research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the tetra­hydro­furan disolvate of a 94:6 solid solution of [N2,N6-bis­­(di-tert-butyl­phosphan­yl)pyridine-2,6-di­amine]­di­bromido­manganese(II) and its monophosphine oxide analogue

CROSSMARK_Color_square_no_text.svg

aInstitute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, A-1060 Vienna, Austria, and bX-Ray Centre, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria
*Correspondence e-mail: matthias.mastalir@tuwien.ac.at

Edited by J. Simpson, University of Otago, New Zealand (Received 30 July 2017; accepted 31 July 2017; online 8 August 2017)

The MnBr2 complex of N2,N6-bis­(di-tert-butyl­phosphan­yl)pyridine-2,6-di­amine (1·MnBr2) co-crystallizes with 5.69% of the monophosphine oxide analogue (1O·MnBr2) and two tetra­hydro­furan (THF) mol­ecules, namely [N2,N6-bis­(di-tert-butyl­phosphan­yl)pyridine-2,6-di­amine]­dibromido­manganese(II)–[bis­(di-tert-butyl­phosphan­yl)({6-[(di-tert-butyl­phosphan­yl)amino]­pyridin-2-yl}amino)­phosphine oxide]di­bromido­manganese(II)–tetra­hydro­furan (0.94/0.06/2), [MnBr2(C21H41N3P2)]0.94[MnBr2(C21H41N3OP2)]0.06·2C4H8O. The 1·MnBr2 and 1O·MnBr2 complexes are occupationally disordered about general positions. Both complexes feature square-pyramidal coordination of the MnII atoms. They are connected by weak N—H⋯Br hydrogen bonding into chains extending along [001]. The THF mol­ecules are located between the layers formed by these chains. One THF mol­ecule is involved in hydrogen bonding to an amine H atom.

1. Chemical context

Pincer complexes of transition metals are versatile homogeneous catalysts (Dobereiner & Crabtree, 2010[Dobereiner, G. E. & Crabtree, R. H. (2010). Chem. Rev. 110, 681-703.]; Mastalir et al., 2017a[Mastalir, M., Glatz, M., Stöger, B., Weil, M., Pittenauer, E., Allmaier, G. & Kirchner, K. (2017a). Inorg. Chim. Acta, 455, 707-714.]). Traditionally, platinum-group metal complexes have been employed in these applications (Zell & Milstein, 2015[Zell, T. & Milstein, D. (2015). Acc. Chem. Res. 48, 1979-1994.]; Bähn et al., 2011[Bähn, S., Imm, S., Neubert, L., Zhang, M., Neumann, H. & Beller, M. (2011). ChemCatChem, 3, 1853-1864.]; Crabtree et al., 2011[Crabtree, R. H. (2011). Organometallics, 30, 17-19.]; Watson & Williams, 2010[Watson, A. J. A. & Williams, J. M. J. (2010). Science, 329, 635-636.]; Gunanathan et al., 2007[Gunanathan, C., Ben-David, Y. & Milstein, D. (2007). Science, 317, 790-792.]; Zhang et al., 2005[Zhang, J., Leitus, G., Ben-David, Y. & Milstein, D. (2005). J. Am. Chem. Soc. 127, 10840-10841.]; Michlik & Kempe, 2010[Michlik, S. & Kempe, R. (2010). Chem. Eur. J. 16, 13193-13198.]; Michlik et al., 2012[Michlik, S., Hille, T. & Kempe, R. (2012). Adv. Synth. Catal. 354, 847-862.]). Our group is dedicated to the development of more cost-effective and environmentally friendly alternatives, such as PNP (pincer ligand coordinating via P, N and P) complexes of Fe (Glatz et al., 2015a[Glatz, M., Holzhacker, C., Bichler, B., Mastalir, M., Stöger, B., Mereiter, K., Weil, M., Veiros, L. F., Mösch-Zanetti, N. C. & Kirchner, K. (2015a). Eur. J. Inorg. Chem. pp. 5053-5065.],b[Glatz, M., Bichler, B., Mastalir, M., Stöger, B., Weil, M., Mereiter, K., Pittenauer, E., Allmaier, G., Veiros, L. F. & Kirchner, K. (2015b). Dalton Trans. 44, 281-294.]; Mastalir et al., 2016a[Mastalir, M., Stöger, B., Pittenauer, E., Puchberger, M., Allmaier, G. & Kirchner, K. (2016a). Adv. Synth. Catal. 358, 3824-3831.]). Recently, we extended our research scope to MnI PNP complexes (Mastalir et al., 2016b[Mastalir, M., Glatz, M., Pittenauer, E., Allmaier, G. & Kirchner, K. (2016b). J. Am. Chem. Soc. 138, 15543-15546.],c[Mastalir, M., Glatz, M., Gorgas, N., Stöger, B., Pittenauer, E., Allmaier, G., Veiros, L. F. & Kirchner, K. (2016c). Chem. Eur. J. 22, 12316-12320.], 2017b[Mastalir, M., Pittenauer, E., Allmaier, G. & Kirchner, K. (2017b). J. Am. Chem. Soc. 139, 8812-8815.]).

In this context, we attempted the synthesis of the MnBr2 complex with the PNP ligand N2,N6-bis­(di-tert-butyl­phosphan­yl)pyridine-2,6-di­amine (1) as a precursor to MnI complexes. Inadvertently, on recrystallization of the crude product, a 94.31:5.69 (14)% solid solution of the expected 1·MnBr2 and its phosphine oxide analogue 1O·MnBr2 co-crystallized with two THF solvent mol­ecules (see scheme), most likely as a result of an impure starting ligand. The crystal under investigation accordingly has the composition 0.9431(1·MnBr2)·0.0569(1O·MnBr2)·2THF.

[Scheme 1]

2. Structural commentary

The title crystal possesses P21/c symmetry. A 94.31:5.69 (14) overlay of the 1·MnBr2 complex and the corresponding mono-oxidized 1O·MnBr2 complex is located on general positions. Two crystallographically independent THF solvent mol­ecules are likewise located on general positions, one of which is positionally disordered.

The ligands of both the non-oxidized and the oxidized complexes occupy virtually the same space. They could therefore not be resolved into distinct sites and even the atomic displacement parameters (ADPs) are not significantly enlarged. The Mn and Br atoms, on the other hand, are clearly separated within the resolution of the experiment.

The MnII atom of the non-oxidized 1·MnBr2 complex features fivefold coordination with the PNP-ligand and two bromine atoms (Fig. 1[link]) in a square-pyramidal conformation with a τ5 parameter (Addison et al., 1984[Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) of 0.083. The ideal τ5 values for square-pyramidal and trigonal–bipyramidal coordinations are 0 and 1, respectively. The Mn atom is nearly equidistant [2.644 (9) and 2.639 (10) Å] to both P atoms.

[Figure 1]
Figure 1
The mol­ecular structure of 1·MnBr2. C (grey), N (blue), P and Br (orange), and Mn (purple) atoms are represented by ellipsoids drawn at the 50% probability levels. H atoms have been omitted for clarity.

The complex adopts a distinctly non-planar configuration with distances to the least-squares (LS) plane defined by the pryidine ring and amine-N atoms of 0.4391 (7) Å (Mn), 0.0700 (7) Å (P1) and 0.3100 (7) Å (P2), as is characteristic for this class of compounds.

In comparison, the recently structurally characterized MnCl2 complex of the isopropyl analogue of 1 (Mastalir et al., 2017a[Mastalir, M., Glatz, M., Stöger, B., Weil, M., Pittenauer, E., Allmaier, G. & Kirchner, K. (2017a). Inorg. Chim. Acta, 455, 707-714.]) features an even more ideal square-pyramidal conformation (τ5 = 0.041) and the MnII atom is likewise nearly equidistant to both P atoms [2.593 (5) and 2.579 (5) Å]. Likewise, the deviation from planarity is in the same range [distances to the LS plane described above: 0.4158 (2) Å (Mn), 0.3190 (4) Å (P1) and 0.0334 (4) Å (P2)].

In the monooxidized 1O·MnBr2 complex (Fig. 2[link]), the coordination deviates more from the square-pyramidal mode than in 1·MnBr2 (τ5 = 0.196; Fig. 3[link]). The O atom introduces an additional distortion, leading to an increased deviation from planarity, whereby the Mn′ and O atoms are located on opposite sides of the LS plane described above [0.712 (13) Å (Mn) and 0.12 (4) Å (O)]. The Mn′—P1 bond is distinctly shorter [2.453 (12) Å] than the corresponding bond in the non-oxidized complex.

[Figure 2]
Figure 2
The mol­ecular structure of 1O·MnBr2. Atom colour codes as in Fig. 1[link] with O (red).
[Figure 3]
Figure 3
The coordination of the Mn atom in 1O·MnBr2. Atom colour codes as in Figs. 1[link] and 2[link].

3. Supra­molecular features

The disordered THF mol­ecule (O1/C22–C25) is connected to a complex mol­ecule via a strong N1—H⋯O1 hydrogen bond (Table 1[link]). The second THF mol­ecule is not involved in hydrogen bonding (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯Br1i 0.83 (3) 2.80 (3) 3.625 (2) 173 (2)
N2—H1N2⋯Br1′i 0.83 (3) 2.81 (3) 3.629 (7) 169 (3)
N3—H1N3⋯O1 0.78 (4) 2.22 (4) 2.990 (4) 171 (3)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 4]
Figure 4
Inter­molecular hydrogen bonding (dashed lines) in the title crystal. Complexes are shown as an overlay of 1·MnBr2 and 1O·MnBr2. Atom colour codes as in Figs. 1[link] and 2[link].

The amine functionality that is not bonded to THF connects via a weak N2—H⋯Br1(Br1′) hydrogen bond, thus forming infinite chains of complex mol­ecules extending along [001]. Adjacent complexes in this chain are related by the c glide reflection.

No further bonding inter­molecular inter­actions are observed in the crystal structure. The chains of complexes contact in the [001] direction via van der Waals inter­actions, forming distinct layers parallel to (100). Between these layers are located the hydrogen-bonded and free THF mol­ecules (Fig. 5[link]).

[Figure 5]
Figure 5
Packing plot of the title crystal looking along [010].

4. Database survey

A search in the Cambridge Structural Database (Version 5.37; last update March 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures of fivefold-coordinated Mn/PNP complexes revealed no entries. Nevertheless, our group recently published the MnCl2 complex of the isopropyl analogue of 1 (see above). Moreover, three related Mn(PNP)(CO)3 complexes with octa­hedral coordination modes are known. One of these compounds is likewise pyridine-based (Flörke & Haupt, 1991[Flörke, U. & Haupt, H.-J. (1991). Z. Kristallogr. 196, 296-298.]), whereas the others are based on ditolyl­amines (Radosevich et al., 2009[Radosevich, A. T., Melnick, J. G., Stoian, S. A., Bacciu, D., Chen, C. H., Foxman, B. M., Ozerov, O. V. & Nocera, D. G. (2009). Inorg. Chem. 48, 9214-9221.]). No ligand mono-oxidized analogues of Mn/PNP complexes have been described up to now.

5. Synthesis and crystallization

The synthesis of 1 was performed as described previously (Deibl & Kempe, 2016[Deibl, N. & Kempe, R. (2016). J. Am. Chem. Soc. 138, 10786-10789.]). THF was dried over Na under an Ar atmosphere. All other reagents were obtained commercially and used as received. 1 and MnBr2 were stirred in dry THF for 18 h under an Ar atmosphere (see reaction scheme). The complex 1·MnBr2 was precipitated by addition of n-pentane. The microcrystalline powder was washed twice with n-pentane. Crystals were grown by slow vapour diffusion of diethyl ether into a room-temperature saturated solution of 1·MnBr2 in THF.

[Scheme 2]

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms bonded to C atoms were placed in calculated positions and refined as riding atoms, with fixed bond lengths in the range 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(CMe). The two amine H atoms were located in difference-Fourier maps and were refined freely.

Table 2
Experimental details

Crystal data
Chemical formula [MnBr2(C21H41N3P2)]0.94[MnBr2(C21H41N3OP2)]0.06·2C4H8O
Mr 757.4
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.6496 (7), 18.5016 (11), 17.1626 (9)
β (°) 105.1763 (16)
V3) 3570.2 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.73
Crystal size (mm) 0.45 × 0.43 × 0.42
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.29, 0.32
No. of measured, independent and observed [I > 3σ(I)] reflections 29339, 8452, 6175
Rint 0.031
(sin θ/λ)max−1) 0.659
 
Refinement
R[F > 3σ(F)], wR(F), S 0.039, 0.045, 1.92
No. of reflections 8452
No. of parameters 377
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.02, −0.70
Computer programs: APEX2 and SAINT-Plus (Bruker, 2015[Bruker (2015). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), JANA20006 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Excessive electron density in difference-Fourier maps was attributed to alternative positions of the Mn and Br atoms. The Mn and Br atoms were therefore refined as positionally disordered (minor positions: Mn′ and Br′). The occupancies of the atoms of both orientations were constrained to the same value and the sum of the occupancies of both orientations were constrained to 1. The atoms in the minor (ca 6%) orientation were modelled with isotropic ADPs. The minor orientation featured an unreasonably long Mn—P distance (ca 3.18 Å). Inspection of the electron density in the difference-Fourier map close to the P atom revealed a faint positive peak that was attributed to an O atom that is bound to the P atom, forming an phosphine oxide. The occupancy of this atom was constrained to be equal to the occupancy of the minor positions. The position of the additional O atom was refined freely.

A C atom of a THF mol­ecule featured excessively anisotropic ADPs. The position was therefore split and refined as positionally disordered with the sum of the occupancies of both positions constrained to 1; occupancy ratio 0.526 (14):0.474 (14). Both C atoms were refined with isotropic ADPs.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT-Plus (Bruker, 2015); data reduction: SAINT-Plus (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015); program(s) used to refine structure: JANA20006 (Petříček et al., 2014); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

[N2,N6-Bis(di-tert-butylphosphanyl)pyridine-2,6-diamine]dibromidomanganese(II)–[bis(di-tert-butylphosphanyl)({6-[(di-tert-butylphosphanyl)amino]pyridin-2-yl}amino)phosphine oxide]dibromidomanganese(II)–tetrahydrofuran (0.94/0.06/2) top
Crystal data top
[MnBr2(C21H41N3P2)]0.94[MnBr2(C21H41N3OP2)]0.06·2C4H8OF(000) = 1574
Mr = 757.4Dx = 1.409 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycbCell parameters from 9972 reflections
a = 11.6496 (7) Åθ = 2.5–27.9°
b = 18.5016 (11) ŵ = 2.73 mm1
c = 17.1626 (9) ÅT = 100 K
β = 105.1763 (16)°Block, colourless
V = 3570.2 (4) Å30.45 × 0.43 × 0.42 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
8452 independent reflections
Radiation source: X-ray tube6175 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.031
ω– and φ–scansθmax = 28.0°, θmin = 1.7°
Absorption correction: multi-scan
SADABS
h = 1512
Tmin = 0.29, Tmax = 0.32k = 2424
29339 measured reflectionsl = 2221
Refinement top
Refinement on F250 constraints
R[F > 3σ(F)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F) = 0.045Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
S = 1.92(Δ/σ)max = 0.033
8452 reflectionsΔρmax = 1.02 e Å3
377 parametersΔρmin = 0.70 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.13106 (3)0.21675 (2)0.212868 (18)0.02007 (12)0.9431 (14)
Br20.13368 (4)0.33931 (4)0.17703 (3)0.02331 (15)0.9431 (14)
Mn10.01885 (5)0.22707 (4)0.12718 (3)0.01482 (17)0.9431 (14)
P10.13202 (6)0.26779 (4)0.00936 (4)0.0159 (2)
P20.16177 (6)0.11993 (4)0.19188 (4)0.0181 (2)
N10.0909 (2)0.17720 (13)0.02291 (13)0.0176 (8)
N20.0580 (2)0.23660 (13)0.07467 (14)0.0162 (8)
N30.2335 (2)0.11176 (17)0.11855 (16)0.0304 (10)
C10.0446 (2)0.19576 (15)0.05555 (17)0.0171 (9)
C20.0954 (2)0.17562 (16)0.11712 (17)0.0196 (10)
C30.1999 (3)0.13664 (16)0.09629 (18)0.0230 (10)
C40.2492 (3)0.11602 (18)0.01763 (18)0.0270 (11)
C50.1901 (3)0.13566 (17)0.04007 (17)0.0221 (10)
C60.2769 (2)0.21863 (16)0.04271 (16)0.0194 (9)
C70.2484 (3)0.14164 (16)0.01047 (18)0.0246 (10)
C80.3270 (3)0.21438 (17)0.13518 (17)0.0239 (10)
C90.3688 (3)0.25190 (19)0.00383 (18)0.0285 (11)
C100.1495 (3)0.36663 (16)0.03135 (17)0.0222 (10)
C110.0270 (3)0.39435 (17)0.03689 (18)0.0312 (12)
C120.2398 (3)0.38786 (17)0.11023 (18)0.0312 (12)
C130.1813 (3)0.40295 (18)0.04066 (18)0.0306 (12)
C140.0926 (3)0.02904 (16)0.19525 (18)0.0225 (10)
C150.0099 (3)0.02794 (19)0.11757 (19)0.0360 (12)
C160.1749 (3)0.03522 (17)0.1940 (2)0.0352 (13)
C170.0398 (3)0.02424 (19)0.2676 (2)0.0385 (13)
C180.2845 (3)0.13803 (17)0.28446 (18)0.0270 (11)
C190.3647 (4)0.1961 (2)0.2623 (3)0.0712 (19)
C200.3635 (3)0.07417 (18)0.31918 (19)0.0335 (12)
C210.2270 (4)0.1694 (2)0.3455 (2)0.0595 (17)
O10.4581 (2)0.03040 (16)0.12665 (16)0.0561 (11)
C220.5077 (3)0.03355 (19)0.1672 (2)0.0361 (13)
C230.6257 (3)0.0110 (2)0.21980 (19)0.0353 (12)
C240.6682 (3)0.04216 (19)0.1660 (2)0.0376 (13)
C250.5443 (5)0.0679 (4)0.1037 (5)0.028 (2)*0.526 (14)
C25'0.5681 (7)0.0877 (5)0.1459 (7)0.044 (3)*0.474 (14)
O20.5419 (3)0.39891 (17)0.14239 (18)0.0699 (13)
C260.4652 (4)0.4329 (2)0.0740 (2)0.0598 (18)
C270.3497 (4)0.3968 (2)0.0567 (2)0.0526 (17)
C280.3868 (3)0.3206 (2)0.0795 (2)0.0366 (13)
C290.4875 (3)0.3300 (2)0.1544 (2)0.0425 (14)
H1c20.0590490.1884310.1722610.0235*
H1c30.2386930.1237170.1372220.0277*
H1c40.3219640.0889420.0029410.0325*
H1c70.1868390.1216660.0317360.0295*
H2c70.2220580.1427920.0474010.0295*
H3c70.3185250.112250.0268860.0295*
H1c80.2712930.1896760.1582230.0287*
H2c80.4010140.1884740.1478070.0287*
H3c80.3400020.2623520.1570410.0287*
H1c90.3890710.2995470.0251560.0341*
H2c90.4389110.2222950.0155170.0341*
H3c90.3360270.2547130.0535520.0341*
H1c110.0088890.3743010.0838980.0375*
H2c110.0286180.4461220.0406930.0375*
H3c110.0328690.3798610.0104650.0375*
H1c120.2192260.3647640.1548180.0375*
H2c120.317870.3727670.108370.0375*
H3c120.2388380.4393530.1169160.0375*
H1c130.1227770.3905790.0895450.0367*
H2c130.1829490.4544380.033570.0367*
H3c130.2580940.3865330.043910.0367*
H1c150.0218990.0316330.071470.0432*
H2c150.0534030.0164720.114840.0432*
H3c150.0621810.067980.1179630.0432*
H1c160.2355510.0371660.2441410.0423*
H2c160.1295660.0791640.1869290.0423*
H3c160.2113160.0296130.1502510.0423*
H1c170.1026920.0249610.3165430.0462*
H2c170.0121720.0646430.2669560.0462*
H3c170.0044760.0198930.2646910.0462*
H1c190.4068580.1758250.2263070.0855*
H2c190.3167680.2358250.236310.0855*
H3c190.4206780.2128550.310420.0855*
H1c200.3970180.0542080.278420.0402*
H2c200.4263090.0900320.3641470.0402*
H3c200.3169830.0379440.336910.0402*
H1c210.1804910.21080.322830.0714*
H2c210.1764370.1337850.3601040.0714*
H3c210.2873710.1837070.3926930.0714*
H1c220.5191890.0683740.1284320.0433*
H2c220.4583720.0505640.2002050.0433*
H1c230.6781760.0519460.2303470.0424*
H2c230.6145820.0138040.2663950.0424*
H1c240.7053510.0827120.1976610.0451*0.526 (14)
H2c240.7160770.0172530.1367880.0451*0.526 (14)
H1c24'0.7352680.0685960.1976490.0451*0.4744
H2c24'0.6764610.0177330.1184490.0451*0.4744
H1c250.5443580.0543990.0496940.0339*0.526 (14)
H2c250.533180.1187770.1102790.0339*0.526 (14)
H1c25'0.5678810.1141910.0977130.0531*0.4744
H2c25'0.5653830.1164620.1918820.0531*0.4744
H1c260.4979150.4281160.0283760.0717*
H2c260.4557110.4829530.0858310.0717*
H1c270.3122750.3992190.0001870.0631*
H2c270.3049790.4150780.0921410.0631*
H1c280.4163450.2989840.0377680.044*
H2c280.322610.2952830.0929020.044*
H1c290.4560570.3334140.2006920.051*
H2c290.5441450.2917620.1575230.051*
Br1'0.1686 (6)0.2563 (4)0.2072 (4)0.025 (2)*0.0569 (14)
Br2'0.1292 (11)0.3624 (6)0.1693 (8)0.047 (4)*0.0569 (14)
Mn1'0.0068 (11)0.2547 (7)0.1291 (8)0.034 (4)*0.0569 (14)
H1n20.080 (3)0.2446 (15)0.1241 (18)0.016 (8)*
H1n30.293 (3)0.0903 (18)0.126 (2)0.038 (11)*
O0.072 (3)0.167 (2)0.198 (2)0.029 (9)*0.0569 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01954 (18)0.0280 (3)0.01392 (16)0.00322 (16)0.00659 (12)0.00286 (15)
Br20.0256 (2)0.0263 (3)0.0174 (2)0.0104 (2)0.00460 (14)0.0030 (2)
Mn10.0145 (3)0.0199 (3)0.0096 (2)0.0017 (2)0.00218 (19)0.0000 (2)
P10.0152 (4)0.0205 (4)0.0121 (4)0.0015 (3)0.0039 (3)0.0017 (3)
P20.0156 (4)0.0239 (4)0.0147 (4)0.0000 (3)0.0037 (3)0.0019 (3)
N10.0155 (12)0.0254 (14)0.0126 (12)0.0011 (10)0.0048 (10)0.0028 (11)
N20.0168 (13)0.0258 (14)0.0063 (12)0.0056 (10)0.0036 (10)0.0022 (11)
N30.0151 (14)0.055 (2)0.0223 (14)0.0153 (14)0.0074 (11)0.0184 (14)
C10.0154 (14)0.0152 (15)0.0196 (15)0.0014 (12)0.0028 (12)0.0021 (13)
C20.0194 (15)0.0230 (17)0.0161 (15)0.0029 (13)0.0044 (12)0.0025 (13)
C30.0228 (16)0.0299 (18)0.0194 (15)0.0035 (14)0.0108 (13)0.0038 (15)
C40.0179 (16)0.037 (2)0.0287 (17)0.0097 (14)0.0107 (13)0.0112 (16)
C50.0171 (15)0.0278 (17)0.0227 (16)0.0029 (13)0.0073 (12)0.0094 (14)
C60.0144 (14)0.0272 (17)0.0156 (14)0.0003 (13)0.0023 (11)0.0022 (14)
C70.0197 (16)0.0281 (18)0.0246 (16)0.0085 (13)0.0033 (13)0.0034 (15)
C80.0196 (16)0.0291 (18)0.0203 (15)0.0004 (14)0.0001 (12)0.0020 (15)
C90.0194 (17)0.044 (2)0.0236 (17)0.0002 (15)0.0086 (14)0.0023 (16)
C100.0296 (17)0.0209 (16)0.0171 (15)0.0021 (13)0.0079 (13)0.0027 (14)
C110.043 (2)0.0215 (18)0.0297 (18)0.0028 (15)0.0111 (16)0.0029 (16)
C120.039 (2)0.0241 (19)0.0276 (17)0.0087 (15)0.0031 (15)0.0012 (16)
C130.039 (2)0.0277 (19)0.0238 (16)0.0080 (16)0.0049 (15)0.0078 (16)
C140.0206 (16)0.0198 (16)0.0268 (16)0.0021 (13)0.0057 (13)0.0006 (14)
C150.0286 (19)0.033 (2)0.042 (2)0.0101 (16)0.0004 (16)0.0034 (19)
C160.0298 (19)0.0210 (18)0.054 (2)0.0031 (15)0.0094 (17)0.0070 (18)
C170.037 (2)0.033 (2)0.053 (2)0.0011 (17)0.0253 (18)0.015 (2)
C180.0270 (17)0.0264 (18)0.0201 (16)0.0010 (14)0.0072 (13)0.0036 (14)
C190.050 (3)0.057 (3)0.074 (3)0.028 (2)0.043 (2)0.033 (3)
C200.0285 (19)0.036 (2)0.0296 (18)0.0068 (16)0.0047 (14)0.0033 (17)
C210.058 (3)0.067 (3)0.036 (2)0.032 (2)0.0183 (19)0.029 (2)
O10.0181 (13)0.089 (2)0.0629 (17)0.0169 (14)0.0140 (12)0.0461 (17)
C220.0283 (19)0.037 (2)0.044 (2)0.0058 (16)0.0101 (16)0.0047 (18)
C230.0240 (18)0.051 (2)0.0291 (18)0.0091 (16)0.0042 (14)0.0006 (18)
C240.0268 (18)0.039 (2)0.051 (2)0.0083 (16)0.0163 (17)0.0103 (19)
O20.0551 (19)0.079 (2)0.068 (2)0.0295 (17)0.0026 (16)0.0065 (19)
C260.089 (3)0.056 (3)0.034 (2)0.020 (3)0.015 (2)0.004 (2)
C270.069 (3)0.051 (3)0.038 (2)0.006 (2)0.015 (2)0.009 (2)
C280.035 (2)0.042 (2)0.0339 (19)0.0001 (17)0.0119 (16)0.0092 (18)
C290.047 (2)0.053 (3)0.0293 (19)0.003 (2)0.0123 (17)0.0025 (19)
Geometric parameters (Å, º) top
Br1—Mn12.5677 (7)C15—H1c150.96
Br1—N2i3.625 (2)C15—H2c150.96
Br1—Br1'0.845 (8)C15—H3c150.96
Br1—Mn1'2.398 (15)C16—H1c160.96
Br2—Mn12.4968 (9)C16—H2c160.96
Br2—Br2'0.446 (12)C16—H3c160.96
Br2—Mn1'2.258 (12)C17—H1c170.96
Mn1—P12.6443 (9)C17—H2c170.96
Mn1—P22.6395 (10)C17—H3c170.96
Mn1—N12.355 (3)C18—C191.535 (6)
Mn1—Br1'2.918 (7)C18—C201.520 (4)
Mn1—Br2'2.820 (12)C18—C211.501 (5)
Mn1—Mn1'0.597 (13)C19—H1c190.96
Mn1—O1.65 (4)C19—H2c190.96
P1—N21.685 (3)C19—H3c190.96
P1—C61.870 (3)C20—H1c200.96
P1—C101.867 (3)C20—H2c200.96
P1—Mn1'2.453 (12)C20—H3c200.96
P2—N31.690 (3)C21—H1c210.96
P2—C141.872 (3)C21—H2c210.96
P2—C181.869 (3)C21—H3c210.96
P2—O1.38 (4)O1—C221.417 (4)
N1—C11.357 (3)O1—C251.361 (8)
N1—C51.355 (4)O1—C25'1.629 (9)
N2—C11.379 (4)C22—C231.493 (4)
N2—Br1'ii3.629 (6)C22—H1c220.96
N2—H1n20.83 (3)C22—H2c220.96
N3—C51.382 (4)C23—C241.518 (5)
N3—H1n30.78 (3)C23—H1c230.96
C1—C21.391 (4)C23—H2c230.96
C2—C31.378 (4)C24—C251.628 (7)
C2—H1c20.96C24—C25'1.407 (9)
C3—C41.375 (4)C24—H1c240.96
C3—H1c30.96C24—H2c240.96
C4—C51.394 (5)C24—H1c24'0.96
C4—H1c40.96C24—H2c24'0.96
C6—C71.533 (4)C25—C25'0.793 (13)
C6—C81.543 (4)C25—H1c250.96
C6—C91.531 (5)C25—H2c250.96
C7—H1c70.96C25—H1c25'0.9125
C7—H2c70.96C25'—H2c250.8596
C7—H3c70.96C25'—H1c25'0.96
C8—H1c80.96C25'—H2c25'0.96
C8—H2c80.96O2—C261.423 (5)
C8—H3c80.96O2—C291.462 (5)
C9—H1c90.96C26—C271.462 (6)
C9—H2c90.96C26—H1c260.96
C9—H3c90.96C26—H2c260.96
C10—C111.543 (5)C27—C281.496 (5)
C10—C121.532 (4)C27—H1c270.96
C10—C131.535 (5)C27—H2c270.96
C11—H1c110.96C28—C291.506 (4)
C11—H2c110.96C28—H1c280.96
C11—H3c110.96C28—H2c280.96
C12—H1c120.96C29—H1c290.96
C12—H2c120.96C29—H2c290.96
C12—H3c120.96H1c24—H1c24'0.4356
C13—H1c130.96H2c24—H2c24'0.4859
C13—H2c130.96H2c25—H1c25'0.5126
C13—H3c130.96Br1'—Mn1'2.584 (17)
C14—C151.540 (4)Br2'—Mn1'2.526 (17)
C14—C161.531 (4)Mn1'—O2.08 (4)
C14—C171.525 (5)
Mn1—Br1—N2i122.86 (4)C14—C17—H2c17109.47
Mn1—Br1—Br1'106.2 (5)C14—C17—H3c17109.47
Mn1—Br1—Mn1'13.3 (3)H1c17—C17—H2c17109.47
N2i—Br1—Br1'83.6 (4)H1c17—C17—H3c17109.47
N2i—Br1—Mn1'120.9 (3)H2c17—C17—H3c17109.47
Br1'—Br1—Mn1'93.0 (6)P2—C18—C19107.1 (2)
Mn1—Br2—Br2'133.1 (15)P2—C18—C20116.4 (2)
Mn1—Br2—Mn1'13.2 (3)P2—C18—C21106.3 (2)
Br2'—Br2—Mn1'122.5 (15)C19—C18—C20107.2 (3)
Br1—Mn1—Br2104.44 (3)C19—C18—C21108.3 (3)
Br1—Mn1—P197.75 (3)C20—C18—C21111.2 (3)
Br1—Mn1—P298.74 (3)C18—C19—H1c19109.47
Br1—Mn1—N1146.86 (6)C18—C19—H2c19109.47
Br1—Mn1—Br1'16.14 (15)C18—C19—H3c19109.47
Br1—Mn1—Br2'104.6 (3)H1c19—C19—H2c19109.47
Br1—Mn1—Mn1'67.0 (14)H1c19—C19—H3c19109.47
Br1—Mn1—O73.0 (15)H2c19—C19—H3c19109.47
Br2—Mn1—P1103.82 (3)C18—C20—H1c20109.47
Br2—Mn1—P2104.95 (3)C18—C20—H2c20109.47
Br2—Mn1—N1108.70 (6)C18—C20—H3c20109.47
Br2—Mn1—Br1'94.86 (14)H1c20—C20—H2c20109.47
Br2—Mn1—Br2'6.6 (2)H1c20—C20—H3c20109.47
Br2—Mn1—Mn1'60.0 (12)H2c20—C20—H3c20109.47
Br2—Mn1—O104.3 (12)C18—C21—H1c21109.47
P1—Mn1—P2141.86 (3)C18—C21—H2c21109.47
P1—Mn1—N174.02 (5)C18—C21—H3c21109.47
P1—Mn1—Br1'87.62 (11)H1c21—C21—H2c21109.47
P1—Mn1—Br2'97.3 (2)H1c21—C21—H3c21109.47
P1—Mn1—Mn1'65.1 (12)H2c21—C21—H3c21109.47
P1—Mn1—O151.8 (12)C22—O1—C25109.4 (3)
P2—Mn1—N173.40 (6)C22—O1—C25'104.2 (4)
P2—Mn1—Br1'114.11 (14)C25—O1—C25'29.0 (5)
P2—Mn1—Br2'111.3 (2)O1—C22—C23104.9 (3)
P2—Mn1—Mn1'152.8 (12)O1—C22—H1c22109.47
P2—Mn1—O26.7 (15)O1—C22—H2c22109.47
N1—Mn1—Br1'152.83 (13)C23—C22—H1c22109.47
N1—Mn1—Br2'108.3 (3)C23—C22—H2c22109.47
N1—Mn1—Mn1'131.2 (13)H1c22—C22—H2c22113.73
N1—Mn1—O98.9 (14)C22—C23—C24102.0 (3)
Br1'—Mn1—Br2'93.6 (3)C22—C23—H1c23109.47
Br1'—Mn1—Mn1'51.0 (14)C22—C23—H2c23109.47
Br1'—Mn1—O87.8 (15)C24—C23—H1c23109.47
Br2'—Mn1—Mn1'55.0 (12)C24—C23—H2c23109.47
Br2'—Mn1—O110.8 (12)H1c23—C23—H2c23116.01
Mn1'—Mn1—O129.6 (19)C23—C24—C25102.4 (4)
Mn1—P1—N298.90 (8)C23—C24—C25'99.0 (5)
Mn1—P1—C6118.03 (9)C23—C24—H1c24109.47
Mn1—P1—C10118.04 (9)C23—C24—H2c24109.47
Mn1—P1—Mn1'12.8 (3)C23—C24—H1c24'109.47
N2—P1—C6102.01 (13)C23—C24—H2c24'109.47
N2—P1—C10104.40 (14)C25—C24—C25'29.2 (5)
N2—P1—Mn1'109.4 (3)C25—C24—H1c24109.47
C6—P1—C10111.87 (13)C25—C24—H2c24109.47
C6—P1—Mn1'120.6 (3)C25—C24—H1c24'132.27
C10—P1—Mn1'107.3 (3)C25—C24—H2c24'81.22
Mn1—P2—N397.73 (10)C25'—C24—H1c2483.85
Mn1—P2—C14117.28 (9)C25'—C24—H2c24135.73
Mn1—P2—C18118.77 (10)C25'—C24—H1c24'109.47
Mn1—P2—O32.5 (16)C25'—C24—H2c24'109.47
N3—P2—C14104.08 (15)H1c24—C24—H2c24115.69
N3—P2—C18103.39 (14)H1c24—C24—H1c24'26.22
N3—P2—O130.2 (16)H1c24—C24—H2c24'135.91
C14—P2—C18111.99 (13)H2c24—C24—H1c24'92.42
C14—P2—O102.6 (16)H2c24—C24—H2c24'29.32
C18—P2—O104.4 (14)H1c24'—C24—H2c24'118.23
Mn1—N1—C1121.76 (19)O1—C25—C24104.7 (5)
Mn1—N1—C5120.72 (18)O1—C25—C25'94.5 (11)
C1—N1—C5117.0 (3)O1—C25—H1c25109.47
Br1ii—N2—P1124.14 (10)O1—C25—H2c25109.47
Br1ii—N2—C1109.31 (18)O1—C25—H1c25'141.04
Br1ii—N2—Br1'ii13.37 (12)C24—C25—C25'59.8 (7)
Br1ii—N2—H1n26 (2)C24—C25—H1c25109.47
P1—N2—C1126.3 (2)C24—C25—H2c25109.47
P1—N2—Br1'ii124.64 (15)C24—C25—H1c25'96.15
P1—N2—H1n2123 (2)C25'—C25—H1c25155.83
C1—N2—Br1'ii108.5 (2)C25'—C25—H2c2557.78
C1—N2—H1n2111 (2)C25'—C25—H1c25'68.08
Br1'ii—N2—H1n28.5 (19)H1c25—C25—H2c25113.82
P2—N3—C5124.8 (2)H1c25—C25—H1c25'93.45
P2—N3—H1n3121 (3)H2c25—C25—H1c25'31.65
C5—N3—H1n3114 (3)O1—C25'—C24102.6 (6)
N1—C1—N2118.0 (3)O1—C25'—C2556.4 (8)
N1—C1—C2123.2 (3)O1—C25'—H2c2595.19
N2—C1—C2118.7 (2)O1—C25'—H1c25'109.47
C1—C2—C3117.8 (3)O1—C25'—H2c25'109.47
C1—C2—H1c2121.12C24—C25'—C2591.1 (9)
C3—C2—H1c2121.12C24—C25'—H2c25141.59
C2—C3—C4120.9 (3)C24—C25'—H1c25'109.47
C2—C3—H1c3119.57C24—C25'—H2c25'109.47
C4—C3—H1c3119.57C25—C25'—H2c2570.88
C3—C4—C5117.9 (3)C25—C25'—H1c25'61.87
C3—C4—H1c4121.04C25—C25'—H2c25'157.99
C5—C4—H1c4121.05H2c25—C25'—H1c25'32.13
N1—C5—N3117.8 (3)H2c25—C25'—H2c25'95.86
N1—C5—C4123.0 (3)H1c25'—C25'—H2c25'115.59
N3—C5—C4119.1 (3)C26—O2—C29107.4 (3)
P1—C6—C7104.40 (17)O2—C26—C27108.1 (3)
P1—C6—C8114.1 (2)O2—C26—H1c26109.47
P1—C6—C9110.4 (2)O2—C26—H2c26109.47
C7—C6—C8108.2 (2)C27—C26—H1c26109.47
C7—C6—C9109.0 (3)C27—C26—H2c26109.47
C8—C6—C9110.4 (2)H1c26—C26—H2c26110.78
C6—C7—H1c7109.47C26—C27—C28101.0 (3)
C6—C7—H2c7109.47C26—C27—H1c27109.47
C6—C7—H3c7109.47C26—C27—H2c27109.47
H1c7—C7—H2c7109.47C28—C27—H1c27109.47
H1c7—C7—H3c7109.47C28—C27—H2c27109.47
H2c7—C7—H3c7109.47H1c27—C27—H2c27116.82
C6—C8—H1c8109.47C27—C28—C29102.8 (3)
C6—C8—H2c8109.47C27—C28—H1c28109.47
C6—C8—H3c8109.47C27—C28—H2c28109.47
H1c8—C8—H2c8109.47C29—C28—H1c28109.47
H1c8—C8—H3c8109.47C29—C28—H2c28109.47
H2c8—C8—H3c8109.47H1c28—C28—H2c28115.39
C6—C9—H1c9109.47O2—C29—C28104.5 (3)
C6—C9—H2c9109.47O2—C29—H1c29109.47
C6—C9—H3c9109.47O2—C29—H2c29109.47
H1c9—C9—H2c9109.47C28—C29—H1c29109.47
H1c9—C9—H3c9109.47C28—C29—H2c29109.47
H2c9—C9—H3c9109.47H1c29—C29—H2c29114.04
P1—C10—C11106.5 (2)C24—H1c24—H1c24'76.89
P1—C10—C12116.3 (2)C24—H2c24—H2c24'75.34
P1—C10—C13107.6 (2)C24—H1c24'—H1c2476.89
C11—C10—C12107.0 (3)C24—H2c24'—H2c2475.34
C11—C10—C13109.1 (2)C25—H2c25—C25'51.33
C12—C10—C13110.2 (2)C25—H2c25—H1c25'69.07
C10—C11—H1c11109.47C25'—H2c25—H1c25'84.79
C10—C11—H2c11109.47C25—H1c25'—C25'50.05
C10—C11—H3c11109.47C25—H1c25'—H2c2579.29
H1c11—C11—H2c11109.47C25'—H1c25'—H2c2563.09
H1c11—C11—H3c11109.47Br1—Br1'—Mn157.7 (4)
H2c11—C11—H3c11109.47Br1—Br1'—N2i83.0 (4)
C10—C12—H1c12109.47Br1—Br1'—Mn1'67.9 (5)
C10—C12—H2c12109.47Mn1—Br1'—N2i112.62 (18)
C10—C12—H3c12109.47Mn1—Br1'—Mn1'10.3 (3)
H1c12—C12—H2c12109.47N2i—Br1'—Mn1'115.2 (3)
H1c12—C12—H3c12109.47Br2—Br2'—Mn140.3 (13)
H2c12—C12—H3c12109.47Br2—Br2'—Mn1'48.9 (14)
C10—C13—H1c13109.47Mn1—Br2'—Mn1'11.2 (3)
C10—C13—H2c13109.47Br1—Mn1'—Br2118.6 (6)
C10—C13—H3c13109.47Br1—Mn1'—Mn199.8 (15)
H1c13—C13—H2c13109.47Br1—Mn1'—P1108.1 (5)
H1c13—C13—H3c13109.47Br1—Mn1'—Br1'19.1 (2)
H2c13—C13—H3c13109.47Br1—Mn1'—Br2'120.1 (6)
P2—C14—C15103.2 (2)Br1—Mn1'—O71.0 (12)
P2—C14—C16114.9 (2)Br2—Mn1'—Mn1106.8 (13)
P2—C14—C17110.2 (2)Br2—Mn1'—P1118.4 (6)
C15—C14—C16108.9 (2)Br2—Mn1'—Br1'111.1 (6)
C15—C14—C17108.5 (3)Br2—Mn1'—Br2'8.6 (3)
C16—C14—C17110.7 (3)Br2—Mn1'—O99.5 (11)
C14—C15—H1c15109.47Mn1—Mn1'—P1102.2 (13)
C14—C15—H2c15109.47Mn1—Mn1'—Br1'118.7 (15)
C14—C15—H3c15109.47Mn1—Mn1'—Br2'113.8 (14)
H1c15—C15—H2c15109.47Mn1—Mn1'—O37.6 (15)
H1c15—C15—H3c15109.47P1—Mn1'—Br1'99.9 (5)
H2c15—C15—H3c15109.47P1—Mn1'—Br2'111.0 (6)
C14—C16—H1c16109.47P1—Mn1'—O133.6 (11)
C14—C16—H2c16109.47Br1'—Mn1'—Br2'109.9 (6)
C14—C16—H3c16109.47Br1'—Mn1'—O89.2 (13)
H1c16—C16—H2c16109.47Br2'—Mn1'—O108.1 (11)
H1c16—C16—H3c16109.47Mn1—O—P2121 (3)
H2c16—C16—H3c16109.47Mn1—O—Mn1'12.7 (5)
C14—C17—H1c17109.47P2—O—Mn1'132 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···Br1ii0.83 (3)2.80 (3)3.625 (2)173 (2)
N2—H1N2···Br1ii0.83 (3)2.81 (3)3.629 (7)169 (3)
N3—H1N3···O10.78 (4)2.22 (4)2.990 (4)171 (3)
Symmetry code: (ii) x, y+1/2, z1/2.
 

References

First citationAddison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBähn, S., Imm, S., Neubert, L., Zhang, M., Neumann, H. & Beller, M. (2011). ChemCatChem, 3, 1853–1864.  Google Scholar
First citationBruker (2015). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCrabtree, R. H. (2011). Organometallics, 30, 17–19.  Web of Science CrossRef CAS Google Scholar
First citationDeibl, N. & Kempe, R. (2016). J. Am. Chem. Soc. 138, 10786–10789.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDobereiner, G. E. & Crabtree, R. H. (2010). Chem. Rev. 110, 681–703.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlörke, U. & Haupt, H.-J. (1991). Z. Kristallogr. 196, 296–298.  Google Scholar
First citationGlatz, M., Bichler, B., Mastalir, M., Stöger, B., Weil, M., Mereiter, K., Pittenauer, E., Allmaier, G., Veiros, L. F. & Kirchner, K. (2015b). Dalton Trans. 44, 281–294.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGlatz, M., Holzhacker, C., Bichler, B., Mastalir, M., Stöger, B., Mereiter, K., Weil, M., Veiros, L. F., Mösch-Zanetti, N. C. & Kirchner, K. (2015a). Eur. J. Inorg. Chem. pp. 5053–5065.  Web of Science CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGunanathan, C., Ben-David, Y. & Milstein, D. (2007). Science, 317, 790–792.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMastalir, M., Glatz, M., Gorgas, N., Stöger, B., Pittenauer, E., Allmaier, G., Veiros, L. F. & Kirchner, K. (2016c). Chem. Eur. J. 22, 12316–12320.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMastalir, M., Glatz, M., Pittenauer, E., Allmaier, G. & Kirchner, K. (2016b). J. Am. Chem. Soc. 138, 15543–15546.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMastalir, M., Glatz, M., Stöger, B., Weil, M., Pittenauer, E., Allmaier, G. & Kirchner, K. (2017a). Inorg. Chim. Acta, 455, 707–714.  Web of Science CSD CrossRef CAS Google Scholar
First citationMastalir, M., Pittenauer, E., Allmaier, G. & Kirchner, K. (2017b). J. Am. Chem. Soc. 139, 8812–8815.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMastalir, M., Stöger, B., Pittenauer, E., Puchberger, M., Allmaier, G. & Kirchner, K. (2016a). Adv. Synth. Catal. 358, 3824–3831.  Web of Science CSD CrossRef CAS Google Scholar
First citationMichlik, S., Hille, T. & Kempe, R. (2012). Adv. Synth. Catal. 354, 847–862.  Web of Science CSD CrossRef CAS Google Scholar
First citationMichlik, S. & Kempe, R. (2010). Chem. Eur. J. 16, 13193–13198.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationRadosevich, A. T., Melnick, J. G., Stoian, S. A., Bacciu, D., Chen, C. H., Foxman, B. M., Ozerov, O. V. & Nocera, D. G. (2009). Inorg. Chem. 48, 9214–9221.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWatson, A. J. A. & Williams, J. M. J. (2010). Science, 329, 635–636.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZell, T. & Milstein, D. (2015). Acc. Chem. Res. 48, 1979–1994.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, J., Leitus, G., Ben-David, Y. & Milstein, D. (2005). J. Am. Chem. Soc. 127, 10840–10841.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds