research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of chlorido­(di­methyl sulfoxide-κS)bis­­[4-(pyridin-2-yl)benzaldehyde-κ3C2,N]iridium(III) aceto­nitrile monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Chemistry Research Center, United States Air Force Academy, Colorado Springs, CO 80840, USA
*Correspondence e-mail: scott.iacono@usafa.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 20 June 2017; accepted 25 July 2017; online 1 August 2017)

The title compound, [IrCl(C12H8NO)2{(CH3)2SO}]·H3CCN or [IrCl(fppy)2(DMSO)]·H3CCN [where fppy is 4-(pyridin-2-yl)benzaldehyde and DMSO is dimethyl sulfoxide], is a mononuclear iridium(III) complex including two fppy ligands, a sulfur-coordinating DMSO ligand, and one terminal chloride ligand that define a distorted octa­hedral coordination sphere. The complex crystallizes from 1:1 DMSO–aceto­nitrile as an aceto­nitrile solvate. In the crystal, weak C—H⋯O and C—H⋯N hydrogen-bonding inter­actions between adjacent complexes and between the aceto­nitrile solvent and the complex consolidate the packing.

1. Chemical context

The development of iridium complexes with three ortho metallating ligands has drawn great inter­est due to their potential application in light-emitting devices (Henwood & Zysman-Coman, 2017[Henwood, A. F. & Zysman-Coman, E. (2017). A Comprehensive Review of Luminescent Iridium Complexes Used in Light-Emitting Electrochemical Cells (LEEC's) in Iridium (III), in Optoelectronic and Photonics Applications. Chichester: John Wiley & Sons Ltd.]). Many such complexes have been synthesized, often utilizing phenyl­pyridine-based di­chlorido-bridged di-iridium complexes as starting materials. In an attempt to synthesize such a compound with 4-(pyridin-2-yl)benzaldehyde (fppy) as a ligand, viz. di-μ-chlorido-bis{bis­[4-(pyridin-2-yl)benzaldehyde-κ2C2,N′]iridium(III) (Bet­­tington et al., 2004[Bettington, S., Thompson, A. L., Beeby, A. & Goeta, A. E. (2004). Acta Cryst. E60, m827-m829.]), spectroscopic results indicated a product with reduced symmetry compared to the expected Ci symmetry of the known complex. Single-crystal X-ray analysis was used to elucidate the structure of the title compound.

[Scheme 1]

2. Structural commentary

The title compound (Fig. 1[link]) crystallizes in the triclinic space group P[\overline{1}] with one mol­ecule per asymmetric unit. The IrIII atom has a distorted octa­hedral coordination sphere defined by the S atom of the dimethyl sulfoxide (DMSO) ligand, a chlorine ligand and C and N atoms of two fppy ligands. The S and Cl atoms occupy equatorial positions, trans to the fppy C atoms, and the fppy N atoms occupy the axial positions. The least-squares planes of each fppy ligand indicate a nearly coplanar arrangement of the pyridine and phenyl rings with small deviations of 2.42 (9)° (fppy ligand N1/C2–C12 with C4 trans to S1) and 14.71 (9)° (fppy ligand N2/C14–C24 with C16 trans to Cl1). The Ir—S bond length [2.3810 (5) Å] is longer than the average distance [2.27 (1) Å] that was reported for this coordination mode (Calligaris, 2004[Calligaris, M. (2004). Coord. Chem. Rev. 248, 351-375.]). The S—O distance [1.4903 (13) Å] is only slightly longer than the previously reported average [1.473 (4) Å]. This S—O distance shows negligible contraction from the average reported S—O bond length [1.492 (1) Å] in non-coordinating sulfoxide mol­ecules (Calligaris, 2004[Calligaris, M. (2004). Coord. Chem. Rev. 248, 351-375.]).

[Figure 1]
Figure 1
The mol­ecular structure of chlorido­(dimethyl sulfoxide-κS)bis­[4-(pyridin-2-yl)benzaldehyde-κ2C2,N′]iridium(III) aceto­nitrile monosolvate. Displacement ellipsoids are shown at the 50% probability level. Only aldehyde H atoms are shown and the aceto­nitrile solvent mol­ecule has been omitted for clarity.

3. Supra­molecular features

The aceto­nitrile solvate mol­ecules fill voids that are visible along the b axis view direction (Fig. 2[link]). Alignment of the aceto­nitrile mol­ecules is caused by weak inter­molecular contacts between aceto­nitrile H atoms and adjacent fppy aldehyde carbonyl O atoms (C28—H28⋯O1) in addition to weak inter­actions between aceto­nitrile N atoms and adjacent DMSO H atoms (C25—H25B⋯N3). There are also C—H⋯O inter­actions between adjacent complexes, involving aromatic H atoms of one of the fppy ligands and methyl groups of the DMSO ligand with the sulfoxide O atom. Numerical details of all these inter­actions are collated in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯O3i 0.93 2.48 3.179 (3) 132
C25—H25B⋯N3ii 0.96 2.53 3.403 (3) 150
C26—H26A⋯O3iii 0.96 2.48 3.406 (2) 161
C28—H28C⋯O1iv 0.96 2.54 3.490 (3) 173
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+2, -z+1; (iii) -x+2, -y+2, -z+2; (iv) x+1, y, z.
[Figure 2]
Figure 2
The crystal packing of the title complex, viewed along the b axis. Displacement ellipsoids are shown at the 50% probability level. H atoms have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, V5.38, update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for related structures revealed that the di-μ-chlorido-bis­{bis­[4-(pyridin-2-yl)benzaldehyde-κ2C2,N′]iridium(III)} complex from which the title complex was derived, has been reported as a di­chloro­methane sesquisolvate (Bettington et al., 2004[Bettington, S., Thompson, A. L., Beeby, A. & Goeta, A. E. (2004). Acta Cryst. E60, m827-m829.]).

5. Synthesis and crystallization

The parent compound, di-μ-chlorido-bis­{bis­[4-(pyridin-2-yl)benzaldehyde-κ2C2,N′]iridium(III), was synthesized utilizing a previously reported procedure (Bettington et al., 2004[Bettington, S., Thompson, A. L., Beeby, A. & Goeta, A. E. (2004). Acta Cryst. E60, m827-m829.]).

For the synthesis of the title compound, di-μ-chlorido-bis­{bis­[4-(pyridin-2-yl)benzaldehyde-k2C2,N′]iridium(III) (0.101 g, 0.077 mmol) was dissolved in DMSO (2 ml) with gentle heating over 5 min. After cooling to room temperature, aceto­nitrile (2 ml) was added. After 24 h, the resulting solid was collected by vacuum filtration to afford the title compound as an orange crystalline solid (0.043 g, 41.7%). Spectroscopic data: 1H NMR (500 MHz, DMSO-d6): δ 9.83 (d, 1H, J = 8.0 Hz), 9.61 (s, 1H), 9.55–9.53 (m, 2H), 8.42 (d, 1H, J = 8.0 Hz), 8.34 (d, 1H, J = 8.0 Hz), 8.20 (t, 1H, J = 7.5 Hz), 8.11 (t, 1H, J = 7.5 Hz), 8.01 (d, 1H, J = 7.5 Hz), 7.96 (d, 1H, J = 8.0 Hz), 7.69 (t, 1H, J = 6.5 Hz), 7.60 (t, 1H, J = 6.5 Hz), 7.40 (d, 1H, J = 8.0 Hz), 7.36 (d, 1H, J = 8.0 Hz), 6.71 (s, 1H), 6.10 (s, 1H) and 13C NMR (500 MHz, DMSO-d6): δ 193.6, 193.5, 166.1, 165.7, 153.1, 152.1, 151.7, 150.5, 149.9, 145.5, 140.4, 139.4, 136.6, 135.9, 131.2, 129.4, 126.4, 125.9, 125.7, 125.5, 125.2, 124.8, 122.4, 121.8, 72.3, 66.0, 60.8, 40.5, 40.3, 40.1, 40.0, 39.8, 39.6, 39.5, 15.7.

6. Refinement

Crystal data as well as data collection and structure refinement details are summarized in Table 2[link]. The aldehyde hydrogen atoms were found in a difference-Fourier map and were refined freely. The remaining hydrogen atoms were included in calculated positions and refined with a riding model: C—H = 0.95-0.98 Å with Uiso(H) = 1.5 Ueq(C-meth­yl) and 1.2 Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula [IrCl(C12H8NO)2(C2H6OS)]·C2H3N
Mr 711.22
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.7837 (12), 12.0910 (16), 14.0097 (19)
α, β, γ (°) 97.5367 (15), 105.1501 (14), 109.3176 (14)
V3) 1316.1 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 5.29
Crystal size (mm) 0.32 × 0.24 × 0.17
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.26, 0.47
No. of measured, independent and observed [I > 2σ(I)] reflections 28976, 6983, 6828
Rint 0.026
(sin θ/λ)max−1) 0.685
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.037, 1.68
No. of reflections 6983
No. of parameters 345
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.47, −0.65
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015).

Chlorido(dimethyl sulfoxide-κS)bis[4-(pyridin-2-yl)benzaldehyde-κ2C3,N]iridium(III) acetonitrile monosolvate top
Crystal data top
[IrCl(C12H8NO)2(C2H6OS)]·C2H3NZ = 2
Mr = 711.22F(000) = 696
Triclinic, P1Dx = 1.795 Mg m3
a = 8.7837 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.0910 (16) ÅCell parameters from 9979 reflections
c = 14.0097 (19) Åθ = 2.6–30.0°
α = 97.5367 (15)°µ = 5.29 mm1
β = 105.1501 (14)°T = 100 K
γ = 109.3176 (14)°Rectangular prism, orange
V = 1316.1 (3) Å30.32 × 0.24 × 0.17 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
6983 independent reflections
Radiation source: fine focus sealed tube6828 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.3333 pixels mm-1θmax = 29.1°, θmin = 1.8°
ω Scans scansh = 1111
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1616
Tmin = 0.26, Tmax = 0.47l = 1919
28976 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015Hydrogen site location: mixed
wR(F2) = 0.037H atoms treated by a mixture of independent and constrained refinement
S = 1.68 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
6983 reflections(Δ/σ)max = 0.003
345 parametersΔρmax = 1.47 e Å3
0 restraintsΔρmin = 0.65 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0050 (3)0.6613 (2)0.33167 (17)0.0243 (5)
H10.088 (3)0.596 (2)0.278 (2)0.042 (8)*
C20.1092 (2)0.62505 (18)0.40746 (15)0.0157 (4)
H20.077 (3)0.594 (2)0.9857 (18)0.028 (6)*
C30.2305 (2)0.71022 (17)0.49507 (14)0.0134 (4)
H30.2397580.7900670.5051770.016*
C40.3376 (2)0.67614 (16)0.56730 (14)0.0100 (3)
C50.3222 (2)0.55552 (16)0.54791 (14)0.0116 (4)
C60.2015 (2)0.46989 (17)0.46076 (14)0.0151 (4)
H60.1930660.3902280.4498920.018*
C70.0941 (2)0.50534 (17)0.39041 (15)0.0164 (4)
H70.0125410.4492420.3322850.02*
C80.6532 (2)0.60005 (17)0.78483 (14)0.0134 (4)
H80.7245730.6644170.8401950.016*
C90.6625 (2)0.48877 (17)0.78530 (15)0.0167 (4)
H90.7372330.478080.8406510.02*
C100.5597 (3)0.39315 (17)0.70259 (15)0.0175 (4)
H100.5660060.3176480.700630.021*
C110.4471 (2)0.41157 (16)0.62266 (15)0.0153 (4)
H110.376640.3480310.5664690.018*
C120.4389 (2)0.52483 (16)0.62615 (14)0.0112 (3)
C130.1550 (3)0.57976 (18)0.94959 (15)0.0176 (4)
C140.1860 (2)0.66267 (16)0.88152 (14)0.0128 (4)
C150.3053 (2)0.66650 (16)0.83096 (14)0.0122 (4)
H150.3630820.6144790.8381320.015*
C160.3375 (2)0.74788 (16)0.77005 (13)0.0098 (3)
C170.2417 (2)0.82202 (16)0.75755 (14)0.0108 (3)
C180.1194 (2)0.81540 (17)0.80579 (14)0.0133 (4)
H180.0552660.8630720.7954510.016*
C190.0948 (2)0.73674 (16)0.86940 (14)0.0143 (4)
H190.0168580.7338820.9038930.017*
C200.5027 (2)1.00524 (16)0.62983 (14)0.0120 (4)
H200.6057711.0140280.619190.014*
C210.4188 (2)1.07846 (16)0.59468 (14)0.0141 (4)
H210.4649171.1354520.5608550.017*
C220.2647 (2)1.06543 (17)0.61075 (14)0.0157 (4)
H220.2045131.1116460.5857080.019*
C230.2021 (2)0.98295 (17)0.66440 (14)0.0145 (4)
H230.1009370.974870.677420.017*
C240.2915 (2)0.91196 (16)0.69888 (14)0.0111 (3)
C250.6344 (2)0.96111 (17)0.94371 (14)0.0157 (4)
H25A0.5598740.8943820.960930.024*
H25B0.5702081.0043180.9111620.024*
H25C0.7227151.0141811.0045460.024*
C260.8560 (2)1.04751 (17)0.84339 (15)0.0164 (4)
H26A0.945071.0925670.9065420.025*
H26B0.7862261.0925030.8231950.025*
H26C0.9055341.0333130.7918460.025*
C270.5454 (3)0.76301 (18)0.12214 (16)0.0216 (4)
C280.6709 (3)0.7132 (2)0.1106 (2)0.0364 (6)
H28A0.7230390.7477410.0635860.055*
H28B0.6158950.627270.0852370.055*
H28C0.7568380.7318490.1755190.055*
Cl10.74293 (5)0.83320 (4)0.62149 (3)0.01155 (8)
Ir10.51788 (2)0.78209 (2)0.70247 (2)0.00795 (2)
N10.54447 (18)0.61957 (13)0.70713 (11)0.0097 (3)
N20.43895 (18)0.92185 (13)0.67888 (11)0.0097 (3)
N30.4464 (3)0.80168 (17)0.13125 (15)0.0286 (4)
O10.0021 (2)0.76266 (15)0.33564 (13)0.0390 (4)
O20.21023 (19)0.50165 (13)0.95953 (12)0.0254 (3)
O30.84599 (17)0.85806 (12)0.92054 (10)0.0171 (3)
S10.72772 (6)0.90632 (4)0.85936 (3)0.01024 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0214 (11)0.0248 (12)0.0157 (11)0.0071 (9)0.0064 (9)0.0016 (9)
C20.0133 (9)0.0191 (10)0.0105 (9)0.0047 (8)0.0002 (7)0.0014 (8)
C30.0139 (9)0.0122 (9)0.0120 (9)0.0044 (7)0.0025 (7)0.0009 (7)
C40.0090 (8)0.0121 (8)0.0086 (8)0.0029 (7)0.0042 (7)0.0018 (7)
C50.0110 (8)0.0134 (9)0.0089 (9)0.0030 (7)0.0032 (7)0.0018 (7)
C60.0161 (9)0.0110 (9)0.0128 (9)0.0017 (7)0.0024 (8)0.0008 (7)
C70.0147 (9)0.0165 (10)0.0096 (9)0.0012 (8)0.0010 (7)0.0022 (7)
C80.0123 (9)0.0137 (9)0.0116 (9)0.0046 (7)0.0007 (7)0.0018 (7)
C90.0192 (10)0.0158 (10)0.0149 (10)0.0082 (8)0.0020 (8)0.0056 (8)
C100.0227 (10)0.0124 (9)0.0184 (10)0.0075 (8)0.0069 (8)0.0050 (8)
C110.0191 (10)0.0101 (9)0.0127 (9)0.0024 (7)0.0040 (8)0.0002 (7)
C120.0111 (8)0.0125 (9)0.0085 (9)0.0029 (7)0.0033 (7)0.0011 (7)
C130.0199 (10)0.0180 (10)0.0151 (10)0.0048 (8)0.0089 (8)0.0043 (8)
C140.0124 (9)0.0130 (9)0.0084 (9)0.0012 (7)0.0015 (7)0.0007 (7)
C150.0112 (8)0.0124 (9)0.0098 (9)0.0033 (7)0.0007 (7)0.0008 (7)
C160.0094 (8)0.0086 (8)0.0070 (8)0.0032 (7)0.0019 (7)0.0025 (7)
C170.0088 (8)0.0112 (8)0.0080 (8)0.0019 (7)0.0005 (7)0.0008 (7)
C180.0092 (8)0.0154 (9)0.0131 (9)0.0052 (7)0.0010 (7)0.0000 (7)
C190.0106 (9)0.0160 (9)0.0133 (9)0.0020 (7)0.0044 (7)0.0003 (7)
C200.0127 (9)0.0114 (9)0.0089 (9)0.0024 (7)0.0021 (7)0.0011 (7)
C210.0194 (9)0.0103 (9)0.0099 (9)0.0044 (7)0.0023 (7)0.0023 (7)
C220.0184 (10)0.0141 (9)0.0132 (9)0.0093 (8)0.0008 (8)0.0024 (8)
C230.0122 (9)0.0161 (9)0.0135 (9)0.0063 (7)0.0016 (7)0.0009 (8)
C240.0111 (8)0.0103 (8)0.0083 (9)0.0031 (7)0.0005 (7)0.0014 (7)
C250.0198 (10)0.0157 (9)0.0099 (9)0.0069 (8)0.0044 (8)0.0015 (7)
C260.0152 (9)0.0126 (9)0.0154 (10)0.0006 (7)0.0029 (8)0.0007 (8)
C270.0265 (11)0.0167 (10)0.0151 (10)0.0054 (9)0.0007 (9)0.0057 (8)
C280.0377 (14)0.0438 (15)0.0351 (15)0.0235 (12)0.0108 (12)0.0149 (12)
Cl10.01124 (19)0.0134 (2)0.0103 (2)0.00477 (16)0.00389 (16)0.00282 (16)
Ir10.00779 (4)0.00810 (4)0.00644 (4)0.00263 (3)0.00083 (3)0.00086 (3)
N10.0098 (7)0.0095 (7)0.0091 (7)0.0035 (6)0.0024 (6)0.0017 (6)
N20.0107 (7)0.0096 (7)0.0065 (7)0.0032 (6)0.0008 (6)0.0004 (6)
N30.0378 (11)0.0250 (10)0.0226 (10)0.0156 (9)0.0042 (9)0.0067 (8)
O10.0454 (11)0.0286 (9)0.0291 (10)0.0197 (8)0.0143 (8)0.0008 (8)
O20.0343 (9)0.0235 (8)0.0257 (9)0.0135 (7)0.0150 (7)0.0131 (7)
O30.0172 (7)0.0168 (7)0.0129 (7)0.0100 (6)0.0048 (6)0.0009 (6)
S10.0108 (2)0.0099 (2)0.0079 (2)0.00406 (16)0.00035 (16)0.00033 (16)
Geometric parameters (Å, º) top
C1—O11.211 (3)C16—C171.416 (2)
C1—C21.477 (3)C16—Ir12.0077 (18)
C2—C71.391 (3)C17—C181.398 (2)
C2—C31.400 (3)C17—C241.469 (2)
C3—C41.396 (3)C18—C191.390 (3)
C4—C51.402 (3)C20—N21.346 (2)
C4—Ir12.0466 (18)C20—C211.388 (3)
C5—C61.397 (3)C21—C221.391 (3)
C5—C121.470 (3)C22—C231.383 (3)
C6—C71.392 (3)C23—C241.394 (3)
C8—N11.351 (2)C24—N21.366 (2)
C8—C91.376 (3)C25—S11.7799 (19)
C9—C101.381 (3)C26—S11.7870 (19)
C10—C111.384 (3)C27—N31.141 (3)
C11—C121.390 (3)C27—C281.453 (3)
C12—N11.366 (2)Cl1—Ir12.4748 (5)
C13—O21.204 (2)Ir1—N22.0609 (15)
C13—C141.481 (3)Ir1—N12.0614 (15)
C14—C191.384 (3)Ir1—S12.3810 (5)
C14—C151.402 (2)O3—S11.4903 (13)
C15—C161.392 (2)
O1—C1—C2125.8 (2)C20—C21—C22119.06 (17)
C7—C2—C3120.72 (18)C23—C22—C21119.21 (17)
C7—C2—C1119.00 (18)C22—C23—C24119.65 (17)
C3—C2—C1120.28 (18)N2—C24—C23120.64 (16)
C4—C3—C2120.47 (18)N2—C24—C17113.70 (15)
C3—C4—C5117.90 (17)C23—C24—C17125.66 (16)
C3—C4—Ir1127.61 (14)N3—C27—C28179.7 (2)
C5—C4—Ir1114.48 (13)C16—Ir1—C489.71 (7)
C6—C5—C4122.04 (17)C16—Ir1—N280.48 (6)
C6—C5—C12122.36 (17)C4—Ir1—N289.53 (7)
C4—C5—C12115.59 (16)C16—Ir1—N193.83 (6)
C7—C6—C5119.15 (18)C4—Ir1—N179.63 (7)
C2—C7—C6119.70 (18)N2—Ir1—N1167.83 (6)
N1—C8—C9122.61 (18)C16—Ir1—S190.41 (5)
C8—C9—C10119.19 (19)C4—Ir1—S1179.68 (5)
C9—C10—C11118.86 (18)N2—Ir1—S190.19 (4)
C10—C11—C12120.15 (18)N1—Ir1—S1100.65 (4)
N1—C12—C11120.48 (17)C16—Ir1—Cl1177.65 (5)
N1—C12—C5113.96 (16)C4—Ir1—Cl191.58 (5)
C11—C12—C5125.56 (17)N2—Ir1—Cl197.56 (4)
O2—C13—C14126.05 (18)N1—Ir1—Cl188.33 (4)
C19—C14—C15120.78 (17)S1—Ir1—Cl188.295 (18)
C19—C14—C13118.36 (17)C8—N1—C12118.67 (16)
C15—C14—C13120.86 (17)C8—N1—Ir1124.98 (12)
C16—C15—C14120.26 (17)C12—N1—Ir1116.32 (12)
C15—C16—C17118.19 (16)C20—N2—C24119.49 (15)
C15—C16—Ir1127.48 (13)C20—N2—Ir1124.76 (12)
C17—C16—Ir1114.21 (13)C24—N2—Ir1114.59 (11)
C18—C17—C16121.29 (17)O3—S1—C25106.03 (9)
C18—C17—C24123.30 (17)O3—S1—C26107.19 (9)
C16—C17—C24115.18 (15)C25—S1—C2698.72 (9)
C19—C18—C17119.24 (17)O3—S1—Ir1119.58 (6)
C14—C19—C18120.16 (17)C25—S1—Ir1111.64 (7)
N2—C20—C21121.84 (17)C26—S1—Ir1111.52 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O3i0.932.483.179 (3)132
C25—H25B···N3ii0.962.533.403 (3)150
C26—H26A···O3iii0.962.483.406 (2)161
C28—H28C···O1iv0.962.543.490 (3)173
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z+1; (iii) x+2, y+2, z+2; (iv) x+1, y, z.
 

Funding information

This work was supported by the Defense Threat Reduction Agency (DTRA) - Joint Science and Technology Transfer Office for Chemical and Biological Defense (MIPR No. HDTRA13964) and the Air Force Office of Scientific Research (AFOSR).

References

First citationBettington, S., Thompson, A. L., Beeby, A. & Goeta, A. E. (2004). Acta Cryst. E60, m827–m829.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalligaris, M. (2004). Coord. Chem. Rev. 248, 351–375.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHenwood, A. F. & Zysman-Coman, E. (2017). A Comprehensive Review of Luminescent Iridium Complexes Used in Light-Emitting Electrochemical Cells (LEEC's) in Iridium (III), in Optoelectronic and Photonics Applications. Chichester: John Wiley & Sons Ltd.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds