research communications
E)-N-[2-(1H-indol-3-yl)ethyl]-1-(anthracen-9-yl)methanimine
and DFT study of (aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36 Al-Khod 123, Muscat, Sultanate of Oman, bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Atakum-Samsun, Turkey, and cDepartment of Chemistry, National Taras Shevchenko University of Kiev, 64/13 Volodymyrska Street, City of Kyiv 01601, Ukraine
*Correspondence e-mail: malinachem88@gmail.com
The title compound, C25H20N2, (I), was synthesized from the condensation reaction of anthracene-9-carbaldehyde and tryptamine in dry ethanol. The indole ring system (r.m.s. deviation = 0.016 Å) makes a dihedral angle of 63.56 (8)° with the anthracene ring (r.m.s. deviation = 0.023 Å). There is a short intramolecular C—H⋯N interaction present, and a C—H⋯π interaction involving the two ring systems. In the crystal, the indole H atom forms an intermolecular N—H⋯π interaction, linking molecules to form chains along the b-axis direction. There are also C—H⋯π interactions present, involving the central and terminal rings of the anthracene unit, linking the chains to form an overall two-dimensional layered structure, with the layers parallel to the bc plane. The density functional theory (DFT) optimized structure, at the B3LYP/6-311 G(d,p) level, is compared with the experimentally determined molecular structure in the solid state.
Keywords: crystal structure; anthracene; indole; Schiff base; tryptamine; methanamine; N—H⋯π interactions; C—H⋯π interactions.
CCDC reference: 1537222
1. Chemical context
Tryptamine is a biogenic serotonin-related indoamine and is the decarboxylation product of the amino acid tryptophan. 2-(1H-Indol-3-yl)ethanamine is an alkaloid found in plants and fungi and is a possible intermediate in the biosynthetic pathway to the plant hormone indole-3-acetic acid (Takahashi, 1986). It is also found in trace amounts in the mammalian brain, possibly acting as a neuromodulator or neurotransmitter (Jones, 1982). There are seven known families of serotonin receptors, which are tryptamine derivatives. All of them are neurotransmitters. Hallucinogens all have a high affinity for certain serotonin receptor subtypes and the relative hallucinogenic potencies of various drugs can be gauged by their affinities for these receptors (Glennon et al., 1984; Nichols & Sanders-Bush, 2001; Johnson et al., 1987; Krebs-Thomson et al., 1998). The structures of many hallucinogens are similar to serotonin and have a tryptamine core. Indole analogues, especially of tryptamine derivatives, have been found to be polyamine site antagonists at the N-methyl-D-aspartate receptor (NMDAR; Worthen et al., 2001). Indole and its derivatives are that are present in most plants (such as unripe bananas, broccoli and clove), almost all flower oils (e.g. jasmine and orange blossoms) and coal tar (Waseem & Mark 2005; Lee et al., 2003). In the pharmaceutical field, it has been discovered that it has antimicrobial and anti-inflammatory properties (Mohammad & Moutaery, 2005). The present work is part of an ongoing structural study of and their utilization in the synthesis of new organic and polynuclear coordination compounds, and their application in fluorescence sensors (Faizi & Sen, 2014; Faizi et al., 2016). We report herein the of (E)-N-[2-(1H-indol-3-yl)ethyl]-1-(anthracen-9-yl)methanimine, (I), and its DFT computational calculation. Calculations by density functional theory (DFT) on (I), carried out at the B3LYP/6-311 G(d,p) level, are compared with the experimentally determined molecular structure in the solid state.
2. Structural commentary
The molecular structure of compound (I) is illustrated in Fig. 1. The molecule adopts a nonplanar geometry, with the dihedral angle between the planes of the indole and anthracene rings being 63.56 (8)°. The conformation about the azomethine C15=N1 bond [1.272 (10) Å] is E, with the C14—N2—C12—C13 torsion angle being 179.0 (1)°. The molecule is stabilized by a weak intramolecular hydrogen bond (C12—H12⋯N1) and a C—H⋯π interaction (C2—H2⋯Cg5; Cg5 is the centroid of the C19–C24 ring); see Table 1.
3. Supramolecular features
In the crystal, the indole H atom forms an intermolecular N—H⋯π interaction, linking molecules to form chains along the b-axis direction (Fig. 2 and Table 1). There are also C—H⋯π interactions present, involving the central ring and terminal rings of the anthracene unit, linking the chains to form layers parallel to the bc plane (Fig. 2 and Table 1).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.38, update February 2017; Groom et al., 2016) revealed the structures of several similar compounds containing a phenol group [(II) (CSD refcode FAJVIV; Rodriguez et al., 1987) and (III) (TANNOL; Ishida et al., 1992)] and nitrobenzene moieties [(IV), GEYPEF; Törnroos, 1988]. All compounds are 2-indole-substituted derivatives which have two aromatic units linked via an aliphatic chain. In (I), the dihedral angle between indole and anthracene rings is 63.56 (8)°, which is similar for (III) and (IV), viz. 71.52 and 64.21°, respectively. In compounds (I) and (II), the conformation about the azomethine C15=N1 bond is E.
5. DFT study
Calculations by density functional theory DFT-B3LYP, with basis set 6-311 G(d,p), of bond lengths and angles were performed. These values are compared with the experimental values for the title system (see Table 2). From these results we can conclude that basis set 6-311 G(d,p) is better suited in its approach to the experimental data.
|
The LUMO and HOMO I). The DFT study of (I) revealed that the HOMO and LUMO are localized in the plane extending from the whole anthracene ring to the indole ring, and electron distribution of the HOMO-1, HOMO, LUMO and LUMO+1 energy levels are shown in Fig. 3. The molecular orbital of HOMO contains both σ and π character, whereas HOMO-1 is dominated by π-orbital density. The LUMO is mainly composed of σ density, while LUMO+1 has both σ and π electronic density. The HOMO–LUMO gap for (I) was found to be 0.12325 a.u. and the frontier molecular orbital energies, EHOMO and ELUMO, were found to be −0.196412 and −0.07087 a.u., respectively.
parameters are considerably answerable for the charge transfer, chemical reactivity and kinetic/thermodynamic stability of (6. Synthesis and crystallization
80 mg (0.435 mmol) of 2-(1H-indol-3-yl)ethanamine (tryptamine) were dissolved in 10 ml of absolute ethanol. To this solution, 89 mg (0.434 mmol) of anthracene-9-carbaldehyde in 5 ml of absolute ethanol were added dropwise under stirring. The mixture was stirred for 10 min, two drops of glacial acetic acid were added and the mixture was refluxed for a further 2 h. The resulting yellow precipitate was recovered by filtration, washed several times with small portions of ice-cold ethanol and then with diethyl ether to give 140 mg (87%) of compound (I). Dark-yellow block-like crystals suitable for X-ray analysis were obtained within 3 d by slow evaporation of a solution in methanol.
7. Refinement
Crystal data, data collection and structure . The N—H H atom was located from a difference-Fourier map and constrained to ride on the parent atom: N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N). All C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3
|
The DFT quantum-chemical calculations were performed at the B3LYP/6-311 G(d,p) level (Becke, 1993; Lee et al., 2003) as implemented in GAUSSIAN09 (Frisch et al., 2009). DFT structure optimization of (I) was performed starting from the X-ray geometry.
Supporting information
CCDC reference: 1537222
https://doi.org/10.1107/S2056989017011483/su5387sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017011483/su5387Isup2.hkl
Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b) and PLATON (Spek, 2009).C25H20N2 | Dx = 1.308 Mg m−3 |
Mr = 348.43 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 5148 reflections |
a = 6.0044 (3) Å | θ = 2.6–27.4° |
b = 16.4721 (7) Å | µ = 0.08 mm−1 |
c = 17.8957 (9) Å | T = 100 K |
V = 1769.98 (15) Å3 | Needle, yellow |
Z = 4 | 0.20 × 0.15 × 0.13 mm |
F(000) = 736 |
Bruker SMART APEX CCD diffractometer | 3127 independent reflections |
Radiation source: fine-focus sealed tube | 2577 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.064 |
ω scans | θmax = 25.1°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −7→7 |
Tmin = 0.875, Tmax = 0.990 | k = −19→19 |
14169 measured reflections | l = −21→21 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.093 | w = 1/[σ2(Fo2) + (0.0478P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3127 reflections | Δρmax = 0.15 e Å−3 |
245 parameters | Δρmin = −0.20 e Å−3 |
0 restraints | Absolute structure: Refined as an inversion twin |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.9441 (4) | 0.37168 (13) | 0.28719 (12) | 0.0239 (6) | |
N2 | 0.6749 (4) | 0.30313 (14) | 0.06673 (12) | 0.0282 (6) | |
H2A | 0.546902 | 0.303463 | 0.045136 | 0.034* | |
C18 | 0.9807 (5) | 0.34812 (16) | 0.12665 (15) | 0.0239 (7) | |
C1 | 0.5718 (5) | 0.20309 (15) | 0.32067 (14) | 0.0199 (6) | |
C8 | 0.3608 (5) | 0.30172 (16) | 0.42939 (14) | 0.0216 (6) | |
C15 | 0.8796 (5) | 0.30043 (16) | 0.30408 (14) | 0.0219 (6) | |
H15 | 0.975892 | 0.257990 | 0.292647 | 0.026* | |
C13 | 0.5640 (5) | 0.32872 (15) | 0.39461 (15) | 0.0216 (6) | |
C14 | 0.6662 (5) | 0.27861 (15) | 0.34017 (14) | 0.0206 (6) | |
C7 | 0.2732 (5) | 0.22659 (16) | 0.41038 (14) | 0.0235 (7) | |
H7 | 0.144366 | 0.208937 | 0.434185 | 0.028* | |
C9 | 0.2567 (5) | 0.35163 (17) | 0.48380 (15) | 0.0265 (7) | |
H9 | 0.124712 | 0.334465 | 0.505954 | 0.032* | |
C19 | 1.0013 (5) | 0.26179 (15) | 0.11461 (15) | 0.0227 (7) | |
C6 | 0.3713 (5) | 0.17673 (16) | 0.35700 (14) | 0.0226 (7) | |
C2 | 0.6601 (5) | 0.15155 (15) | 0.26395 (14) | 0.0247 (7) | |
H2 | 0.788158 | 0.167424 | 0.238604 | 0.030* | |
C5 | 0.2749 (5) | 0.10058 (16) | 0.33667 (15) | 0.0274 (7) | |
H5 | 0.146320 | 0.083137 | 0.360777 | 0.033* | |
C20 | 1.1624 (5) | 0.20388 (17) | 0.13290 (15) | 0.0256 (7) | |
H20 | 1.293314 | 0.219244 | 0.156804 | 0.031* | |
C24 | 0.8068 (5) | 0.23616 (17) | 0.07725 (15) | 0.0250 (7) | |
C23 | 0.7688 (5) | 0.15516 (17) | 0.05852 (15) | 0.0267 (7) | |
H23 | 0.639991 | 0.139260 | 0.033642 | 0.032* | |
C3 | 0.5619 (5) | 0.07970 (16) | 0.24594 (16) | 0.0276 (7) | |
H3 | 0.624024 | 0.047503 | 0.208676 | 0.033* | |
C4 | 0.3669 (5) | 0.05321 (16) | 0.28300 (15) | 0.0292 (7) | |
H4 | 0.302371 | 0.003680 | 0.270620 | 0.035* | |
C12 | 0.6514 (5) | 0.40513 (15) | 0.41843 (15) | 0.0260 (7) | |
H12 | 0.783119 | 0.424184 | 0.397451 | 0.031* | |
C11 | 0.5466 (5) | 0.45039 (17) | 0.47086 (15) | 0.0294 (7) | |
H11 | 0.607818 | 0.499841 | 0.485263 | 0.035* | |
C25 | 0.7808 (5) | 0.36954 (17) | 0.09638 (15) | 0.0279 (7) | |
H25 | 0.723985 | 0.422058 | 0.095887 | 0.033* | |
C16 | 1.1623 (5) | 0.37629 (16) | 0.25049 (15) | 0.0257 (7) | |
H16A | 1.234310 | 0.323625 | 0.252515 | 0.031* | |
H16B | 1.255871 | 0.414955 | 0.276677 | 0.031* | |
C10 | 0.3465 (5) | 0.42396 (17) | 0.50402 (16) | 0.0293 (7) | |
H10 | 0.276083 | 0.456023 | 0.539681 | 0.035* | |
C22 | 0.9296 (5) | 0.09975 (18) | 0.07835 (16) | 0.0312 (7) | |
H22 | 0.908244 | 0.045184 | 0.067111 | 0.037* | |
C17 | 1.1358 (5) | 0.40255 (16) | 0.16908 (15) | 0.0268 (7) | |
H17A | 1.079262 | 0.457682 | 0.167552 | 0.032* | |
H17B | 1.280575 | 0.402183 | 0.145020 | 0.032* | |
C21 | 1.1245 (5) | 0.12360 (16) | 0.11501 (16) | 0.0306 (7) | |
H21 | 1.230368 | 0.084699 | 0.127540 | 0.037* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0244 (13) | 0.0239 (13) | 0.0233 (13) | −0.0025 (11) | −0.0001 (11) | 0.0016 (10) |
N2 | 0.0235 (13) | 0.0334 (14) | 0.0277 (12) | 0.0037 (13) | −0.0039 (11) | 0.0010 (11) |
C18 | 0.0264 (17) | 0.0259 (16) | 0.0194 (14) | 0.0018 (14) | 0.0041 (13) | 0.0033 (12) |
C1 | 0.0216 (15) | 0.0179 (14) | 0.0201 (14) | 0.0003 (13) | −0.0036 (12) | 0.0038 (12) |
C8 | 0.0233 (16) | 0.0231 (15) | 0.0184 (13) | 0.0026 (15) | −0.0044 (12) | 0.0048 (12) |
C15 | 0.0233 (16) | 0.0198 (15) | 0.0225 (14) | 0.0034 (14) | −0.0035 (12) | −0.0026 (12) |
C13 | 0.0240 (15) | 0.0208 (15) | 0.0201 (15) | 0.0008 (13) | −0.0051 (12) | 0.0042 (11) |
C14 | 0.0213 (15) | 0.0215 (15) | 0.0190 (13) | 0.0002 (13) | −0.0038 (12) | 0.0053 (11) |
C7 | 0.0215 (15) | 0.0280 (17) | 0.0210 (15) | 0.0002 (13) | −0.0001 (12) | 0.0068 (12) |
C9 | 0.0256 (16) | 0.0310 (18) | 0.0230 (16) | 0.0052 (15) | 0.0006 (13) | 0.0040 (13) |
C19 | 0.0260 (17) | 0.0246 (16) | 0.0177 (14) | −0.0010 (14) | 0.0037 (13) | −0.0001 (12) |
C6 | 0.0238 (16) | 0.0259 (16) | 0.0179 (15) | −0.0011 (14) | −0.0046 (12) | 0.0048 (11) |
C2 | 0.0244 (15) | 0.0245 (15) | 0.0252 (15) | 0.0009 (14) | 0.0032 (13) | 0.0041 (12) |
C5 | 0.0305 (17) | 0.0260 (16) | 0.0257 (15) | −0.0071 (15) | −0.0019 (13) | 0.0036 (13) |
C20 | 0.0228 (15) | 0.0287 (16) | 0.0253 (15) | −0.0012 (15) | 0.0002 (13) | −0.0008 (13) |
C24 | 0.0254 (16) | 0.0301 (16) | 0.0193 (14) | 0.0014 (14) | 0.0026 (13) | 0.0027 (12) |
C23 | 0.0252 (17) | 0.0345 (18) | 0.0202 (14) | −0.0052 (15) | −0.0006 (12) | −0.0011 (13) |
C3 | 0.0342 (18) | 0.0203 (15) | 0.0283 (16) | 0.0027 (15) | 0.0020 (14) | 0.0005 (12) |
C4 | 0.0359 (18) | 0.0233 (16) | 0.0284 (16) | −0.0070 (15) | −0.0023 (15) | 0.0015 (13) |
C12 | 0.0274 (16) | 0.0237 (15) | 0.0270 (15) | −0.0007 (15) | −0.0010 (14) | 0.0035 (12) |
C11 | 0.0409 (19) | 0.0211 (15) | 0.0262 (16) | −0.0018 (15) | −0.0046 (14) | −0.0021 (13) |
C25 | 0.0339 (18) | 0.0250 (16) | 0.0247 (15) | 0.0030 (15) | 0.0034 (14) | 0.0029 (12) |
C16 | 0.0235 (15) | 0.0214 (14) | 0.0323 (16) | −0.0059 (14) | −0.0021 (14) | −0.0005 (12) |
C10 | 0.0371 (18) | 0.0284 (17) | 0.0223 (14) | 0.0081 (16) | 0.0001 (15) | −0.0008 (12) |
C22 | 0.0411 (19) | 0.0263 (16) | 0.0264 (16) | −0.0058 (16) | 0.0035 (15) | −0.0029 (13) |
C17 | 0.0267 (16) | 0.0208 (15) | 0.0328 (16) | −0.0011 (14) | 0.0063 (14) | 0.0026 (13) |
C21 | 0.0352 (18) | 0.0270 (17) | 0.0296 (16) | 0.0055 (15) | 0.0037 (15) | 0.0014 (13) |
N1—C15 | 1.272 (3) | C2—H2 | 0.9300 |
N1—C16 | 1.468 (4) | C5—C4 | 1.355 (4) |
N2—C24 | 1.371 (4) | C5—H5 | 0.9300 |
N2—C25 | 1.372 (3) | C20—C21 | 1.380 (4) |
N2—H2A | 0.8600 | C20—H20 | 0.9300 |
C18—C25 | 1.363 (4) | C24—C23 | 1.395 (4) |
C18—C19 | 1.444 (3) | C23—C22 | 1.375 (4) |
C18—C17 | 1.499 (4) | C23—H23 | 0.9300 |
C1—C14 | 1.411 (4) | C3—C4 | 1.415 (4) |
C1—C2 | 1.426 (3) | C3—H3 | 0.9300 |
C1—C6 | 1.436 (4) | C4—H4 | 0.9300 |
C8—C7 | 1.387 (4) | C12—C11 | 1.354 (4) |
C8—C9 | 1.420 (4) | C12—H12 | 0.9300 |
C8—C13 | 1.440 (4) | C11—C10 | 1.409 (4) |
C15—C14 | 1.479 (4) | C11—H11 | 0.9300 |
C15—H15 | 0.9300 | C25—H25 | 0.9300 |
C13—C14 | 1.417 (4) | C16—C17 | 1.528 (4) |
C13—C12 | 1.429 (4) | C16—H16A | 0.9700 |
C7—C6 | 1.391 (4) | C16—H16B | 0.9700 |
C7—H7 | 0.9300 | C10—H10 | 0.9300 |
C9—C10 | 1.357 (4) | C22—C21 | 1.398 (4) |
C9—H9 | 0.9300 | C22—H22 | 0.9300 |
C19—C20 | 1.397 (4) | C17—H17A | 0.9700 |
C19—C24 | 1.411 (4) | C17—H17B | 0.9700 |
C6—C5 | 1.428 (4) | C21—H21 | 0.9300 |
C2—C3 | 1.361 (4) | ||
C15—N1—C16 | 115.2 (2) | N2—C24—C23 | 130.0 (3) |
C24—N2—C25 | 108.7 (2) | N2—C24—C19 | 107.6 (2) |
C24—N2—H2A | 125.7 | C23—C24—C19 | 122.4 (3) |
C25—N2—H2A | 125.7 | C22—C23—C24 | 117.3 (3) |
C25—C18—C19 | 105.7 (3) | C22—C23—H23 | 121.4 |
C25—C18—C17 | 126.4 (2) | C24—C23—H23 | 121.4 |
C19—C18—C17 | 127.7 (3) | C2—C3—C4 | 121.1 (3) |
C14—C1—C2 | 123.5 (2) | C2—C3—H3 | 119.5 |
C14—C1—C6 | 119.4 (2) | C4—C3—H3 | 119.5 |
C2—C1—C6 | 117.0 (2) | C5—C4—C3 | 119.5 (3) |
C7—C8—C9 | 121.2 (3) | C5—C4—H4 | 120.3 |
C7—C8—C13 | 119.4 (2) | C3—C4—H4 | 120.3 |
C9—C8—C13 | 119.4 (2) | C11—C12—C13 | 121.4 (3) |
N1—C15—C14 | 126.3 (3) | C11—C12—H12 | 119.3 |
N1—C15—H15 | 116.9 | C13—C12—H12 | 119.3 |
C14—C15—H15 | 116.9 | C12—C11—C10 | 121.2 (3) |
C14—C13—C12 | 124.0 (3) | C12—C11—H11 | 119.4 |
C14—C13—C8 | 119.0 (2) | C10—C11—H11 | 119.4 |
C12—C13—C8 | 117.0 (2) | C18—C25—N2 | 110.8 (2) |
C1—C14—C13 | 120.7 (2) | C18—C25—H25 | 124.6 |
C1—C14—C15 | 117.0 (2) | N2—C25—H25 | 124.6 |
C13—C14—C15 | 122.3 (2) | N1—C16—C17 | 110.4 (2) |
C8—C7—C6 | 122.3 (3) | N1—C16—H16A | 109.6 |
C8—C7—H7 | 118.8 | C17—C16—H16A | 109.6 |
C6—C7—H7 | 118.8 | N1—C16—H16B | 109.6 |
C10—C9—C8 | 121.1 (3) | C17—C16—H16B | 109.6 |
C10—C9—H9 | 119.5 | H16A—C16—H16B | 108.1 |
C8—C9—H9 | 119.5 | C9—C10—C11 | 119.9 (3) |
C20—C19—C24 | 118.7 (2) | C9—C10—H10 | 120.1 |
C20—C19—C18 | 134.2 (3) | C11—C10—H10 | 120.1 |
C24—C19—C18 | 107.1 (2) | C23—C22—C21 | 121.5 (3) |
C7—C6—C5 | 121.5 (2) | C23—C22—H22 | 119.3 |
C7—C6—C1 | 119.2 (2) | C21—C22—H22 | 119.3 |
C5—C6—C1 | 119.3 (2) | C18—C17—C16 | 112.2 (2) |
C3—C2—C1 | 121.7 (3) | C18—C17—H17A | 109.2 |
C3—C2—H2 | 119.2 | C16—C17—H17A | 109.2 |
C1—C2—H2 | 119.2 | C18—C17—H17B | 109.2 |
C4—C5—C6 | 121.4 (3) | C16—C17—H17B | 109.2 |
C4—C5—H5 | 119.3 | H17A—C17—H17B | 107.9 |
C6—C5—H5 | 119.3 | C20—C21—C22 | 121.1 (3) |
C21—C20—C19 | 119.1 (3) | C20—C21—H21 | 119.5 |
C21—C20—H20 | 120.5 | C22—C21—H21 | 119.5 |
C19—C20—H20 | 120.5 | ||
C16—N1—C15—C14 | −179.0 (2) | C7—C6—C5—C4 | 177.9 (3) |
C7—C8—C13—C14 | 1.7 (3) | C1—C6—C5—C4 | −1.0 (4) |
C9—C8—C13—C14 | −179.8 (2) | C24—C19—C20—C21 | −1.1 (4) |
C7—C8—C13—C12 | −177.6 (2) | C18—C19—C20—C21 | 177.4 (3) |
C9—C8—C13—C12 | 0.9 (3) | C25—N2—C24—C23 | 178.3 (3) |
C2—C1—C14—C13 | 176.9 (2) | C25—N2—C24—C19 | −0.1 (3) |
C6—C1—C14—C13 | −0.5 (4) | C20—C19—C24—N2 | 179.1 (2) |
C2—C1—C14—C15 | −5.9 (4) | C18—C19—C24—N2 | 0.2 (3) |
C6—C1—C14—C15 | 176.6 (2) | C20—C19—C24—C23 | 0.6 (4) |
C12—C13—C14—C1 | 178.7 (2) | C18—C19—C24—C23 | −178.3 (3) |
C8—C13—C14—C1 | −0.5 (4) | N2—C24—C23—C22 | −177.8 (3) |
C12—C13—C14—C15 | 1.8 (4) | C19—C24—C23—C22 | 0.3 (4) |
C8—C13—C14—C15 | −177.5 (2) | C1—C2—C3—C4 | 0.1 (4) |
N1—C15—C14—C1 | 147.8 (3) | C6—C5—C4—C3 | −0.3 (4) |
N1—C15—C14—C13 | −35.1 (4) | C2—C3—C4—C5 | 0.8 (4) |
C9—C8—C7—C6 | 179.6 (2) | C14—C13—C12—C11 | −179.9 (3) |
C13—C8—C7—C6 | −1.9 (4) | C8—C13—C12—C11 | −0.6 (4) |
C7—C8—C9—C10 | 177.9 (2) | C13—C12—C11—C10 | −0.1 (4) |
C13—C8—C9—C10 | −0.6 (4) | C19—C18—C25—N2 | 0.3 (3) |
C25—C18—C19—C20 | −178.9 (3) | C17—C18—C25—N2 | −175.1 (2) |
C17—C18—C19—C20 | −3.6 (5) | C24—N2—C25—C18 | −0.2 (3) |
C25—C18—C19—C24 | −0.3 (3) | C15—N1—C16—C17 | 111.3 (3) |
C17—C18—C19—C24 | 175.0 (3) | C8—C9—C10—C11 | −0.1 (4) |
C8—C7—C6—C5 | −178.2 (2) | C12—C11—C10—C9 | 0.5 (4) |
C8—C7—C6—C1 | 0.8 (4) | C24—C23—C22—C21 | −0.7 (4) |
C14—C1—C6—C7 | 0.5 (4) | C25—C18—C17—C16 | 115.4 (3) |
C2—C1—C6—C7 | −177.2 (2) | C19—C18—C17—C16 | −59.1 (4) |
C14—C1—C6—C5 | 179.4 (2) | N1—C16—C17—C18 | −55.6 (3) |
C2—C1—C6—C5 | 1.8 (4) | C19—C20—C21—C22 | 0.7 (4) |
C14—C1—C2—C3 | −178.9 (3) | C23—C22—C21—C20 | 0.2 (4) |
C6—C1—C2—C3 | −1.3 (4) |
Cg3, Cg4 and Cg5 are the centroids rings C1/C6–C8/C13/C14, C8–C13 and C19–C24, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···N1 | 0.93 | 2.36 | 2.9845 (2) | 124 |
C2—H2···Cg5 | 0.93 | 2.77 | 3.5505 (2) | 142 |
N2—H2A···Cg5i | 0.86 | 2.59 | 3.1855 (2) | 127 |
C7—H7···Cg4ii | 0.93 | 2.75 | 3.5777 (2) | 148 |
C9—H9···Cg3ii | 0.93 | 2.73 | 3.5077 (2) | 142 |
C16—H16A···Cg3iii | 0.97 | 2.86 | 3.5375 (2) | 128 |
Symmetry codes: (i) x−1/2, −y+1/2, −z; (ii) x−1/2, −y+1/2, −z+1; (iii) x+1, y, z. |
Bonds | X-ray | B3LYP/6–311G(d,p) |
N1—C15 | 1.272 (3) | 1.271 |
N1—C16 | 1.468 (4) | 1.466 |
C16—C17 | 1.528 (4) | 1.531 |
C17—C18 | 1.499 (4) | 1.494 |
C15—C14 | 1.479 (4) | 1.494 |
C25—N2 | 1.372 (3) | 1.369 |
N2—C24 | 1.371 (4) | 1.371 |
C16—N1—C15 | 115.2 (2) | 115.31 |
N1—C16—C17 | 110.4 (2) | 110.50 |
N1—C15—C14 | 126.3 (3) | 126.16 |
C16—C17—C18 | 112.2 (2) | 112.27 |
Acknowledgements
The authors are grateful to the Ondokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, Turkey, for X-ray data collection, and Department of Chemistry, National Taras Shevchenko University of Kiev.
References
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B, 222, 15–20. Web of Science CrossRef CAS Google Scholar
Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m206–m207. CSD CrossRef IUCr Journals Google Scholar
Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Glennon, R. A., Titeler, M. & McKenney, J. D. (1984). Life Sci. 35, 2505–2511. CrossRef CAS PubMed Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ishida, T., Negi, A., In, Y. & Inoue, M. (1992). Acta Cryst. C48, 193–194. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Johnson, M. P., Hoffman, A. J., Nichols, D. E. & Mathis, C. A. (1987). Neuropharmacology, 26, 1803–1806. CrossRef CAS PubMed Web of Science Google Scholar
Jones, R. S. G. (1982). Prog. Neurobiol. 19, 117–139. CrossRef CAS PubMed Web of Science Google Scholar
Krebs-Thomson, K., Paulus, M. P. & Geyer, M. A. (1998). Neuropsychopharmacology, 18, 339–351. CrossRef CAS PubMed Google Scholar
Lee, S. K., Yi, K. Y., Kim, S. K., Suh, J., Kim, N. J., Yoo, S., Lee, B. H., Seo, H. W., Kim, S. O. & Lim, H. (2003). Eur. J. Med. Chem. 38, 459–471. Web of Science CrossRef PubMed CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mohammad, T. & Moutaery, A. A. (2005). Exp. Tox. Path. 56, 119–129. Google Scholar
Nichols, C. D. & Sanders-Bush, E. (2001). Heffter Rev. Psychedelic Res. 2, 73–79. Google Scholar
Rodriguez, M. L., Medina de la Rosa, E., Gili, P., Zarza, P. M., Reyes, M. G. M., Medina, A. & Díaz González, M. C. (1987). Acta Cryst. C43, 134–136. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takahashi, N. (1986). In Chemistry of Plant Hormones. Florida: CRC Press. Google Scholar
Törnroos, K. W. (1988). Acta Cryst. C44, 1238–1240. CSD CrossRef Web of Science IUCr Journals Google Scholar
Waseem, G. & Mark, T. H. (2005). Life Sci. 78, 442–453. Web of Science PubMed Google Scholar
Worthen, D. R., Gibson, D. A., Rogers, D. T., Bence, A. K., Fu, M., Littleton, J. M. & Crooks, P. A. (2001). Brain Res. 890, 343–346. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.