research communications
KInAs2O7, a new diarsenate with the TlInAs2O7 structure type
aTU Wien, Institute for Chemical Technology and Analytics, Division of Structural Chemistry, Getreidemarkt 9/164-SC, 1060 Wien, Austria, and bNaturhistorisches Museum Wien, Burgring 7, 1010 Wien, and Universität Wien, Institut für Mineralogie und Kristallographie, Althanstrasse 14, 1090 Wien, Austria
*Correspondence e-mail: karolina.schwendtner@tuwien.ac.at
Potassium indium diarsenate(V) was grown under mild hydrothermal conditions (T = 493 K, 7 d) at a pH value of about 1. It adopts the TlInAs2O7 structure type (P-1, Z = 4) and is closely related to the KAlP2O7 (P21/c) and RbAlAs2O7 (P-1) structure types. The framework topology of KInAs2O7 is built of two symmetrically non-equivalent As2O7 groups which share corners with InO6 octahedra. The K atoms are located in channels extending along [010].
Keywords: crystal structure; KInAs2O7; diarsenate.
CCDC reference: 1565954
1. Chemical context
Metal arsenates often form tetrahedral–octahedral framework structures exhibiting potentially interesting properties, such as ion conductivity, ion exchange and catalytic properties (Masquelier et al., 1990, 1994a,b, 1995, 1996, 1998; Mesa et al., 2000; Ouerfelli et al., 2007a, 2008; Pintard-Scrépel et al., 1983; Rousse et al., 2013). During a detailed study of the system M+–M3+–As–O–(H) by hydrothermal syntheses, a large variety of new compounds and structure types were found (Kolitsch, 2004; Schwendtner, 2006; Schwendtner & Kolitsch, 2004a,b, 2005, 2007a,b,c,d, 2017a,b). KInAs2O7 is another example of a microporous metal diarsenate compound forming a tetrahedral–octahedral framework structure.
M+M3+As2O7 compounds crystallize in six known structure types (for a short review, see: Schwendtner & Kolitsch, 2017b), some of these diarsenates being also isotypic to diphosphates or disilicates. For several of the structures, the M+ cation is the relevant factor that determines which structure type is adopted, while a wide range of different M3+ cations are usually accepted. For example, the CaZrSi2O7 structure type (mineral gittinsite; Roelofsen-Ahl & Peterson, 1989) is formed by all Li members (and one Na member), with M3+ cations ranging from M = Al, Ga, Fe to Sc (Schwendtner & Kolitsch, 2007d; Wang et al., 1994). The intermediate-sized M+ cations Ag+ and Na+ generally form either of two structure types, the NaInAs2O7 type (Belam et al., 1997) or the NaAlAs2O7 type (Driss & Jouini, 1994). While the former is only known from the comparatively large M3+ cation In3+ (Belam et al., 1997, ICDD-PDF 059-0058; Wohlschlaeger et al., 2007), the latter is adopted by the smaller M3+ representatives (M = Al, Fe, Ga) (Ouerfelli et al., 2004; Schwendtner & Kolitsch, 2017b). The larger M+ cations (M = K, Rb, Cs, Tl, NH4) favour three structure types, the stabilities of which seem to be determined mainly by the M3+ cations. While the RbAlAs2O7 type (Boughzala et al., 1993) is favoured by the smaller cations Al3+, Ga3+, Cr3+ and Fe3+ (Boughzala & Jouini, 1992, 1995; Bouhassine & Boughzala, 2017; Lin & Lii, 1996; Siegfried et al., 2004; Ouerfelli et al., 2007a), the KAlP2O7 type (Ng & Calvo, 1973), which is extremely common among M+M3+P2O7 compounds, is favoured by the somewhat larger Sc3+ cation (Baran et al., 2006; Kolitsch, 2004; Schwendtner & Kolitsch, 2004a) and the CsCr member CsCrAs2O7 (Bouhassine & Boughzala, 2015). The third type, TlInAs2O7, is very closely related to the two former types and favoured by the large In3+ cation (Schwendtner, 2006), with also one Fe member (KFeAs2O7; Ouerfelli et al., 2007b). The title compound, KInAs2O7, is a new member of the latter structure type.
2. Structural commentary
KInAs2O7 crystallizes in P and adopts the TlInAs2O7 structure type (Schwendtner, 2006), which is also known for RbInAs2O7 and NH4InAs2O7 (Schwendtner, 2006) and KFeAs2O7 (Ouerfelli et al., 2007b) (see comparison in Table 1).
The 6 octahedron shares corners with five different AsO4 tetrahedra, thus creating a framework structure. Two of these connections are to two AsO4 tetrahedra of the same As2O7 group (see Fig. 1). The K+ cations are situated in small channels extending along [010] (see Fig. 2) and have irregular coordination spheres, with ten (K1) and seven (K2) O atoms within 3.5 Å.
contains 22 atoms, all of which lie on general positions. Each InOThe AsO4 tetrahedra are strongly distorted, with bond-length distortion (Brown & Shannon, 1973) ranging from 0.0020 to 0.0024, while the average As—O distances (1.685, 1.687, 1.689 and 1.690 Å for As1–4, respectively, see Table 2) are typical for As—O bond lengths in diarsenates [average = As—O 1.688 (6) Å; Schwendtner & Kolitsch, 2007d]. In addition, the elongated As—O bond lengths to the bridging O atoms (Table 2), ranging from 1.7485 (16) to 1.7607 (16) Å, are typical for diarsenates [average As—Obridge distance is 1.755 (17); Schwendtner & Kolitsch, 2007d]. The As—Obridge—As angles are 120.04 (9) and 118.77 (9)°, and therefore very similar to those of the related TlIn, RbIn and NH4In compounds (Schwendtner 2006), but are smaller than the grand mean value in diarsenates, 124 (5)° (Schwendtner & Kolitsch, 2007d).
|
The In1O6 octahedron is considerably more distorted than the In2-centred octahedron. In fact, the In1O6 octahedron shows the strongest distortion among all of the isotypic In compounds (Schwendtner, 2006) that are so far known [bond-length distortion (Brown & Shannon, 1973): 0.0012 (In1), 0.0003 (In2); bond-angle distortion (Robinson et al., 1971): 66.93 (In1), 20.69 (In2)].
The bond-valence sums, calculated using recently refined parameters (Gagné & Hawthorne, 2015), amount to 0.94/0.88 (K1/K2), 3.01/2.96 (In1/In2), 5.05/5.03/4.99/4.98 (As1/As2/As3/As4) and 2.00/1.97/1.95/2.08/1.94/1.98/1.99/2.00/2.07/2.02/2.04/1.94/1.89/1.86 (O1–O14) valence units and are thus reasonably close to the theoretical values. As expected, the bridging O4 and O11 ligands are slightly overbonded.
The structure shares a practically identical connectivity with two related structure types, the main difference being differences in space-group symmetry and distortion of the structures. It is most closely related to that of KAlP2O7 (Ng & Calvo, 1973), with many of the corresponding Sc-members crystallizing in this structure type. The main difference is a higher space-group symmetry (P21/c) of the KAlP2O7 type, which is lost in the In compounds due to the larger ionic radius of In3+ and a greater distortion of the structure. The second closely related structure type is that of RbAlAs2O7 (Boughzala et al., 1993). Many of the arsenates with large M+ and small M3+ cations crystallize in this structure type, which is also triclinic (P), but actually shows higher symmetry, as Z is halved and the two distinct positions for the As2O7 groups, M3+O6 and M+ present in the KAlP2O7 and TlInAs2O7 structure types are equivalent in the RbAlAs2O7 structure type. A more detailed comparison of these three related structure types is given in Schwendtner (2006).
3. Synthesis and crystallization
KInAs2O7 was synthesized under mild hydrothermal conditions at 493 K (7 d, autogeneous pressure, slow furnace cooling) using a Teflon-lined stainless steel autoclave with an approximate filling volume of 2 cm3. Reagent-grade K2CO3, In2O3 and H3AsO4·5H2O were used as starting reagents in approximate volume ratios of M+:M3+:As of 1:1:2. The vessel was filled with distilled water to about 70% of its inner volume. Initial and final pH was about 1. The reaction products were thoroughly washed with distilled water, filtered and dried at room temperature. KInAs2O7 grew as thick tabular crystals and was accompanied by about 5 vol.% of K(H2O)In(H1.5AsO4)2(H2AsO4) (Schwendtner & Kolitsch, 2007c).
4. Refinement
Crystal data, data collection and structure .
details are summarized in Table 3
|
The largest residual electron densities in the final difference-Fourier map are below 1 e Å−3 and are located close to the In atoms.
Supporting information
CCDC reference: 1565954
https://doi.org/10.1107/S2056989017011318/pk2604sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017011318/pk2604Isup2.hkl
Data collection: COLLECT (Nonius, 2003); cell
SCALEPACK (Otwinowski et al., 2003); data reduction: DENZO and SCALEPACK (Otwinowski et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).KInAs2O7 | Z = 4 |
Mr = 415.76 | F(000) = 760 |
Triclinic, P1 | Dx = 4.165 Mg m−3 |
a = 7.712 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.554 (2) Å | Cell parameters from 5760 reflections |
c = 10.461 (2) Å | θ = 2.5–35.0° |
α = 88.58 (3)° | µ = 14.09 mm−1 |
β = 89.82 (3)° | T = 293 K |
γ = 73.97 (3)° | Thick tabular, colourless |
V = 663.1 (3) Å3 | 0.15 × 0.10 × 0.09 mm |
Nonius KappaCCD single-crystal four-circle diffractometer | 5467 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.017 |
φ and ω scans | θmax = 35.0°, θmin = 2.5° |
Absorption correction: multi-scan (SCALEPACK; Otwinowski et al., 2003) | h = −12→12 |
Tmin = 0.226, Tmax = 0.364 | k = −13→13 |
11497 measured reflections | l = −16→16 |
5787 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.019 | w = 1/[σ2(Fo2) + (0.0098P)2 + 1.0091P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.043 | (Δ/σ)max = 0.002 |
S = 1.16 | Δρmax = 0.91 e Å−3 |
5787 reflections | Δρmin = −0.80 e Å−3 |
200 parameters | Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00818 (16) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
K1 | 0.34522 (8) | 0.53997 (7) | 0.32187 (5) | 0.02034 (10) | |
K2 | 0.31660 (7) | 0.05934 (7) | 0.17988 (6) | 0.02080 (10) | |
In1 | 0.73419 (2) | 0.73879 (2) | 0.40711 (2) | 0.00661 (3) | |
In2 | 0.73416 (2) | 0.23051 (2) | 0.10125 (2) | 0.00664 (3) | |
As1 | 0.94019 (3) | 0.32576 (2) | 0.35376 (2) | 0.00635 (4) | |
As2 | 0.66173 (3) | 0.14940 (2) | 0.42785 (2) | 0.00643 (4) | |
As3 | 0.62526 (3) | 0.66936 (2) | 0.10396 (2) | 0.00657 (4) | |
As4 | 0.95282 (3) | 0.79448 (2) | 0.13500 (2) | 0.00698 (4) | |
O1 | 0.7706 (2) | 0.49230 (19) | 0.36618 (17) | 0.0159 (3) | |
O2 | 1.1358 (2) | 0.3418 (2) | 0.40953 (15) | 0.0119 (3) | |
O3 | 0.9650 (2) | 0.2482 (2) | 0.20709 (14) | 0.0113 (3) | |
O4 | 0.8725 (2) | 0.1851 (2) | 0.45195 (15) | 0.0118 (3) | |
O5 | 0.6925 (2) | −0.03518 (19) | 0.49288 (15) | 0.0126 (3) | |
O6 | 0.5122 (2) | 0.29000 (18) | 0.50933 (15) | 0.0110 (3) | |
O7 | 0.6078 (2) | 0.1721 (2) | 0.27322 (14) | 0.0140 (3) | |
O8 | 0.5977 (2) | 0.48491 (18) | 0.12146 (15) | 0.0115 (3) | |
O9 | 0.5133 (2) | 0.78072 (19) | −0.01871 (14) | 0.0114 (3) | |
O10 | 0.5710 (2) | 0.78104 (19) | 0.23508 (14) | 0.0106 (3) | |
O11 | 0.8537 (2) | 0.65005 (19) | 0.07271 (15) | 0.0116 (3) | |
O12 | 0.8338 (2) | 0.97121 (19) | 0.07213 (16) | 0.0149 (3) | |
O13 | 1.1666 (2) | 0.7361 (2) | 0.08550 (15) | 0.0118 (3) | |
O14 | 0.9563 (2) | 0.7698 (2) | 0.29418 (15) | 0.0151 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
K1 | 0.0218 (2) | 0.0215 (2) | 0.0207 (2) | −0.0113 (2) | 0.00072 (19) | 0.00221 (18) |
K2 | 0.0139 (2) | 0.0180 (2) | 0.0283 (3) | −0.00121 (18) | 0.00082 (19) | 0.00371 (19) |
In1 | 0.00685 (6) | 0.00706 (6) | 0.00621 (5) | −0.00241 (4) | 0.00060 (4) | −0.00022 (4) |
In2 | 0.00646 (6) | 0.00762 (6) | 0.00602 (5) | −0.00223 (4) | 0.00010 (4) | −0.00027 (4) |
As1 | 0.00562 (8) | 0.00642 (8) | 0.00720 (8) | −0.00194 (6) | −0.00088 (6) | −0.00041 (6) |
As2 | 0.00676 (8) | 0.00649 (8) | 0.00648 (8) | −0.00255 (6) | 0.00150 (6) | −0.00048 (6) |
As3 | 0.00675 (8) | 0.00614 (8) | 0.00705 (8) | −0.00214 (6) | −0.00117 (6) | −0.00007 (6) |
As4 | 0.00620 (8) | 0.00841 (8) | 0.00674 (8) | −0.00270 (7) | 0.00132 (6) | −0.00005 (6) |
O1 | 0.0121 (7) | 0.0076 (6) | 0.0253 (8) | 0.0021 (5) | −0.0034 (6) | −0.0053 (6) |
O2 | 0.0096 (6) | 0.0171 (7) | 0.0110 (6) | −0.0072 (6) | −0.0046 (5) | 0.0047 (5) |
O3 | 0.0088 (6) | 0.0177 (7) | 0.0075 (6) | −0.0037 (5) | 0.0004 (5) | −0.0050 (5) |
O4 | 0.0083 (6) | 0.0151 (7) | 0.0138 (7) | −0.0067 (5) | −0.0023 (5) | 0.0052 (5) |
O5 | 0.0165 (7) | 0.0069 (6) | 0.0148 (7) | −0.0040 (5) | 0.0026 (6) | 0.0002 (5) |
O6 | 0.0095 (6) | 0.0095 (6) | 0.0146 (7) | −0.0035 (5) | 0.0051 (5) | −0.0035 (5) |
O7 | 0.0126 (7) | 0.0258 (8) | 0.0061 (6) | −0.0096 (6) | −0.0002 (5) | 0.0017 (6) |
O8 | 0.0129 (7) | 0.0067 (6) | 0.0156 (7) | −0.0041 (5) | −0.0011 (5) | 0.0003 (5) |
O9 | 0.0119 (6) | 0.0129 (7) | 0.0111 (6) | −0.0067 (5) | −0.0055 (5) | 0.0062 (5) |
O10 | 0.0113 (6) | 0.0100 (6) | 0.0087 (6) | 0.0003 (5) | −0.0021 (5) | −0.0022 (5) |
O11 | 0.0083 (6) | 0.0111 (6) | 0.0166 (7) | −0.0044 (5) | 0.0017 (5) | −0.0043 (5) |
O12 | 0.0167 (7) | 0.0070 (6) | 0.0189 (7) | 0.0004 (6) | −0.0004 (6) | 0.0010 (5) |
O13 | 0.0067 (6) | 0.0177 (7) | 0.0104 (6) | −0.0024 (5) | 0.0028 (5) | 0.0015 (5) |
O14 | 0.0111 (7) | 0.0298 (9) | 0.0069 (6) | −0.0100 (6) | 0.0011 (5) | 0.0010 (6) |
K1—O6i | 2.7321 (18) | In1—O14 | 2.1502 (17) |
K1—O2ii | 2.7836 (18) | In1—O6i | 2.1618 (16) |
K1—O8 | 2.8150 (19) | In1—O10 | 2.1643 (16) |
K1—O6 | 2.892 (2) | In1—O2vii | 2.1737 (16) |
K1—O13ii | 3.060 (2) | In2—O9iv | 2.1243 (16) |
K1—O14ii | 3.109 (2) | In2—O13viii | 2.1373 (16) |
K1—O10 | 3.1604 (19) | In2—O3 | 2.1419 (16) |
K1—O1 | 3.225 (2) | In2—O8 | 2.1551 (17) |
K1—O7 | 3.289 (2) | In2—O7 | 2.1560 (16) |
K1—O1i | 3.405 (2) | In2—O12iii | 2.1666 (17) |
K1—As3 | 3.5000 (12) | As1—O1 | 1.6542 (17) |
K1—As2 | 3.6985 (16) | As1—O2 | 1.6609 (16) |
K2—O10iii | 2.6849 (19) | As1—O3 | 1.6761 (16) |
K2—O9iv | 2.7016 (18) | As1—O4 | 1.7485 (16) |
K2—O3ii | 2.7645 (19) | As2—O5 | 1.6592 (16) |
K2—O7 | 2.8609 (19) | As2—O7 | 1.6647 (16) |
K2—O12iv | 2.930 (2) | As2—O6 | 1.6677 (17) |
K2—O9iii | 3.244 (2) | As2—O4 | 1.7549 (16) |
K2—O5v | 3.4261 (18) | As3—O8 | 1.6550 (15) |
K2—As3iii | 3.6275 (15) | As3—O9 | 1.6708 (16) |
K2—As1ii | 3.6671 (15) | As3—O10 | 1.6763 (16) |
K2—As3iv | 3.8247 (13) | As3—O11 | 1.7538 (16) |
K2—As4iv | 3.8903 (14) | As4—O12 | 1.6579 (17) |
K2—As2 | 3.9601 (13) | As4—O13 | 1.6697 (16) |
In1—O5vi | 2.0946 (17) | As4—O14 | 1.6727 (16) |
In1—O1 | 2.1036 (17) | As4—O11 | 1.7607 (16) |
O6i—K1—O2ii | 120.26 (5) | O2vii—In1—K1 | 114.30 (5) |
O6i—K1—O8 | 102.77 (5) | K1i—In1—K1 | 68.45 (3) |
O2ii—K1—O8 | 128.48 (5) | O9iv—In2—O13viii | 89.55 (6) |
O6i—K1—O6 | 78.11 (5) | O9iv—In2—O3 | 172.63 (6) |
O2ii—K1—O6 | 63.78 (5) | O13viii—In2—O3 | 97.43 (6) |
O8—K1—O6 | 102.93 (5) | O9iv—In2—O8 | 84.32 (7) |
O6i—K1—O13ii | 114.87 (5) | O13viii—In2—O8 | 93.94 (7) |
O2ii—K1—O13ii | 109.47 (5) | O3—In2—O8 | 92.81 (7) |
O8—K1—O13ii | 71.53 (5) | O9iv—In2—O7 | 81.95 (6) |
O6—K1—O13ii | 166.51 (5) | O13viii—In2—O7 | 170.02 (6) |
O6i—K1—O14ii | 100.17 (6) | O3—In2—O7 | 91.30 (6) |
O2ii—K1—O14ii | 77.84 (5) | O8—In2—O7 | 90.42 (7) |
O8—K1—O14ii | 123.20 (5) | O9iv—In2—O12iii | 87.43 (7) |
O6—K1—O14ii | 132.49 (5) | O13viii—In2—O12iii | 87.02 (7) |
O13ii—K1—O14ii | 51.67 (5) | O3—In2—O12iii | 95.25 (7) |
O6i—K1—O10 | 57.03 (5) | O8—In2—O12iii | 171.69 (6) |
O2ii—K1—O10 | 176.42 (5) | O7—In2—O12iii | 87.39 (7) |
O8—K1—O10 | 55.10 (5) | O9iv—In2—K2 | 39.85 (4) |
O6—K1—O10 | 116.56 (5) | O13viii—In2—K2 | 125.79 (5) |
O13ii—K1—O10 | 70.97 (5) | O3—In2—K2 | 134.41 (5) |
O14ii—K1—O10 | 100.08 (5) | O8—In2—K2 | 97.40 (5) |
O6i—K1—O1 | 55.08 (5) | O7—In2—K2 | 44.56 (5) |
O2ii—K1—O1 | 128.24 (5) | O12iii—In2—K2 | 75.47 (5) |
O8—K1—O1 | 56.90 (5) | O9iv—In2—K2ix | 54.43 (5) |
O6—K1—O1 | 65.27 (5) | O13viii—In2—K2ix | 59.83 (5) |
O13ii—K1—O1 | 118.16 (5) | O3—In2—K2ix | 131.59 (5) |
O14ii—K1—O1 | 149.48 (5) | O8—In2—K2ix | 127.99 (5) |
O10—K1—O1 | 52.91 (5) | O7—In2—K2ix | 110.57 (5) |
O6i—K1—O7 | 113.18 (5) | O12iii—In2—K2ix | 46.10 (5) |
O2ii—K1—O7 | 77.31 (5) | K2—In2—K2ix | 71.84 (3) |
O8—K1—O7 | 59.57 (5) | O9iv—In2—K1 | 76.25 (5) |
O6—K1—O7 | 51.60 (5) | O13viii—In2—K1 | 130.97 (5) |
O13ii—K1—O7 | 116.67 (5) | O3—In2—K1 | 97.27 (5) |
O14ii—K1—O7 | 145.31 (5) | O8—In2—K1 | 38.84 (5) |
O10—K1—O7 | 105.77 (5) | O7—In2—K1 | 51.90 (5) |
O1—K1—O7 | 64.43 (5) | O12iii—In2—K1 | 137.44 (5) |
O6i—K1—O1i | 64.20 (5) | K2—In2—K1 | 66.80 (2) |
O2ii—K1—O1i | 56.14 (5) | K2ix—In2—K1 | 130.47 (2) |
O8—K1—O1i | 152.21 (5) | O1—As1—O2 | 114.49 (9) |
O6—K1—O1i | 51.80 (5) | O1—As1—O3 | 114.04 (9) |
O13ii—K1—O1i | 135.76 (5) | O2—As1—O3 | 110.79 (8) |
O14ii—K1—O1i | 84.23 (5) | O1—As1—O4 | 102.79 (9) |
O10—K1—O1i | 120.95 (5) | O2—As1—O4 | 107.73 (8) |
O1—K1—O1i | 97.62 (5) | O3—As1—O4 | 106.13 (8) |
O7—K1—O1i | 101.37 (5) | O1—As1—K2x | 152.44 (7) |
O6i—K1—As3 | 83.20 (4) | O2—As1—K2x | 69.60 (6) |
O2ii—K1—As3 | 154.87 (4) | O3—As1—K2x | 45.51 (6) |
O8—K1—As3 | 27.77 (3) | O4—As1—K2x | 101.41 (6) |
O6—K1—As3 | 118.04 (4) | O5—As2—O7 | 116.83 (9) |
O13ii—K1—As3 | 62.61 (4) | O5—As2—O6 | 111.77 (8) |
O14ii—K1—As3 | 108.68 (4) | O7—As2—O6 | 109.04 (9) |
O10—K1—As3 | 28.57 (3) | O5—As2—O4 | 102.19 (8) |
O1—K1—As3 | 55.76 (4) | O7—As2—O4 | 109.84 (8) |
O7—K1—As3 | 85.32 (4) | O6—As2—O4 | 106.52 (8) |
O1i—K1—As3 | 146.83 (4) | O5—As2—K1 | 148.49 (6) |
O6i—K1—As2 | 91.93 (4) | O7—As2—K1 | 62.78 (7) |
O2ii—K1—As2 | 73.27 (4) | O6—As2—K1 | 48.98 (6) |
O8—K1—As2 | 78.71 (4) | O4—As2—K1 | 107.28 (6) |
O6—K1—As2 | 25.79 (3) | O5—As2—K1i | 111.45 (6) |
O13ii—K1—As2 | 143.34 (4) | O7—As2—K1i | 130.87 (7) |
O14ii—K1—As2 | 150.96 (4) | O6—As2—K1i | 40.86 (6) |
O10—K1—As2 | 108.62 (4) | O4—As2—K1i | 66.62 (6) |
O1—K1—As2 | 56.71 (4) | K1—As2—K1i | 71.63 (3) |
O7—K1—As2 | 26.75 (3) | O5—As2—K2 | 89.90 (7) |
O1i—K1—As2 | 77.42 (4) | O7—As2—K2 | 38.85 (6) |
As3—K1—As2 | 98.85 (3) | O6—As2—K2 | 96.95 (6) |
O10iii—K2—O9iv | 103.29 (6) | O4—As2—K2 | 146.96 (6) |
O10iii—K2—O3ii | 148.68 (5) | K1—As2—K2 | 71.29 (3) |
O9iv—K2—O3ii | 108.00 (6) | K1i—As2—K2 | 136.85 (2) |
O10iii—K2—O7 | 77.31 (6) | O8—As3—O9 | 115.24 (8) |
O9iv—K2—O7 | 60.53 (5) | O8—As3—O10 | 113.16 (8) |
O3ii—K2—O7 | 119.83 (6) | O9—As3—O10 | 107.16 (8) |
O10iii—K2—O12iv | 107.93 (6) | O8—As3—O11 | 108.46 (8) |
O9iv—K2—O12iv | 75.74 (5) | O9—As3—O11 | 105.13 (8) |
O3ii—K2—O12iv | 78.86 (6) | O10—As3—O11 | 107.11 (8) |
O7—K2—O12iv | 135.65 (5) | O8—As3—K1 | 52.42 (6) |
O10iii—K2—O9iii | 53.02 (5) | O9—As3—K1 | 113.45 (6) |
O9iv—K2—O9iii | 77.12 (5) | O10—As3—K1 | 64.39 (6) |
O3ii—K2—O9iii | 133.51 (5) | O11—As3—K1 | 141.33 (6) |
O7—K2—O9iii | 103.15 (5) | O8—As3—K2vi | 129.12 (6) |
O12iv—K2—O9iii | 57.14 (5) | O9—As3—K2vi | 63.41 (6) |
O10iii—K2—O5v | 76.92 (6) | O10—As3—K2vi | 43.92 (6) |
O9iv—K2—O5v | 131.30 (5) | O11—As3—K2vi | 121.20 (6) |
O3ii—K2—O5v | 83.57 (6) | K1—As3—K2vi | 80.29 (3) |
O7—K2—O5v | 72.55 (5) | O8—As3—K2iv | 135.36 (6) |
O12iv—K2—O5v | 151.70 (5) | O9—As3—K2iv | 37.63 (6) |
O9iii—K2—O5v | 128.64 (5) | O10—As3—K2iv | 109.87 (6) |
O10iii—K2—As3iii | 25.66 (3) | O11—As3—K2iv | 68.47 (6) |
O9iv—K2—As3iii | 91.84 (5) | K1—As3—K2iv | 149.98 (2) |
O3ii—K2—As3iii | 148.57 (4) | K2vi—As3—K2iv | 77.40 (3) |
O7—K2—As3iii | 90.99 (5) | O12—As4—O13 | 114.01 (9) |
O12iv—K2—As3iii | 82.93 (5) | O12—As4—O14 | 118.28 (9) |
O9iii—K2—As3iii | 27.42 (3) | O13—As4—O14 | 107.10 (8) |
O5v—K2—As3iii | 101.70 (4) | O12—As4—O11 | 104.77 (8) |
O10iii—K2—As1ii | 135.28 (4) | O13—As4—O11 | 104.59 (8) |
O9iv—K2—As1ii | 114.06 (5) | O14—As4—O11 | 106.99 (8) |
O3ii—K2—As1ii | 25.63 (3) | O12—As4—K1x | 151.68 (6) |
O7—K2—As1ii | 99.90 (5) | O13—As4—K1x | 53.94 (6) |
O12iv—K2—As1ii | 104.49 (4) | O14—As4—K1x | 55.64 (7) |
O9iii—K2—As1ii | 156.93 (3) | O11—As4—K1x | 103.26 (6) |
O5v—K2—As1ii | 60.25 (4) | O12—As4—K2iv | 43.87 (7) |
As3iii—K2—As1ii | 154.03 (2) | O13—As4—K2iv | 103.15 (6) |
O10iii—K2—As3iv | 120.46 (5) | O14—As4—K2iv | 149.68 (6) |
O9iv—K2—As3iv | 22.19 (3) | O11—As4—K2iv | 66.53 (6) |
O3ii—K2—As3iv | 89.60 (5) | K1x—As4—K2iv | 153.30 (2) |
O7—K2—As3iv | 80.16 (4) | As1—O1—In1 | 137.71 (10) |
O12iv—K2—As3iv | 58.83 (4) | As1—O1—K1 | 129.03 (8) |
O9iii—K2—As3iv | 80.57 (4) | In1—O1—K1 | 93.24 (6) |
O5v—K2—As3iv | 143.46 (3) | As1—O1—K1i | 100.72 (8) |
As3iii—K2—As3iv | 102.60 (3) | In1—O1—K1i | 84.15 (6) |
As1ii—K2—As3iv | 102.46 (3) | K1—O1—K1i | 82.38 (5) |
O10iii—K2—As4iv | 130.07 (5) | As1—O2—In1vii | 129.48 (9) |
O9iv—K2—As4iv | 67.39 (4) | As1—O2—K1x | 129.19 (8) |
O3ii—K2—As4iv | 63.75 (4) | In1vii—O2—K1x | 99.93 (6) |
O7—K2—As4iv | 125.94 (4) | As1—O3—In2 | 120.25 (8) |
O12iv—K2—As4iv | 23.09 (3) | As1—O3—K2x | 108.86 (8) |
O9iii—K2—As4iv | 77.51 (4) | In2—O3—K2x | 126.82 (7) |
O5v—K2—As4iv | 147.12 (4) | As1—O4—As2 | 120.04 (9) |
As3iii—K2—As4iv | 104.51 (3) | As2—O5—In1iii | 130.44 (9) |
As1ii—K2—As4iv | 88.12 (3) | As2—O5—K2v | 116.32 (8) |
As3iv—K2—As4iv | 46.153 (19) | In1iii—O5—K2v | 113.24 (6) |
O10iii—K2—As2 | 71.17 (4) | As2—O6—In1i | 125.62 (8) |
O9iv—K2—As2 | 81.89 (4) | As2—O6—K1i | 115.60 (8) |
O3ii—K2—As2 | 114.46 (4) | In1i—O6—K1i | 107.02 (6) |
O7—K2—As2 | 21.41 (3) | As2—O6—K1 | 105.23 (7) |
O12iv—K2—As2 | 156.80 (4) | In1i—O6—K1 | 96.99 (6) |
O9iii—K2—As2 | 112.01 (4) | K1i—O6—K1 | 101.89 (5) |
O5v—K2—As2 | 51.49 (3) | As2—O7—In2 | 135.63 (9) |
As3iii—K2—As2 | 91.82 (3) | As2—O7—K2 | 119.75 (8) |
As1ii—K2—As2 | 90.09 (3) | In2—O7—K2 | 103.52 (6) |
As3iv—K2—As2 | 100.84 (3) | As2—O7—K1 | 90.47 (8) |
As4iv—K2—As2 | 145.27 (2) | In2—O7—K1 | 97.04 (7) |
O5vi—In1—O1 | 166.27 (7) | K2—O7—K1 | 92.93 (5) |
O5vi—In1—O14 | 93.20 (7) | As3—O8—In2 | 142.75 (9) |
O1—In1—O14 | 96.26 (8) | As3—O8—K1 | 99.81 (8) |
O5vi—In1—O6i | 90.56 (7) | In2—O8—K1 | 112.46 (7) |
O1—In1—O6i | 81.66 (7) | As3—O9—In2iv | 127.85 (8) |
O14—In1—O6i | 170.49 (6) | As3—O9—K2iv | 120.18 (8) |
O5vi—In1—O10 | 106.60 (7) | In2iv—O9—K2iv | 109.90 (6) |
O1—In1—O10 | 83.61 (7) | As3—O9—K2vi | 89.16 (7) |
O14—In1—O10 | 88.56 (6) | In2iv—O9—K2vi | 93.39 (6) |
O6i—In1—O10 | 81.99 (6) | K2iv—O9—K2vi | 102.88 (5) |
O5vi—In1—O2vii | 80.65 (7) | As3—O10—In1 | 123.52 (8) |
O1—In1—O2vii | 87.70 (7) | As3—O10—K2vi | 110.42 (7) |
O14—In1—O2vii | 101.65 (6) | In1—O10—K2vi | 123.98 (7) |
O6i—In1—O2vii | 87.57 (6) | As3—O10—K1 | 87.04 (6) |
O10—In1—O2vii | 167.27 (6) | In1—O10—K1 | 93.87 (6) |
O5vi—In1—K1i | 103.80 (5) | K2vi—O10—K1 | 103.39 (6) |
O1—In1—K1i | 62.60 (6) | As3—O11—As4 | 118.77 (9) |
O14—In1—K1i | 138.00 (5) | As4—O12—In2vi | 145.24 (10) |
O6i—In1—K1i | 48.79 (5) | As4—O12—K2iv | 113.04 (8) |
O10—In1—K1i | 121.39 (5) | In2vi—O12—K2iv | 101.71 (7) |
O2vii—In1—K1i | 45.94 (4) | As4—O13—In2viii | 127.33 (9) |
O5vi—In1—K1 | 124.31 (5) | As4—O13—K1x | 99.88 (7) |
O1—In1—K1 | 54.63 (5) | In2viii—O13—K1x | 132.34 (7) |
O14—In1—K1 | 130.46 (5) | As4—O14—In1 | 124.72 (9) |
O6i—In1—K1 | 41.42 (4) | As4—O14—K1x | 97.99 (8) |
O10—In1—K1 | 52.98 (5) | In1—O14—K1x | 122.74 (7) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) x, y−1, z; (iv) −x+1, −y+1, −z; (v) −x+1, −y, −z+1; (vi) x, y+1, z; (vii) −x+2, −y+1, −z+1; (viii) −x+2, −y+1, −z; (ix) −x+1, −y, −z; (x) x+1, y, z. |
Compound | a (Å) | b (Å) | c (Å) | α (°) | β (°) | γ (°) | V (Å3) |
TlInAs2O7 type1 | |||||||
KInAs2O7 | 7.712 (2) | 8.554 (2) | 10.461 (2) | 88.58 (3) | 89.82 (3) | 73.97 (3) | 663.1 (3) |
RbInAs2O71 | 7.845 (2) | 8.678 (2) | 10.492 (2) | 88.85 (3) | 89.93 (3) | 74.38 (3) | 687.5 (3) |
TlInAs2O71 | 7.827 (2) | 8.625 (2) | 10.494 (2) | 88.83 (3) | 89.98 (3) | 74.31 (3) | 682.1 (3) |
(NH4)InAs2O71 | 7.858 (2) | 8.649 (2) | 10.515 (2) | 88.96 (3) | 89.94 (3) | 74.34 (3) | 688.0 (3) |
KFeAs2O72 | 7.662 (1) | 8.402 (2) | 10.100 (3) | 89.58 (3) | 89.74 (2) | 73.61 (2) | 623.8 (3) |
KAlP2O7 type3 | |||||||
RbScAs2O74 | 7.837 (2) | 10.625 (2) | 8.778 (2) | 90.00 | 106.45 (3) | 90.00 | 701.0 (3) |
TlScAs2O75 | 7.814 (2) | 10.613 (2) | 8.726 (2) | 90.00 | 106.31 (3) | 90.00 | 694.5 (3) |
CsCrAs2O76 | 7.908 (1) | 10.0806 (10) | 8.6371 (10) | 90.00 | 105.841 (1) | 90.00 | 662.38 (13) |
(NH4)ScAs2O77 | 7.842 (2) | 10.656 (2) | 8.765 (2) | 90.00 | 106.81 (3) | 90.00 | 701.1 (3) |
RbAlAs2O7 type8 | |||||||
KGaAs2O79 | 6.271 (1) | 6.376 (1) | 8.169 (1) | 96.45 (1) | 103.86 (1) | 103.87 (1) | 302.84 (8) |
KAlAs2O710 | 6.192 (4) | 6.297 (3) | 8.106 (1) | 96.600 (8) | 104.517 (8) | 102.864 (7) | 293.4 |
RbAlAs2O78 | 6.241 (5) | 6.34 (2) | 8.233 (5) | 96.7 (1) | 103.89 (7) | 102.6 (1) | 303.9 |
CsAlAs2O711 | 6.494 (8) | 6.709 (7) | 8.360 (8) | 97.07 (9) | 103.23 (9) | 102.62 (8) | 340.4 |
TlAlAs2O711 | 6.267 (4) | 6.324 (4) | 8.168 (8) | 97.07 (7) | 103.83 (8) | 102.99 (8) | 300.9 |
KCr0.25Al0.75 As2O712 | 6.243 (3) | 6.349 (3) | 8.153 (4) | 96.57 (2) | 104.45 (3) | 103.08 (4) | 299.8 (8) |
TlFe0.22Al0.78As2O713 | 6.296 (2) | 6.397 (2) | 8.242 (2) | 96.74 (2) | 103.78 (2) | 102.99 (3) | 309.0 (2) |
KCrAs2O714 | 6.316 (1) | 6.420 (1) | 8.179 (2) | 96.29 (3) | 104.27 (3) | 103.66 (3) | 307.4 (1) |
Notes: (1) Schwendtner (2006), P1, Z = 4; (2) Ouerfelli et al. (2007b), transformed to reduced cell; (3) Ng & Calvo (1973), P21/c, Z = 4; (4) Schwendtner & Kolitsch (2004a); (5) Baran et al. (2006); (6) Bouhassine & Boughzala (2015); (7) Kolitsch (2004); (8) Boughzala et al. (1993), P1, Z = 2, transformed to reduced cell; (9) Lin & Lii (1996); (10) Boughzala & Jouini (1995); (11) Boughzala & Jouini (1992), transformed to reduced cell; (12) Bouhassine & Boughzala (2017); (13) Ouerfelli et al. (2007a); (14) Siegfried et al. (2004). |
Acknowledgements
The authors acknowledge the TU Wien University Library for financial support through its Open Access Funding Program.
Funding information
Funding for this research was provided by: Austrian Academy of Sciences, Doc fForte Fellowship to K. Schwendtner.
References
Baran, E. J., Schwendtner, K. & Kolitsch, U. (2006). J. Raman Spectrosc. 37, 1335–1340. Web of Science CrossRef CAS Google Scholar
Belam, W., Driss, A. & Jouini, T. (1997). Acta Cryst. C53, 5–7. CrossRef CAS Web of Science IUCr Journals Google Scholar
Boughzala, H., Driss, A. & Jouini, T. (1993). Acta Cryst. C49, 425–427. CrossRef CAS Web of Science IUCr Journals Google Scholar
Boughzala, H. & Jouini, T. (1992). C. R. Acad. Sci. II, 314, 1419–1422. CAS Google Scholar
Boughzala, H. & Jouini, T. (1995). Acta Cryst. C51, 179–181. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bouhassine, M. A. & Boughzala, H. (2015). Acta Cryst. E71, 636–639. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bouhassine, M. A. & Boughzala, H. (2017). Acta Cryst. E73, 345–348. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brown, I. D. & Shannon, R. D. (1973). Acta Cryst. A29, 266–282. CrossRef CAS IUCr Journals Web of Science Google Scholar
Driss, A. & Jouini, T. (1994). J. Solid State Chem. 112, 277–280. CrossRef CAS Web of Science Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578. Web of Science CrossRef IUCr Journals Google Scholar
Kolitsch, U. (2004). Z. Kristallogr. New Cryst. Struct. 219, 207–208. CAS Google Scholar
Lin, K.-J. & Lii, K.-H. (1996). Acta Cryst. C52, 2387–2389. CrossRef CAS Web of Science IUCr Journals Google Scholar
Masquelier, C., d'Yvoire, F., Bretey, E., Berthet, P. & Peytour-Chansac, C. (1994a). Solid State Ionics, 67, 183–189. CrossRef CAS Web of Science Google Scholar
Masquelier, C., d'Yvoire, F. & Collin, G. (1994b). Solid State Ionic Materials: Proceedings of the 4th Asian Conference on Solid State Ionics, 4th, pp. 167–172. Google Scholar
Masquelier, C., d'Yvoire, F. & Collin, G. (1995). J. Solid State Chem. 118, 33–42. CrossRef CAS Web of Science Google Scholar
Masquelier, C., d'Yvoire, F. & Rodier, N. (1990). Acta Cryst. C46, 1584–1587. CrossRef CAS Web of Science IUCr Journals Google Scholar
Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. (1998). J. Solid State Chem. 135, 228–234. Web of Science CrossRef CAS Google Scholar
Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the 37th Power Sources Conference, pp. 188–191. Google Scholar
Mesa, J. L., Goñi, A., Brandl, A. L., Moreno, N. O., Barberis, G. E. & Rojo, T. (2000). J. Mater. Chem. 10, 2779–2785. Web of Science CrossRef CAS Google Scholar
Ng, H. N. & Calvo, C. (1973). Can. J. Chem. 51, 2613–2620. CrossRef CAS Web of Science Google Scholar
Nonius (2003). COLLECT.. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ouerfelli, N., Guesmi, A., Mazza, D., Madani, A., Zid, M. F. & Driss, A. (2007a). J. Solid State Chem. 180, 1224–1229. Web of Science CrossRef CAS Google Scholar
Ouerfelli, N., Guesmi, A., Mazza, D., Zid, M. F. & Driss, A. (2008). Acta Cryst. C64, i41–i44. Web of Science CrossRef IUCr Journals Google Scholar
Ouerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007b). J. Solid State Chem. 180, 2942–2949. Web of Science CrossRef CAS Google Scholar
Ouerfelli, N., Zid, M. F., Jouini, T. & Touati, A. M. (2004). J. Soc. Chim. Tunis. 6, 86–95. Google Scholar
Pintard-Scrépel, M., d'Yvoire, F. & Bretey, E. (1983). Stud. Inorg. Chem. 3, 215–218. Google Scholar
Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570. CrossRef PubMed CAS Web of Science Google Scholar
Roelofsen-Ahl, J. N. & Peterson, R. C. (1989). Can. Mineral. 27, 703–708. CAS Google Scholar
Rousse, G., Rodriguez-Carvajal, J., Wurm, C. & Masquelier, C. (2013). Phys. Rev. B Condens. Matter Mater. Phys. 88, 214433/214431–214433/214439. Web of Science CrossRef Google Scholar
Schwendtner, K. (2006). J. Alloys Compd. 421, 57–63. Web of Science CrossRef CAS Google Scholar
Schwendtner, K. & Kolitsch, U. (2004a). Acta Cryst. C60, i79–i83. Web of Science CrossRef CAS IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2004b). Acta Cryst. C60, i84–i88. Web of Science CrossRef CAS IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90–i93. Web of Science CrossRef CAS IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205–215. Web of Science CrossRef IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2007b). Acta Cryst. C63, i17–i20. Web of Science CrossRef IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399–409. Web of Science CrossRef CAS Google Scholar
Schwendtner, K. & Kolitsch, U. (2007d). Mineral. Mag. 71, 249–263. Web of Science CrossRef CAS Google Scholar
Schwendtner, K. & Kolitsch, U. (2017a). Acta Cryst. C73, 600–608. CSD CrossRef IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 785–790. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siegfried, A. M., Flowers, A. T., Wang, L. & Hwu, S.-J. (2004). 56th Southeast Regional Meeting of the American Chemical Society, p. 518. Research Triangle Park, NC, USA: American Chemical Society. Google Scholar
Wang, S.-L., Wu, C.-H. & Liu, S.-N. (1994). J. Solid State Chem. 113, 37–40. CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wohlschlaeger, A., Lengauer, C. & Tillmanns, E. (2007). University of Vienna, Austria & ICDD Grant-in-Aid. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.