—C22—S21111.4 (6)C34—C35—H35119.9
N22—C22—S21124.2 (9)C36—C35—H35119.9
C22—N23—C23A113.8 (10)C31—C36—C35120.1 (3)
C22—N23—H23123.1C31—C36—H36119.9
C23A—N23—H23123.1C35—C36—H36119.9
C27A—C23A—N23112.0 (8)O32—C37—O31124.7 (2)
C27A—C23A—C24125.1 (6)O32—C37—C31119.0 (2)
N23—C23A—C24120.8 (7)O31—C37—C31116.4 (2)
C23A—C24—C241109.6 (7)
C17A—S11—C12—N132 (2)C27A—C23A—C24—C241141 (2)
C17A—S11—C12—N12177 (3)N23—C23A—C24—C24157 (4)
N12—C12—N13—C13A174 (3)C27A—C23A—C24—C2517 (2)
S11—C12—N13—C13A5 (3)N23—C23A—C24—C25180 (4)
C12—N13—C13A—C17A7 (3)C27A—C23A—C24—C242101 (2)
C12—N13—C13A—C14178.9 (19)N23—C23A—C24—C24261 (4)
C17A—C13A—C14—C141105.5 (8)C23A—C24—C25—C2641.1 (12)
N13—C13A—C14—C14167.5 (15)C241—C24—C25—C26162.2 (11)
C17A—C13A—C14—C142135.6 (8)C242—C24—C25—C2677.6 (12)
N13—C13A—C14—C14251.5 (15)C24—C25—C26—C2761.4 (12)
C17A—C13A—C14—C1517.0 (8)C25—C26—C27—C27A47.7 (11)
N13—C13A—C14—C15170.0 (14)C25—C26—C27—C272168.1 (10)
C13A—C14—C15—C1644.4 (5)C25—C26—C27—C27170.6 (11)
C141—C14—C15—C1676.0 (5)N23—C23A—C27A—C27175 (4)
C142—C14—C15—C16163.6 (4)C24—C23A—C27A—C2711 (3)
C14—C15—C16—C1761.3 (5)N23—C23A—C27A—S2112 (4)
C15—C16—C17—C17A41.1 (6)C24—C23A—C27A—S21175.8 (17)
C15—C16—C17—C17278.9 (5)C272—C27—C27A—C23A144 (2)
C15—C16—C17—C171159.7 (4)C271—C27—C27A—C23A94 (2)
N13—C13A—C17A—C17176.4 (14)C26—C27—C27A—C23A25 (2)
C14—C13A—C17A—C172.9 (13)C272—C27—C27A—S2143 (2)
N13—C13A—C17A—S115.7 (15)C271—C27—C27A—S2179 (2)
C14—C13A—C17A—S11179.2 (6)C26—C27—C27A—S21163.0 (19)
C172—C17—C17A—C13A105.8 (9)C22—S21—C27A—C23A4 (4)
C171—C17—C17A—C13A132.9 (9)C22—S21—C27A—C27178 (4)
C16—C17—C17A—C13A14.0 (9)C36—C31—C32—C330.1 (4)
C172—C17—C17A—S1171.9 (8)C37—C31—C32—C33178.4 (3)
C171—C17—C17A—S1149.5 (8)C31—C32—C33—C340.5 (6)
C16—C17—C17A—S11168.4 (7)C32—C33—C34—C350.9 (6)
C12—S11—C17A—C13A2.4 (15)C33—C34—C35—C360.8 (6)
C12—S11—C17A—C17179.6 (14)C32—C31—C36—C350.2 (4)
C27A—S21—C22—N235 (6)C37—C31—C36—C35178.2 (3)
C27A—S21—C22—N22171 (8)C34—C35—C36—C310.2 (5)
N22—C22—N23—C23A162 (8)C36—C31—C37—O329.8 (3)
S21—C22—N23—C23A13 (8)C32—C31—C37—O32168.6 (2)
C22—N23—C23A—C27A17 (7)C36—C31—C37—O31170.6 (2)
C22—N23—C23A—C24179 (5)C32—C31—C37—O3111.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12A···O320.862.102.918 (8)158
N12—H12B···O32i0.861.972.785 (9)158
N13—H13···O310.861.772.621 (10)174
N22—H22A···O320.862.132.86 (2)142
N22—H22B···O32i0.862.132.92 (2)152
N23—H23···O310.861.742.56 (3)157
Symmetry code: (i) x, y+1, z+1/2.
2-Amino-4,4,7,7-tetramethyl-4,5,6,7-tetrahydro-1,3-benzothiazol-3-ium 2,4,6-trinitrophenolate (II) top
Crystal data top
C11H19N2S+·C6H2N3O7F(000) = 920
Mr = 439.45Dx = 1.399 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 10.7928 (2) ÅCell parameters from 4122 reflections
b = 6.9591 (1) Åθ = 4.6–72.4°
c = 28.0176 (5) ŵ = 1.82 mm1
β = 97.408 (1)°T = 296 K
V = 2086.79 (6) Å3Block, colourless
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII
diffractometer
3099 reflections with I > 2σ(I)
Radiation source: fine focus sealed tubeRint = 0.060
φ and ω scansθmax = 72.4°, θmin = 4.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1313
Tmin = 0.696, Tmax = 0.712k = 78
40786 measured reflectionsl = 3434
4122 independent reflections
Refinement top
Refinement on F246 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.8506P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4122 reflectionsΔρmax = 0.25 e Å3
336 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S110.4474 (4)0.4432 (9)0.6202 (2)0.0579 (9)0.575 (4)
C120.4105 (9)0.4371 (15)0.5587 (3)0.044 (2)0.575 (4)
N130.313 (4)0.550 (5)0.5442 (3)0.0520 (9)0.575 (4)
H130.28180.56070.51450.062*0.575 (4)
C13A0.2642 (8)0.6495 (11)0.58137 (19)0.0493 (12)0.575 (4)
C140.1579 (5)0.7881 (8)0.57154 (15)0.0599 (14)0.575 (4)
C150.1124 (5)0.8311 (9)0.62028 (18)0.0869 (13)0.575 (4)
H15A0.05920.94380.61680.104*0.575 (4)
H15B0.06210.72390.62870.104*0.575 (4)
C160.2151 (14)0.865 (2)0.6605 (2)0.091 (3)0.575 (4)
H16A0.17820.89700.68930.109*0.575 (4)
H16B0.26360.97480.65250.109*0.575 (4)
C170.3043 (13)0.6938 (18)0.67201 (19)0.0679 (9)0.575 (4)
C17A0.3331 (19)0.618 (3)0.6243 (2)0.050 (2)0.575 (4)
N120.4644 (8)0.3246 (13)0.5300 (3)0.056 (2)0.575 (4)
H12B0.43700.32050.49980.067*0.575 (4)
H12A0.52720.25490.54130.067*0.575 (4)
C1410.2025 (7)0.9702 (9)0.5481 (2)0.0885 (17)0.575 (4)
H14A0.26911.02810.56930.133*0.575 (4)
H14B0.13441.05930.54210.133*0.575 (4)
H14C0.23200.93730.51830.133*0.575 (4)
C1420.0507 (6)0.6961 (13)0.5378 (3)0.094 (2)0.575 (4)
H14D0.07330.68930.50580.141*0.575 (4)
H14E0.02340.77250.53760.141*0.575 (4)
H14F0.03520.56890.54890.141*0.575 (4)
C1710.4248 (14)0.760 (3)0.7026 (5)0.105 (4)0.575 (4)
H17B0.48080.65260.70840.158*0.575 (4)
H17C0.40540.80910.73270.158*0.575 (4)
H17D0.46360.85850.68580.158*0.575 (4)
C1720.242 (2)0.538 (2)0.6987 (6)0.105 (2)0.575 (4)
H17E0.16490.49960.68000.158*0.575 (4)
H17F0.22450.58660.72930.158*0.575 (4)
H17G0.29640.42870.70380.158*0.575 (4)
S210.4188 (7)0.4266 (12)0.6178 (3)0.0579 (9)0.425 (4)
C220.3828 (15)0.417 (2)0.5563 (4)0.044 (2)0.425 (4)
N230.307 (5)0.561 (7)0.5400 (4)0.0520 (9)0.425 (4)
H230.28310.57960.50990.062*0.425 (4)
C23A0.2703 (12)0.6809 (16)0.5762 (3)0.0493 (12)0.425 (4)
C240.1832 (7)0.8469 (10)0.5648 (2)0.0599 (14)0.425 (4)
C250.1869 (7)0.9644 (10)0.6114 (2)0.0869 (13)0.425 (4)
H25A0.26301.04030.61560.104*0.425 (4)
H25B0.11691.05300.60800.104*0.425 (4)
C260.182 (2)0.847 (3)0.6557 (3)0.091 (3)0.425 (4)
H26A0.10430.77510.65210.109*0.425 (4)
H26B0.18060.93310.68280.109*0.425 (4)
C270.2907 (18)0.705 (2)0.6675 (2)0.0679 (9)0.425 (4)
C27A0.312 (3)0.614 (4)0.6204 (3)0.050 (2)0.425 (4)
N220.4330 (12)0.296 (2)0.5284 (5)0.056 (2)0.425 (4)
H22B0.41790.30750.49760.067*0.425 (4)
H22A0.48110.20600.54090.067*0.425 (4)
C2410.2272 (10)0.9677 (13)0.5243 (3)0.0885 (17)0.425 (4)
H24A0.31500.99290.53160.133*0.425 (4)
H24B0.18231.08710.52150.133*0.425 (4)
H24C0.21160.89860.49450.133*0.425 (4)
C2420.0500 (8)0.7745 (19)0.5491 (4)0.094 (2)0.425 (4)
H24D0.04850.69930.52030.141*0.425 (4)
H24E0.00530.88230.54300.141*0.425 (4)
H24F0.02340.69670.57420.141*0.425 (4)
C2710.409 (2)0.811 (4)0.6896 (7)0.105 (4)0.425 (4)
H27B0.47900.72570.69150.158*0.425 (4)
H27C0.39800.85460.72130.158*0.425 (4)
H27D0.42310.91960.66990.158*0.425 (4)
C2720.257 (3)0.551 (3)0.7023 (8)0.105 (2)0.425 (4)
H27E0.19010.47300.68670.158*0.425 (4)
H27F0.23070.61090.73010.158*0.425 (4)
H27G0.32850.47140.71190.158*0.425 (4)
C310.25836 (19)0.3704 (3)0.40355 (8)0.0532 (5)
O310.29348 (16)0.4112 (3)0.44628 (6)0.0766 (5)
C320.29371 (19)0.1972 (3)0.38012 (7)0.0530 (5)
N320.3787 (2)0.0623 (3)0.40611 (7)0.0700 (6)0.769 (7)
O320.4480 (4)0.1078 (5)0.44228 (11)0.0910 (13)0.769 (7)
O330.3829 (5)0.1031 (5)0.38936 (14)0.1098 (17)0.769 (7)
N420.3787 (2)0.0623 (3)0.40611 (7)0.0700 (6)0.231 (7)
O420.3856 (13)0.064 (2)0.44958 (17)0.0910 (13)0.231 (7)
O430.4464 (12)0.036 (2)0.3836 (4)0.1098 (17)0.231 (7)
C330.2505 (2)0.1476 (4)0.33364 (8)0.0582 (6)
H330.27540.03290.32080.070*
C340.1701 (2)0.2685 (4)0.30623 (8)0.0596 (6)
N340.1239 (2)0.2151 (4)0.25722 (8)0.0872 (8)
O340.1630 (3)0.0696 (4)0.24086 (8)0.1311 (11)
O350.0470 (3)0.3175 (4)0.23433 (8)0.1305 (10)
C350.1340 (2)0.4400 (4)0.32450 (8)0.0621 (6)
H350.08150.52280.30530.075*
C360.1758 (2)0.4882 (4)0.37107 (8)0.0588 (6)
N360.1302 (3)0.6705 (4)0.38765 (10)0.0904 (7)0.789 (6)
O360.0776 (4)0.7824 (5)0.35711 (13)0.1188 (15)0.789 (6)
O370.1469 (6)0.7149 (7)0.42959 (12)0.153 (2)0.789 (6)
N460.1302 (3)0.6705 (4)0.38765 (10)0.0904 (7)0.211 (6)
O460.0179 (6)0.700 (2)0.3785 (6)0.1188 (15)0.211 (6)
O470.2019 (12)0.747 (3)0.4177 (5)0.153 (2)0.211 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S110.066 (2)0.0644 (10)0.0416 (6)0.0050 (15)0.0009 (14)0.0011 (6)
C120.043 (5)0.044 (2)0.0440 (13)0.009 (3)0.0029 (17)0.0006 (12)
N130.061 (3)0.055 (4)0.0391 (13)0.0043 (12)0.003 (3)0.001 (3)
C13A0.0550 (14)0.047 (3)0.0477 (15)0.0061 (19)0.0127 (13)0.0011 (15)
C140.060 (3)0.061 (3)0.060 (2)0.006 (2)0.0128 (16)0.006 (2)
C150.086 (3)0.097 (4)0.080 (3)0.031 (2)0.020 (2)0.009 (3)
C160.098 (8)0.108 (4)0.071 (2)0.019 (5)0.021 (3)0.025 (2)
C170.068 (3)0.090 (2)0.0472 (15)0.0022 (16)0.0108 (16)0.0111 (16)
C17A0.048 (6)0.0579 (15)0.0447 (14)0.007 (3)0.0052 (17)0.0053 (16)
N120.064 (5)0.056 (3)0.0463 (11)0.007 (4)0.002 (2)0.0030 (14)
C1410.109 (4)0.064 (2)0.093 (5)0.017 (2)0.014 (4)0.019 (4)
C1420.0641 (18)0.128 (8)0.087 (4)0.005 (3)0.001 (2)0.001 (4)
C1710.090 (4)0.160 (11)0.064 (8)0.009 (5)0.001 (4)0.050 (7)
C1720.127 (5)0.137 (4)0.058 (2)0.000 (4)0.034 (3)0.012 (3)
S210.066 (2)0.0644 (10)0.0416 (6)0.0050 (15)0.0009 (14)0.0011 (6)
C220.043 (5)0.044 (2)0.0440 (13)0.009 (3)0.0029 (17)0.0006 (12)
N230.061 (3)0.055 (4)0.0391 (13)0.0043 (12)0.003 (3)0.001 (3)
C23A0.0550 (14)0.047 (3)0.0477 (15)0.0061 (19)0.0127 (13)0.0011 (15)
C240.060 (3)0.061 (3)0.060 (2)0.006 (2)0.0128 (16)0.006 (2)
C250.086 (3)0.097 (4)0.080 (3)0.031 (2)0.020 (2)0.009 (3)
C260.098 (8)0.108 (4)0.071 (2)0.019 (5)0.021 (3)0.025 (2)
C270.068 (3)0.090 (2)0.0472 (15)0.0022 (16)0.0108 (16)0.0111 (16)
C27A0.048 (6)0.0579 (15)0.0447 (14)0.007 (3)0.0052 (17)0.0053 (16)
N220.064 (5)0.056 (3)0.0463 (11)0.007 (4)0.002 (2)0.0030 (14)
C2410.109 (4)0.064 (2)0.093 (5)0.017 (2)0.014 (4)0.019 (4)
C2420.0641 (18)0.128 (8)0.087 (4)0.005 (3)0.001 (2)0.001 (4)
C2710.090 (4)0.160 (11)0.064 (8)0.009 (5)0.001 (4)0.050 (7)
C2720.127 (5)0.137 (4)0.058 (2)0.000 (4)0.034 (3)0.012 (3)
C310.0485 (11)0.0600 (14)0.0512 (12)0.0002 (10)0.0077 (9)0.0020 (10)
O310.0806 (11)0.0887 (14)0.0561 (10)0.0218 (10)0.0078 (8)0.0209 (9)
C320.0527 (12)0.0600 (14)0.0462 (11)0.0069 (10)0.0059 (9)0.0037 (10)
N320.0817 (14)0.0742 (15)0.0524 (11)0.0250 (12)0.0026 (10)0.0040 (10)
O320.089 (3)0.111 (2)0.0640 (14)0.044 (2)0.0235 (16)0.0217 (14)
O330.137 (4)0.074 (2)0.105 (2)0.040 (2)0.040 (2)0.0179 (19)
N420.0817 (14)0.0742 (15)0.0524 (11)0.0250 (12)0.0026 (10)0.0040 (10)
O420.089 (3)0.111 (2)0.0640 (14)0.044 (2)0.0235 (16)0.0217 (14)
O430.137 (4)0.074 (2)0.105 (2)0.040 (2)0.040 (2)0.0179 (19)
C330.0641 (13)0.0621 (14)0.0490 (12)0.0062 (11)0.0094 (10)0.0037 (11)
C340.0591 (13)0.0759 (17)0.0435 (11)0.0057 (12)0.0055 (9)0.0009 (11)
N340.0957 (17)0.110 (2)0.0518 (12)0.0274 (16)0.0050 (11)0.0053 (13)
O340.157 (2)0.158 (3)0.0699 (14)0.065 (2)0.0203 (14)0.0428 (15)
O350.155 (2)0.150 (2)0.0721 (13)0.059 (2)0.0394 (14)0.0070 (14)
C350.0589 (13)0.0703 (16)0.0569 (13)0.0103 (12)0.0069 (10)0.0099 (12)
C360.0602 (13)0.0574 (14)0.0602 (13)0.0076 (11)0.0128 (11)0.0016 (11)
N360.1061 (19)0.0778 (18)0.0864 (18)0.0249 (15)0.0094 (14)0.0097 (15)
O360.138 (3)0.086 (2)0.125 (3)0.054 (2)0.010 (2)0.0002 (19)
O370.279 (5)0.112 (3)0.072 (2)0.085 (3)0.034 (2)0.014 (2)
N460.1061 (19)0.0778 (18)0.0864 (18)0.0249 (15)0.0094 (14)0.0097 (15)
O460.138 (3)0.086 (2)0.125 (3)0.054 (2)0.010 (2)0.0002 (19)
O470.279 (5)0.112 (3)0.072 (2)0.085 (3)0.034 (2)0.014 (2)
Geometric parameters (Å, º) top
S11—C121.719 (3)C24—C2411.535 (6)
S11—C17A1.746 (3)C24—C251.538 (6)
C12—N121.312 (3)C25—C261.493 (13)
C12—N131.336 (9)C25—H25A0.9700
N13—C13A1.407 (5)C25—H25B0.9700
N13—H130.8600C26—C271.537 (6)
C13A—C17A1.347 (6)C26—H26A0.9700
C13A—C141.498 (4)C26—H26B0.9700
C14—C1421.536 (5)C27—C27A1.507 (4)
C14—C1411.533 (6)C27—C2721.526 (5)
C14—C151.538 (5)C27—C2711.533 (5)
C15—C161.494 (12)N22—H22B0.8600
C15—H15A0.9700N22—H22A0.8600
C15—H15B0.9700C241—H24A0.9600
C16—C171.538 (5)C241—H24B0.9600
C16—H16A0.9700C241—H24C0.9600
C16—H16B0.9700C242—H24D0.9600
C17—C17A1.507 (4)C242—H24E0.9600
C17—C1721.526 (5)C242—H24F0.9600
C17—C1711.532 (5)C271—H27B0.9600
N12—H12B0.8600C271—H27C0.9600
N12—H12A0.8600C271—H27D0.9600
C141—H14A0.9600C272—H27E0.9600
C141—H14B0.9600C272—H27F0.9600
C141—H14C0.9600C272—H27G0.9600
C142—H14D0.9600C31—O311.241 (3)
C142—H14E0.9600C31—C361.444 (3)
C142—H14F0.9600C31—C321.447 (3)
C171—H17B0.9600C32—C331.370 (3)
C171—H17C0.9600C32—N321.442 (3)
C171—H17D0.9600N32—O321.221 (3)
C172—H17E0.9600N32—O331.246 (3)
C172—H17F0.9600C33—C341.370 (3)
C172—H17G0.9600C33—H330.9300
S21—C221.719 (4)C34—C351.375 (3)
S21—C27A1.746 (4)C34—N341.448 (3)
C22—N221.311 (4)N34—O341.209 (3)
C22—N231.336 (9)N34—O351.213 (3)
N23—C23A1.407 (6)C35—C361.366 (3)
N23—H230.8600C35—H350.9300
C23A—C27A1.347 (6)C36—N361.458 (3)
C23A—C241.497 (5)N36—O371.206 (4)
C24—C2421.534 (6)N36—O361.239 (3)
C12—S11—C17A90.46 (18)C242—C24—C25109.8 (5)
N12—C12—N13124.0 (4)C241—C24—C25111.1 (5)
N12—C12—S11124.5 (3)C26—C25—C24114.5 (7)
N13—C12—S11111.2 (3)C26—C25—H25A108.6
C12—N13—C13A114.8 (4)C24—C25—H25A108.6
C12—N13—H13122.6C26—C25—H25B108.6
C13A—N13—H13122.6C24—C25—H25B108.6
C17A—C13A—N13111.4 (6)H25A—C25—H25B107.6
C17A—C13A—C14126.2 (3)C25—C26—C27114.9 (9)
N13—C13A—C14122.0 (4)C25—C26—H26A108.5
C13A—C14—C142110.0 (4)C27—C26—H26A108.5
C13A—C14—C141109.6 (4)C25—C26—H26B108.5
C142—C14—C141109.6 (4)C27—C26—H26B108.5
C13A—C14—C15106.6 (3)H26A—C26—H26B107.5
C142—C14—C15109.0 (4)C27A—C27—C272109.8 (5)
C141—C14—C15111.9 (4)C27A—C27—C271110.1 (5)
C16—C15—C14114.2 (5)C272—C27—C271109.6 (5)
C16—C15—H15A108.7C27A—C27—C26106.4 (4)
C14—C15—H15A108.7C272—C27—C26110.5 (5)
C16—C15—H15B108.7C271—C27—C26110.4 (5)
C14—C15—H15B108.7C23A—C27A—C27126.0 (5)
H15A—C15—H15B107.6C23A—C27A—S21111.4 (4)
C15—C16—C17114.8 (8)C27—C27A—S21121.7 (3)
C15—C16—H16A108.6C22—N22—H22B120.0
C17—C16—H16A108.6C22—N22—H22A120.0
C15—C16—H16B108.6H22B—N22—H22A120.0
C17—C16—H16B108.6C24—C241—H24A109.5
H16A—C16—H16B107.5C24—C241—H24B109.5
C17A—C17—C172109.9 (4)H24A—C241—H24B109.5
C17A—C17—C171110.1 (4)C24—C241—H24C109.5
C172—C17—C171109.6 (4)H24A—C241—H24C109.5
C17A—C17—C16106.3 (3)H24B—C241—H24C109.5
C172—C17—C16110.4 (4)C24—C242—H24D109.5
C171—C17—C16110.4 (4)C24—C242—H24E109.5
C13A—C17A—C17125.6 (5)H24D—C242—H24E109.5
C13A—C17A—S11111.6 (3)C24—C242—H24F109.5
C17—C17A—S11122.0 (3)H24D—C242—H24F109.5
C12—N12—H12B120.0H24E—C242—H24F109.5
C12—N12—H12A120.0C27—C271—H27B109.5
H12B—N12—H12A120.0C27—C271—H27C109.5
C14—C141—H14A109.5H27B—C271—H27C109.5
C14—C141—H14B109.5C27—C271—H27D109.5
H14A—C141—H14B109.5H27B—C271—H27D109.5
C14—C141—H14C109.5H27C—C271—H27D109.5
H14A—C141—H14C109.5C27—C272—H27E109.5
H14B—C141—H14C109.5C27—C272—H27F109.5
C14—C142—H14D109.5H27E—C272—H27F109.5
C14—C142—H14E109.5C27—C272—H27G109.5
H14D—C142—H14E109.5H27E—C272—H27G109.5
C14—C142—H14F109.5H27F—C272—H27G109.5
H14D—C142—H14F109.5O31—C31—C36124.4 (2)
H14E—C142—H14F109.5O31—C31—C32124.2 (2)
C17—C171—H17B109.5C36—C31—C32111.38 (19)
C17—C171—H17C109.5C33—C32—N32115.6 (2)
H17B—C171—H17C109.5C33—C32—C31124.3 (2)
C17—C171—H17D109.5N32—C32—C31120.05 (19)
H17B—C171—H17D109.5O32—N32—O33120.2 (3)
H17C—C171—H17D109.5O32—N32—C32122.1 (3)
C17—C172—H17E109.5O33—N32—C32117.6 (2)
C17—C172—H17F109.5C32—C33—C34119.4 (2)
H17E—C172—H17F109.5C32—C33—H33120.3
C17—C172—H17G109.5C34—C33—H33120.3
H17E—C172—H17G109.5C33—C34—C35120.9 (2)
H17F—C172—H17G109.5C33—C34—N34119.3 (2)
C22—S21—C27A90.3 (2)C35—C34—N34119.8 (2)
N22—C22—N23124.0 (5)O34—N34—O35122.7 (3)
N22—C22—S21124.5 (5)O34—N34—C34118.7 (2)
N23—C22—S21111.2 (4)O35—N34—C34118.6 (3)
C22—N23—C23A114.6 (4)C36—C35—C34119.6 (2)
C22—N23—H23122.7C36—C35—H35120.2
C23A—N23—H23122.7C34—C35—H35120.2
C27A—C23A—N23111.4 (7)C35—C36—C31124.3 (2)
C27A—C23A—C24126.1 (4)C35—C36—N36115.7 (2)
N23—C23A—C24122.1 (4)C31—C36—N36120.0 (2)
C23A—C24—C242110.3 (5)O37—N36—O36120.6 (3)
C23A—C24—C241109.5 (5)O37—N36—C36121.3 (3)
C242—C24—C241109.6 (5)O36—N36—C36118.0 (3)
C23A—C24—C25106.4 (4)
C17A—S11—C12—N12179.1 (15)C241—C24—C25—C26163.1 (10)
C17A—S11—C12—N134 (3)C24—C25—C26—C2761.0 (16)
N12—C12—N13—C13A176 (2)C25—C26—C27—C27A42.5 (15)
S11—C12—N13—C13A1 (4)C25—C26—C27—C272161.7 (14)
C12—N13—C13A—C17A4 (5)C25—C26—C27—C27176.9 (15)
C12—N13—C13A—C14178 (2)N23—C23A—C27A—C27180 (4)
C17A—C13A—C14—C142138.0 (17)C24—C23A—C27A—C277 (4)
N13—C13A—C14—C14249 (3)N23—C23A—C27A—S2110 (4)
C17A—C13A—C14—C141101.4 (17)C24—C23A—C27A—S21176.7 (13)
N13—C13A—C14—C14171 (3)C272—C27—C27A—C23A137 (3)
C17A—C13A—C14—C1519.9 (18)C271—C27—C27A—C23A103 (3)
N13—C13A—C14—C15167 (3)C26—C27—C27A—C23A17 (3)
C13A—C14—C15—C1643.7 (9)C272—C27—C27A—S2155 (3)
C142—C14—C15—C16162.5 (8)C271—C27—C27A—S2166 (3)
C141—C14—C15—C1676.1 (9)C26—C27—C27A—S21174 (3)
C14—C15—C16—C1761.2 (12)C22—S21—C27A—C23A10 (3)
C15—C16—C17—C17A44.2 (11)C22—S21—C27A—C27180 (2)
C15—C16—C17—C17275.0 (11)O31—C31—C32—C33176.8 (2)
C15—C16—C17—C171163.6 (10)C36—C31—C32—C332.4 (3)
N13—C13A—C17A—C17177 (3)O31—C31—C32—N322.4 (4)
C14—C13A—C17A—C1710 (3)C36—C31—C32—N32178.3 (2)
N13—C13A—C17A—S117 (3)C33—C32—N32—O32160.8 (4)
C14—C13A—C17A—S11179.6 (9)C31—C32—N32—O3219.9 (4)
C172—C17—C17A—C13A99.6 (19)C33—C32—N32—O3316.4 (5)
C171—C17—C17A—C13A139.5 (18)C31—C32—N32—O33162.8 (4)
C16—C17—C17A—C13A19.9 (19)N32—C32—C33—C34179.5 (2)
C172—C17—C17A—S1169.1 (18)C31—C32—C33—C341.3 (4)
C171—C17—C17A—S1151.7 (19)C32—C33—C34—C351.1 (4)
C16—C17—C17A—S11171.3 (18)C32—C33—C34—N34179.6 (2)
C12—S11—C17A—C13A6.6 (18)C33—C34—N34—O344.0 (4)
C12—S11—C17A—C17176.7 (14)C35—C34—N34—O34175.3 (3)
C27A—S21—C22—N22180 (2)C33—C34—N34—O35175.6 (3)
C27A—S21—C22—N237 (4)C35—C34—N34—O355.1 (4)
N22—C22—N23—C23A176 (3)C33—C34—C35—C362.0 (4)
S21—C22—N23—C23A3 (6)N34—C34—C35—C36178.7 (2)
C22—N23—C23A—C27A5 (6)C34—C35—C36—C310.6 (4)
C22—N23—C23A—C24178 (3)C34—C35—C36—N36178.5 (2)
C27A—C23A—C24—C242100 (2)O31—C31—C36—C35177.8 (2)
N23—C23A—C24—C24272 (4)C32—C31—C36—C351.5 (3)
C27A—C23A—C24—C241139 (2)O31—C31—C36—N361.3 (4)
N23—C23A—C24—C24148 (4)C32—C31—C36—N36179.4 (2)
C27A—C23A—C24—C2519 (2)C35—C36—N36—O37169.7 (4)
N23—C23A—C24—C25169 (4)C31—C36—N36—O379.4 (5)
C23A—C24—C25—C2643.9 (11)C35—C36—N36—O3612.9 (5)
C242—C24—C25—C2675.4 (11)C31—C36—N36—O36167.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12A···O32i0.862.573.219 (10)133
N12—H12A···O33i0.862.313.039 (10)142
N12—H12A···O42i0.862.413.166 (16)147
N12—H12A···O43i0.862.583.197 (15)129
N22—H22A···O32i0.862.343.154 (14)158
N22—H22A···O33i0.862.403.143 (14)146
N22—H22A···O42i0.862.363.190 (19)163
N22—H22A···O43i0.862.463.197 (18)144
N12—H12B···O310.862.112.855 (9)145
N12—H12B···O320.862.202.870 (9)134
N12—H12B···O420.862.302.932 (13)131
N22—H22B···O310.861.972.704 (14)142
N22—H22B···O320.862.142.768 (14)130
N22—H22B···O420.862.162.730 (17)123
N13—H13···O310.862.192.891 (14)138
N23—H23···O310.862.152.81 (2)134
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

BKS thanks the UGC (India) for the award of Rajeev Gandhi Fellowship and MG thanks University of Mysore for research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2012). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (1994). J. Am. Chem. Soc. 116, 909–915.  CrossRef CAS Web of Science Google Scholar
First citationGlidewell, C., Low, J. N., McWilliam, S. A., Skakle, J. M. S. & Wardell, J. L. (2001). Acta Cryst. C57, 1209–1211.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2010). J. Appl. Cryst. 43, 665–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationImramovský, A., Pejchal, V., Štěpánková, S., Šárka, , Vorčáková, K., Jampílek, J., Vančo, J., Šimůnek, P., Královec, K., Brůčková, L., Mandíková, J. & Trejtnar, F. (2013). Bioorg. Med. Chem. 21, 1735–1748.  Google Scholar
First citationJung, K.-Y., Kim, S.-K., Gao, Z.-G., Gross, A. S., Melman, N., Jacobson, K. A. & Kim, Y.-C. (2004). Bioorg. Med. Chem. 12, 613–623.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLynch, D. E. (2002). Acta Cryst. E58, o1139–o1141.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLynch, D. E. & Duckhouse, H. L. (2001). Acta Cryst. C57, 1036–1038.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNaga Raju, G., Bhavya Sai, K., Chandana, K., Gudipati, M., Suresh, P. V. & Ramarao, N. (2015). Indo American J. Pharm Res. 5, 1288–1296.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationQian, H.-F. & Huang, W. (2011). Acta Cryst. E67, o2044.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRanga, M. G., Rao, J. M. R. & Gudla, C. S. (2015). International Patent WO2015/107549 A1; PCT /IN2015/ 000010.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmita Revankar, D., Jyoti, C. A., Revanasiddappa, M., Veerabhadra Swamy, M. & Shankar, S. (2014). J. Applicable Chem. 3, 1447–1459.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds