research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and DFT study of (E)-N-[2-(1H-indol-3-yl)eth­yl]-1-(anthracen-9-yl)methanimine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36 Al-Khod 123, Muscat, Sultanate of Oman, bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Atakum-Samsun, Turkey, and cDepartment of Chemistry, National Taras Shevchenko University of Kiev, 64/13 Volodymyrska Street, City of Kyiv 01601, Ukraine
*Correspondence e-mail: malinachem88@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 23 July 2017; accepted 4 August 2017; online 11 August 2017)

The title compound, C25H20N2, (I), was synthesized from the condensation reaction of anthracene-9-carbaldehyde and tryptamine in dry ethanol. The indole ring system (r.m.s. deviation = 0.016 Å) makes a dihedral angle of 63.56 (8)° with the anthracene ring (r.m.s. deviation = 0.023 Å). There is a short intra­molecular C—H⋯N inter­action present, and a C—H⋯π inter­action involving the two ring systems. In the crystal, the indole H atom forms an inter­molecular N—H⋯π inter­action, linking mol­ecules to form chains along the b-axis direction. There are also C—H⋯π inter­actions present, involving the central and terminal rings of the anthracene unit, linking the chains to form an overall two-dimensional layered structure, with the layers parallel to the bc plane. The density functional theory (DFT) optimized structure, at the B3LYP/6-311 G(d,p) level, is compared with the experimentally determined mol­ecular structure in the solid state.

1. Chemical context

Tryptamine is a biogenic serotonin-related indo­amine and is the deca­rboxylation product of the amino acid tryptophan. 2-(1H-Indol-3-yl)ethanamine is an alkaloid found in plants and fungi and is a possible inter­mediate in the biosynthetic pathway to the plant hormone indole-3-acetic acid (Takahashi, 1986[Takahashi, N. (1986). In Chemistry of Plant Hormones. Florida: CRC Press.]). It is also found in trace amounts in the mammalian brain, possibly acting as a neuromodulator or neurotransmitter (Jones, 1982[Jones, R. S. G. (1982). Prog. Neurobiol. 19, 117-139.]). There are seven known families of serotonin receptors, which are tryptamine derivatives. All of them are neurotransmitters. Hallucinogens all have a high affinity for certain serotonin receptor subtypes and the relative hallucinogenic potencies of various drugs can be gauged by their affinities for these receptors (Glennon et al., 1984[Glennon, R. A., Titeler, M. & McKenney, J. D. (1984). Life Sci. 35, 2505-2511.]; Nichols & Sanders-Bush, 2001[Nichols, C. D. & Sanders-Bush, E. (2001). Heffter Rev. Psychedelic Res. 2, 73-79.]; Johnson et al., 1987[Johnson, M. P., Hoffman, A. J., Nichols, D. E. & Mathis, C. A. (1987). Neuropharmacology, 26, 1803-1806.]; Krebs-Thomson et al., 1998[Krebs-Thomson, K., Paulus, M. P. & Geyer, M. A. (1998). Neuropsychopharmacology, 18, 339-351.]). The structures of many hallucinogens are similar to serotonin and have a tryptamine core. Indole analogues, especially of tryptamine derivatives, have been found to be polyamine site antagonists at the N-methyl-D-aspartate receptor (NMDAR; Worthen et al., 2001[Worthen, D. R., Gibson, D. A., Rogers, D. T., Bence, A. K., Fu, M., Littleton, J. M. & Crooks, P. A. (2001). Brain Res. 890, 343-346.]). Indole and its derivatives are secondary metabolites that are present in most plants (such as unripe bananas, broccoli and clove), almost all flower oils (e.g. jasmine and orange blossoms) and coal tar (Waseem & Mark 2005[Waseem, G. & Mark, T. H. (2005). Life Sci. 78, 442-453.]; Lee et al., 2003[Lee, S. K., Yi, K. Y., Kim, S. K., Suh, J., Kim, N. J., Yoo, S., Lee, B. H., Seo, H. W., Kim, S. O. & Lim, H. (2003). Eur. J. Med. Chem. 38, 459-471.]). In the pharmaceutical field, it has been discovered that it has anti­microbial and anti-inflammatory properties (Mohammad & Moutaery, 2005[Mohammad, T. & Moutaery, A. A. (2005). Exp. Tox. Path. 56, 119-129.]). The present work is part of an ongoing structural study of Schiff bases and their utilization in the synthesis of new organic and polynuclear coordination compounds, and their application in fluorescence sensors (Faizi & Sen, 2014[Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m206-m207.]; Faizi et al., 2016[Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B, 222, 15-20.]). We report herein the crystal structure of (E)-N-[2-(1H-indol-3-yl)eth­yl]-1-(an­thra­cen-9-yl)methanimine, (I), and its DFT computational calculation. Calculations by density functional theory (DFT) on (I), carried out at the B3LYP/6-311 G(d,p) level, are compared with the experimentally determined mol­ecular structure in the solid state.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of compound (I) is illustrated in Fig. 1[link]. The mol­ecule adopts a nonplanar geometry, with the dihedral angle between the planes of the indole and anthracene rings being 63.56 (8)°. The conformation about the azomethine C15=N1 bond [1.272 (10) Å] is E, with the C14—N2—C12—C13 torsion angle being 179.0 (1)°. The mol­ecule is stabilized by a weak intra­molecular hydrogen bond (C12—H12⋯N1) and a C—H⋯π inter­action (C2—H2⋯Cg5; Cg5 is the centroid of the C19–C24 ring); see Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg3, Cg4 and Cg5 are the centroids rings C1/C6–C8/C13/C14, C8–C13 and C19–C24, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯N1 0.93 2.36 2.9845 (2) 124
C2—H2⋯Cg5 0.93 2.77 3.5505 (2) 142
N2—H2ACg5i 0.86 2.59 3.1855 (2) 127
C7—H7⋯Cg4ii 0.93 2.75 3.5777 (2) 148
C9—H9⋯Cg3ii 0.93 2.73 3.5077 (2) 142
C16—H16ACg3iii 0.97 2.86 3.5375 (2) 128
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) x+1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of compound (I), with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the indole H atom forms an inter­molecular N—H⋯π inter­action, linking mol­ecules to form chains along the b-axis direction (Fig. 2[link] and Table 1[link]). There are also C—H⋯π inter­actions present, involving the central ring and terminal rings of the anthracene unit, linking the chains to form layers parallel to the bc plane (Fig. 2[link] and Table 1[link]).

[Figure 2]
Figure 2
A view along the a axis of the crystal packing of compound (I), showing the layer-like structure. Weak N—H⋯π and C—H⋯π inter­actions are shown as blue dashed lines (see Table 1[link]).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.38, update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed the structures of several similar compounds containing a phenol group [(II) (CSD refcode FAJVIV; Rodriguez et al., 1987[Rodriguez, M. L., Medina de la Rosa, E., Gili, P., Zarza, P. M., Reyes, M. G. M., Medina, A. & Díaz González, M. C. (1987). Acta Cryst. C43, 134-136.]) and (III) (TANNOL; Ishida et al., 1992[Ishida, T., Negi, A., In, Y. & Inoue, M. (1992). Acta Cryst. C48, 193-194.])] and nitro­benzene moieties [(IV), GEYPEF; Törnroos, 1988[Törnroos, K. W. (1988). Acta Cryst. C44, 1238-1240.]]. All compounds are 2-indole-substituted derivatives which have two aromatic units linked via an aliphatic chain. In (I), the dihedral angle between indole and anthracene rings is 63.56 (8)°, which is similar for (III) and (IV), viz. 71.52 and 64.21°, respectively. In compounds (I) and (II), the conformation about the azomethine C15=N1 bond is E.

5. DFT study

Calculations by density functional theory DFT-B3LYP, with basis set 6-311 G(d,p), of bond lengths and angles were performed. These values are compared with the experimental values for the title system (see Table 2[link]). From these results we can conclude that basis set 6-311 G(d,p) is better suited in its approach to the experimental data.

Table 2
Comparison of selected geometric data for (I) (Å, °) from X-ray and calculated (DFT) data

  X-ray B3LYP/6–311G(d,p)
N1—C15 1.272 (3) 1.271
N1—C16 1.468 (4) 1.466
C16—C17 1.528 (4) 1.531
C17—C18 1.499 (4) 1.494
C15—C14 1.479 (4) 1.494
C25—N2 1.372 (3) 1.369
N2—C24 1.371 (4) 1.371
C16—N1—C15 115.2 (2) 115.31
N1—C16—C17 110.4 (2) 110.50
N1—C15—C14 126.3 (3) 126.16
C16—C17—C18 112.2 (2) 112.27

The LUMO and HOMO orbital energy parameters are considerably answerable for the charge transfer, chemical reactivity and kinetic/thermodynamic stability of (I). The DFT study of (I) revealed that the HOMO and LUMO are localized in the plane extending from the whole anthracene ring to the indole ring, and electron distribution of the HOMO-1, HOMO, LUMO and LUMO+1 energy levels are shown in Fig. 3[link]. The mol­ecular orbital of HOMO contains both σ and π character, whereas HOMO-1 is dominated by π-orbital density. The LUMO is mainly composed of σ density, while LUMO+1 has both σ and π electronic density. The HOMO–LUMO gap for (I) was found to be 0.12325 a.u. and the frontier mol­ecular orbital energies, EHOMO and ELUMO, were found to be −0.196412 and −0.07087 a.u., respectively.

[Figure 3]
Figure 3
Electron distribution of the HOMO-1, HOMO, LUMO and LUMO+1 energy levels for compound (I).

6. Synthesis and crystallization

80 mg (0.435 mmol) of 2-(1H-indol-3-yl)ethanamine (tryptamine) were dissolved in 10 ml of absolute ethanol. To this solution, 89 mg (0.434 mmol) of anthracene-9-carbaldehyde in 5 ml of absolute ethanol were added dropwise under stirring. The mixture was stirred for 10 min, two drops of glacial acetic acid were added and the mixture was refluxed for a further 2 h. The resulting yellow precipitate was recovered by filtration, washed several times with small portions of ice-cold ethanol and then with diethyl ether to give 140 mg (87%) of compound (I). Dark-yellow block-like crystals suitable for X-ray analysis were obtained within 3 d by slow evaporation of a solution in methanol.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The N—H H atom was located from a difference-Fourier map and constrained to ride on the parent atom: N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N). All C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C25H20N2
Mr 348.43
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 6.0044 (3), 16.4721 (7), 17.8957 (9)
V3) 1769.98 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.20 × 0.15 × 0.13
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.875, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 14169, 3127, 2577
Rint 0.064
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.093, 1.04
No. of reflections 3127
No. of parameters 245
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.20
Absolute structure Refined as an inversion twin
Computer programs: SMART and SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

The DFT quantum-chemical calculations were performed at the B3LYP/6-311 G(d,p) level (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]; Lee et al., 2003[Lee, S. K., Yi, K. Y., Kim, S. K., Suh, J., Kim, N. J., Yoo, S., Lee, B. H., Seo, H. W., Kim, S. O. & Lim, H. (2003). Eur. J. Med. Chem. 38, 459-471.]) as implemented in GAUSSIAN09 (Frisch et al., 2009[Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). DFT structure optimization of (I) was performed starting from the X-ray geometry.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b) and PLATON (Spek, 2009).

(E)-N-[2-(1H-Indol-3-yl)ethyl]-1-(anthracen-9-yl)methanimine top
Crystal data top
C25H20N2Dx = 1.308 Mg m3
Mr = 348.43Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 5148 reflections
a = 6.0044 (3) Åθ = 2.6–27.4°
b = 16.4721 (7) ŵ = 0.08 mm1
c = 17.8957 (9) ÅT = 100 K
V = 1769.98 (15) Å3Needle, yellow
Z = 40.20 × 0.15 × 0.13 mm
F(000) = 736
Data collection top
Bruker SMART APEX CCD
diffractometer
3127 independent reflections
Radiation source: fine-focus sealed tube2577 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ω scansθmax = 25.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 77
Tmin = 0.875, Tmax = 0.990k = 1919
14169 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0478P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3127 reflectionsΔρmax = 0.15 e Å3
245 parametersΔρmin = 0.20 e Å3
0 restraintsAbsolute structure: Refined as an inversion twin
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9441 (4)0.37168 (13)0.28719 (12)0.0239 (6)
N20.6749 (4)0.30313 (14)0.06673 (12)0.0282 (6)
H2A0.5469020.3034630.0451360.034*
C180.9807 (5)0.34812 (16)0.12665 (15)0.0239 (7)
C10.5718 (5)0.20309 (15)0.32067 (14)0.0199 (6)
C80.3608 (5)0.30172 (16)0.42939 (14)0.0216 (6)
C150.8796 (5)0.30043 (16)0.30408 (14)0.0219 (6)
H150.9758920.2579900.2926470.026*
C130.5640 (5)0.32872 (15)0.39461 (15)0.0216 (6)
C140.6662 (5)0.27861 (15)0.34017 (14)0.0206 (6)
C70.2732 (5)0.22659 (16)0.41038 (14)0.0235 (7)
H70.1443660.2089370.4341850.028*
C90.2567 (5)0.35163 (17)0.48380 (15)0.0265 (7)
H90.1247120.3344650.5059540.032*
C191.0013 (5)0.26179 (15)0.11461 (15)0.0227 (7)
C60.3713 (5)0.17673 (16)0.35700 (14)0.0226 (7)
C20.6601 (5)0.15155 (15)0.26395 (14)0.0247 (7)
H20.7881580.1674240.2386040.030*
C50.2749 (5)0.10058 (16)0.33667 (15)0.0274 (7)
H50.1463200.0831370.3607770.033*
C201.1624 (5)0.20388 (17)0.13290 (15)0.0256 (7)
H201.2933140.2192440.1568040.031*
C240.8068 (5)0.23616 (17)0.07725 (15)0.0250 (7)
C230.7688 (5)0.15516 (17)0.05852 (15)0.0267 (7)
H230.6399910.1392600.0336420.032*
C30.5619 (5)0.07970 (16)0.24594 (16)0.0276 (7)
H30.6240240.0475030.2086760.033*
C40.3669 (5)0.05321 (16)0.28300 (15)0.0292 (7)
H40.3023710.0036800.2706200.035*
C120.6514 (5)0.40513 (15)0.41843 (15)0.0260 (7)
H120.7831190.4241840.3974510.031*
C110.5466 (5)0.45039 (17)0.47086 (15)0.0294 (7)
H110.6078180.4998410.4852630.035*
C250.7808 (5)0.36954 (17)0.09638 (15)0.0279 (7)
H250.7239850.4220580.0958870.033*
C161.1623 (5)0.37629 (16)0.25049 (15)0.0257 (7)
H16A1.2343100.3236250.2525150.031*
H16B1.2558710.4149550.2766770.031*
C100.3465 (5)0.42396 (17)0.50402 (16)0.0293 (7)
H100.2760830.4560230.5396810.035*
C220.9296 (5)0.09975 (18)0.07835 (16)0.0312 (7)
H220.9082440.0451840.0671110.037*
C171.1358 (5)0.40255 (16)0.16908 (15)0.0268 (7)
H17A1.0792620.4576820.1675520.032*
H17B1.2805750.4021830.1450200.032*
C211.1245 (5)0.12360 (16)0.11501 (16)0.0306 (7)
H211.2303680.0846990.1275400.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0244 (13)0.0239 (13)0.0233 (13)0.0025 (11)0.0001 (11)0.0016 (10)
N20.0235 (13)0.0334 (14)0.0277 (12)0.0037 (13)0.0039 (11)0.0010 (11)
C180.0264 (17)0.0259 (16)0.0194 (14)0.0018 (14)0.0041 (13)0.0033 (12)
C10.0216 (15)0.0179 (14)0.0201 (14)0.0003 (13)0.0036 (12)0.0038 (12)
C80.0233 (16)0.0231 (15)0.0184 (13)0.0026 (15)0.0044 (12)0.0048 (12)
C150.0233 (16)0.0198 (15)0.0225 (14)0.0034 (14)0.0035 (12)0.0026 (12)
C130.0240 (15)0.0208 (15)0.0201 (15)0.0008 (13)0.0051 (12)0.0042 (11)
C140.0213 (15)0.0215 (15)0.0190 (13)0.0002 (13)0.0038 (12)0.0053 (11)
C70.0215 (15)0.0280 (17)0.0210 (15)0.0002 (13)0.0001 (12)0.0068 (12)
C90.0256 (16)0.0310 (18)0.0230 (16)0.0052 (15)0.0006 (13)0.0040 (13)
C190.0260 (17)0.0246 (16)0.0177 (14)0.0010 (14)0.0037 (13)0.0001 (12)
C60.0238 (16)0.0259 (16)0.0179 (15)0.0011 (14)0.0046 (12)0.0048 (11)
C20.0244 (15)0.0245 (15)0.0252 (15)0.0009 (14)0.0032 (13)0.0041 (12)
C50.0305 (17)0.0260 (16)0.0257 (15)0.0071 (15)0.0019 (13)0.0036 (13)
C200.0228 (15)0.0287 (16)0.0253 (15)0.0012 (15)0.0002 (13)0.0008 (13)
C240.0254 (16)0.0301 (16)0.0193 (14)0.0014 (14)0.0026 (13)0.0027 (12)
C230.0252 (17)0.0345 (18)0.0202 (14)0.0052 (15)0.0006 (12)0.0011 (13)
C30.0342 (18)0.0203 (15)0.0283 (16)0.0027 (15)0.0020 (14)0.0005 (12)
C40.0359 (18)0.0233 (16)0.0284 (16)0.0070 (15)0.0023 (15)0.0015 (13)
C120.0274 (16)0.0237 (15)0.0270 (15)0.0007 (15)0.0010 (14)0.0035 (12)
C110.0409 (19)0.0211 (15)0.0262 (16)0.0018 (15)0.0046 (14)0.0021 (13)
C250.0339 (18)0.0250 (16)0.0247 (15)0.0030 (15)0.0034 (14)0.0029 (12)
C160.0235 (15)0.0214 (14)0.0323 (16)0.0059 (14)0.0021 (14)0.0005 (12)
C100.0371 (18)0.0284 (17)0.0223 (14)0.0081 (16)0.0001 (15)0.0008 (12)
C220.0411 (19)0.0263 (16)0.0264 (16)0.0058 (16)0.0035 (15)0.0029 (13)
C170.0267 (16)0.0208 (15)0.0328 (16)0.0011 (14)0.0063 (14)0.0026 (13)
C210.0352 (18)0.0270 (17)0.0296 (16)0.0055 (15)0.0037 (15)0.0014 (13)
Geometric parameters (Å, º) top
N1—C151.272 (3)C2—H20.9300
N1—C161.468 (4)C5—C41.355 (4)
N2—C241.371 (4)C5—H50.9300
N2—C251.372 (3)C20—C211.380 (4)
N2—H2A0.8600C20—H200.9300
C18—C251.363 (4)C24—C231.395 (4)
C18—C191.444 (3)C23—C221.375 (4)
C18—C171.499 (4)C23—H230.9300
C1—C141.411 (4)C3—C41.415 (4)
C1—C21.426 (3)C3—H30.9300
C1—C61.436 (4)C4—H40.9300
C8—C71.387 (4)C12—C111.354 (4)
C8—C91.420 (4)C12—H120.9300
C8—C131.440 (4)C11—C101.409 (4)
C15—C141.479 (4)C11—H110.9300
C15—H150.9300C25—H250.9300
C13—C141.417 (4)C16—C171.528 (4)
C13—C121.429 (4)C16—H16A0.9700
C7—C61.391 (4)C16—H16B0.9700
C7—H70.9300C10—H100.9300
C9—C101.357 (4)C22—C211.398 (4)
C9—H90.9300C22—H220.9300
C19—C201.397 (4)C17—H17A0.9700
C19—C241.411 (4)C17—H17B0.9700
C6—C51.428 (4)C21—H210.9300
C2—C31.361 (4)
C15—N1—C16115.2 (2)N2—C24—C23130.0 (3)
C24—N2—C25108.7 (2)N2—C24—C19107.6 (2)
C24—N2—H2A125.7C23—C24—C19122.4 (3)
C25—N2—H2A125.7C22—C23—C24117.3 (3)
C25—C18—C19105.7 (3)C22—C23—H23121.4
C25—C18—C17126.4 (2)C24—C23—H23121.4
C19—C18—C17127.7 (3)C2—C3—C4121.1 (3)
C14—C1—C2123.5 (2)C2—C3—H3119.5
C14—C1—C6119.4 (2)C4—C3—H3119.5
C2—C1—C6117.0 (2)C5—C4—C3119.5 (3)
C7—C8—C9121.2 (3)C5—C4—H4120.3
C7—C8—C13119.4 (2)C3—C4—H4120.3
C9—C8—C13119.4 (2)C11—C12—C13121.4 (3)
N1—C15—C14126.3 (3)C11—C12—H12119.3
N1—C15—H15116.9C13—C12—H12119.3
C14—C15—H15116.9C12—C11—C10121.2 (3)
C14—C13—C12124.0 (3)C12—C11—H11119.4
C14—C13—C8119.0 (2)C10—C11—H11119.4
C12—C13—C8117.0 (2)C18—C25—N2110.8 (2)
C1—C14—C13120.7 (2)C18—C25—H25124.6
C1—C14—C15117.0 (2)N2—C25—H25124.6
C13—C14—C15122.3 (2)N1—C16—C17110.4 (2)
C8—C7—C6122.3 (3)N1—C16—H16A109.6
C8—C7—H7118.8C17—C16—H16A109.6
C6—C7—H7118.8N1—C16—H16B109.6
C10—C9—C8121.1 (3)C17—C16—H16B109.6
C10—C9—H9119.5H16A—C16—H16B108.1
C8—C9—H9119.5C9—C10—C11119.9 (3)
C20—C19—C24118.7 (2)C9—C10—H10120.1
C20—C19—C18134.2 (3)C11—C10—H10120.1
C24—C19—C18107.1 (2)C23—C22—C21121.5 (3)
C7—C6—C5121.5 (2)C23—C22—H22119.3
C7—C6—C1119.2 (2)C21—C22—H22119.3
C5—C6—C1119.3 (2)C18—C17—C16112.2 (2)
C3—C2—C1121.7 (3)C18—C17—H17A109.2
C3—C2—H2119.2C16—C17—H17A109.2
C1—C2—H2119.2C18—C17—H17B109.2
C4—C5—C6121.4 (3)C16—C17—H17B109.2
C4—C5—H5119.3H17A—C17—H17B107.9
C6—C5—H5119.3C20—C21—C22121.1 (3)
C21—C20—C19119.1 (3)C20—C21—H21119.5
C21—C20—H20120.5C22—C21—H21119.5
C19—C20—H20120.5
C16—N1—C15—C14179.0 (2)C7—C6—C5—C4177.9 (3)
C7—C8—C13—C141.7 (3)C1—C6—C5—C41.0 (4)
C9—C8—C13—C14179.8 (2)C24—C19—C20—C211.1 (4)
C7—C8—C13—C12177.6 (2)C18—C19—C20—C21177.4 (3)
C9—C8—C13—C120.9 (3)C25—N2—C24—C23178.3 (3)
C2—C1—C14—C13176.9 (2)C25—N2—C24—C190.1 (3)
C6—C1—C14—C130.5 (4)C20—C19—C24—N2179.1 (2)
C2—C1—C14—C155.9 (4)C18—C19—C24—N20.2 (3)
C6—C1—C14—C15176.6 (2)C20—C19—C24—C230.6 (4)
C12—C13—C14—C1178.7 (2)C18—C19—C24—C23178.3 (3)
C8—C13—C14—C10.5 (4)N2—C24—C23—C22177.8 (3)
C12—C13—C14—C151.8 (4)C19—C24—C23—C220.3 (4)
C8—C13—C14—C15177.5 (2)C1—C2—C3—C40.1 (4)
N1—C15—C14—C1147.8 (3)C6—C5—C4—C30.3 (4)
N1—C15—C14—C1335.1 (4)C2—C3—C4—C50.8 (4)
C9—C8—C7—C6179.6 (2)C14—C13—C12—C11179.9 (3)
C13—C8—C7—C61.9 (4)C8—C13—C12—C110.6 (4)
C7—C8—C9—C10177.9 (2)C13—C12—C11—C100.1 (4)
C13—C8—C9—C100.6 (4)C19—C18—C25—N20.3 (3)
C25—C18—C19—C20178.9 (3)C17—C18—C25—N2175.1 (2)
C17—C18—C19—C203.6 (5)C24—N2—C25—C180.2 (3)
C25—C18—C19—C240.3 (3)C15—N1—C16—C17111.3 (3)
C17—C18—C19—C24175.0 (3)C8—C9—C10—C110.1 (4)
C8—C7—C6—C5178.2 (2)C12—C11—C10—C90.5 (4)
C8—C7—C6—C10.8 (4)C24—C23—C22—C210.7 (4)
C14—C1—C6—C70.5 (4)C25—C18—C17—C16115.4 (3)
C2—C1—C6—C7177.2 (2)C19—C18—C17—C1659.1 (4)
C14—C1—C6—C5179.4 (2)N1—C16—C17—C1855.6 (3)
C2—C1—C6—C51.8 (4)C19—C20—C21—C220.7 (4)
C14—C1—C2—C3178.9 (3)C23—C22—C21—C200.2 (4)
C6—C1—C2—C31.3 (4)
Hydrogen-bond geometry (Å, º) top
Cg3, Cg4 and Cg5 are the centroids rings C1/C6–C8/C13/C14, C8–C13 and C19–C24, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···N10.932.362.9845 (2)124
C2—H2···Cg50.932.773.5505 (2)142
N2—H2A···Cg5i0.862.593.1855 (2)127
C7—H7···Cg4ii0.932.753.5777 (2)148
C9—H9···Cg3ii0.932.733.5077 (2)142
C16—H16A···Cg3iii0.972.863.5375 (2)128
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x1/2, y+1/2, z+1; (iii) x+1, y, z.
Comparison of selected geometric data for (I) (Å, °) from X-ray and calculated (DFT) data top
BondsX-rayB3LYP/6–311G(d,p)
N1—C151.272 (3)1.271
N1—C161.468 (4)1.466
C16—C171.528 (4)1.531
C17—C181.499 (4)1.494
C15—C141.479 (4)1.494
C25—N21.372 (3)1.369
N2—C241.371 (4)1.371
C16—N1—C15115.2 (2)115.31
N1—C16—C17110.4 (2)110.50
N1—C15—C14126.3 (3)126.16
C16—C17—C18112.2 (2)112.27
 

Acknowledgements

The authors are grateful to the Ondokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, Turkey, for X-ray data collection, and Department of Chemistry, National Taras Shevchenko University of Kiev.

References

First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFaizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B, 222, 15–20.  Web of Science CrossRef CAS Google Scholar
First citationFaizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m206–m207.  CSD CrossRef IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGlennon, R. A., Titeler, M. & McKenney, J. D. (1984). Life Sci. 35, 2505–2511.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIshida, T., Negi, A., In, Y. & Inoue, M. (1992). Acta Cryst. C48, 193–194.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJohnson, M. P., Hoffman, A. J., Nichols, D. E. & Mathis, C. A. (1987). Neuropharmacology, 26, 1803–1806.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJones, R. S. G. (1982). Prog. Neurobiol. 19, 117–139.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKrebs-Thomson, K., Paulus, M. P. & Geyer, M. A. (1998). Neuropsychopharmacology, 18, 339–351.  CrossRef CAS PubMed Google Scholar
First citationLee, S. K., Yi, K. Y., Kim, S. K., Suh, J., Kim, N. J., Yoo, S., Lee, B. H., Seo, H. W., Kim, S. O. & Lim, H. (2003). Eur. J. Med. Chem. 38, 459–471.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohammad, T. & Moutaery, A. A. (2005). Exp. Tox. Path. 56, 119–129.  Google Scholar
First citationNichols, C. D. & Sanders-Bush, E. (2001). Heffter Rev. Psychedelic Res. 2, 73–79.  Google Scholar
First citationRodriguez, M. L., Medina de la Rosa, E., Gili, P., Zarza, P. M., Reyes, M. G. M., Medina, A. & Díaz González, M. C. (1987). Acta Cryst. C43, 134–136.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, N. (1986). In Chemistry of Plant Hormones. Florida: CRC Press.  Google Scholar
First citationTörnroos, K. W. (1988). Acta Cryst. C44, 1238–1240.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationWaseem, G. & Mark, T. H. (2005). Life Sci. 78, 442–453.  Web of Science PubMed Google Scholar
First citationWorthen, D. R., Gibson, D. A., Rogers, D. T., Bence, A. K., Fu, M., Littleton, J. M. & Crooks, P. A. (2001). Brain Res. 890, 343–346.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds