research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tetra­aqua­bis­­(1,3-di­methyl-2,6-dioxo-7H-purin-7-ido-κN7)cobalt(II)

CROSSMARK_Color_square_no_text.svg

aEquipe Metallation, Complexes Moleculaires et Applications, Universite Moulay, Ismail, Faculte des Sciences, Meknes, BP 11201 Zitoune, 50000 Meknes, Morocco, bLaboratoire de Chimie de Coordination du CNRS, 205, route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France, and cUniversité de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
*Correspondence e-mail: elhamdanihicham41@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 18 July 2017; accepted 2 August 2017; online 4 August 2017)

The title complex, [Co(C7H7N4O2)2(H2O)4], comprises mononuclear mol­ecules consisting of a CoII ion, two deprotonated theophylline ligands (systematic name: 1,3-dimethyl-7H-purine-2,6-dione) and four coordinating water mol­ecules. The CoII atom lies on an inversion centre and has a slightly distorted octa­hedral coordination environment, with two N atoms of two trans-oriented theophylline ligands and the O atoms of four water mol­ecules. An intra­molecular hydrogen bond stabilizes this conformation. A three-dimensional supra­molecular network structure is formed by inter­molecular O—H⋯O and O—H⋯N hydrogen bonds.

1. Chemical context

Theophylline (systematic name: 1,3-dimethyl-7H-purine-2,6-di­one) belongs to the family of xanthines, which are purine derivatives. It is related to dietary xanthines caffeine and theobromine and is an important pharmacologic compound (Shukla & Mishra, 1994[Shukla, M. K. & Mishra, P. C. (1994). J. Mol. Struct. 324, 241-249.]). Usually, synthetic drugs of theophylline are used for the treatment of disorder in the physiological functions of the pulmonary system (Childs, 2004[Childs, S. L. (2004). J. Am. Chem. Soc. 126, 13335-13342.]) because theophylline is a bronchodilator that is given against asthma and bronchospasm in adults (Chen et al., 2007[Chen, A. M., Ellison, M. E., Peresypkin, A., Wenslow, R. M., Variankaval, N., Savarin, C. G., Natishan, T. K., Mathre, D. J., Dormer, P. G., Euler, D. H., Ball, R. G., Ye, Z., Wang, Y. & Santos, I. (2007). Chem. Commun. pp. 419-421.]).

[Scheme 1]

The complexing ability of theophylline has been studied towards modelling metal inter­actions with the guanine base of nucleic acids (Orbell et al., 1988[Orbell, J. D., Taylor, M. R., Birch, S. L., Lowton, S. E., Vilkins, L. M. & Keefe, L. J. (1988). Inorg. Chim. Acta, 152, 125-134.]). Theophylline can be deprotonated in basic or neutral media. In the majority of cases, the resulting anionic ligand is monodentate and coordinates through the N7 atom of theophylline (Marzilli et al., 1973[Marzilli, L. G., Kistenmacher, T. J. & Chang, C. H. (1973). J. Am. Chem. Soc. 95, 7507-7508.]; Begum & Manohar, 1994[Begum, N. S. & Manohar, H. (1994). Polyhedron, 13, 307-312.]; Bombicz et al., 1997[Bombicz, P., Madarasz, J., Forizs, E. & Foch, I. (1997). Polyhedron, 16, 3601-3607.]; Buncel et al., 1985[Buncel, E., Kumar, R., Norris, A. R. & Beauchamp, A. L. (1985). Can. J. Chem. 63, 2575-2581.]), while only in a few cases has a different coordination behaviour been reported, e.g. through the N9 atom of the imidazole ring (Aoki & Yamazaki, 1980[Aoki, K. & Yamazaki, H. (1980). Chem. Commun. pp. 186-188.]). In addition, deprotonated theophylline may act as a bidentate ligand, where the initial metal bonding to N7 is supplemented by coordination to the O6 atom, forming an N7/O6 chelate (Cozak et al., 1986[Cozak, D., Mardhy, A., Olivier, M. J. & Beauchamp, A. L. (1986). Inorg. Chem. 25, 2600-2606.]).

In this study, we reacted theophylline with the CoII ion to yield the title complex, [Co(C7H7N4O2)2(H2O)4].

2. Structural commentary

The mol­ecular structure of the title complex is shown in Fig. 1[link]. The complex lies across an inversion centre, with the CoII atom being coordinated in a slightly distorted octa­hedral environment by four aqua ligands in the equatorial sites and the imidazole ring N atoms of two 1,3-dimethyl-2,6-dioxo-7H-purin-7-ide ligands [N1 and N1i; see Table 1[link] for symmetry code], in the axial sites. The Co—O bond lengths are shorter than the Co—N bond length (Table 1[link]). The purine ring system is essentially planar, with a maximum deviation of 0.029 Å for N5; methyl atoms C10 and C12 deviate from this mean plane by −0.117 and 0.12 Å, respectively. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯O hydrogen bond between a water mol­ecule (O15) and a carbonyl O atom (O13) (Table 2[link]), leading to an S(7) graph-set motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

Table 1
Selected geometric parameters (Å, °)

N1—Co1 2.1847 (12) O15—Co1 2.0756 (10)
O14—Co1 2.1022 (11)    
       
N1—Co1—N1i 180 O14—Co1—O15i 91.42 (4)
N1—Co1—O14 88.00 (4) N1—Co1—O15 90.47 (4)
Symmetry code: (i) -x, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O14—H142⋯O11ii 0.81 1.99 2.773 (2) 164
O15—H151⋯O13 0.83 1.82 2.638 (2) 173
O14—H141⋯O11iii 0.81 2.01 2.817 (2) 174
O15—H152⋯N3iv 0.82 2.01 2.799 (2) 162
Symmetry codes: (ii) -x+1, -y+1, -z+2; (iii) x, y, z-1; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title complex. Primed atoms are related to the nonprimed atoms by the inversion centre of the title compound (symmetry code: −x, −y + 1, −z + 1). Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the mononuclear units are connected into a layered arrangement parallel to (010). The coordinating water mol­ecules are involved in various hydrogen-bonding inter­actions (Table 2[link]), including R42(8) graph-set motifs that are formed through (O14⋯O11ii = 2.817 (2) Å and O14⋯O11iii = 2.773 (2) Å; see Table 2[link] for symmetry codes) between a coordinating water mol­ecule and the carbonyl groups of symmetry-related theophylline ligands (Fig. 2[link]). In addition, water mol­ecule O15 is hydrogen bonded to the nonmethyl­ated N atom of the imidazole group (O15⋯N3iv = 2.799 (2) Å; see Table 2[link] for symmetry code), leading to an overall three-dimensional network.

[Figure 2]
Figure 2
The crystal structure, showing the overall three-dimensional hydrogen-bonded network (hydrogen bonds as dashed lines).

4. Synthesis and crystallization

Theophylline (360 mg, 2 mmol) was dissolved in water (20 ml). An aqueous solution (10 ml) of NaOH (80 mg, 2 mmol) was added slowly. CoCl2·6H2O (237 mg, 1 mmol) in water (10 ml) was then added. Pink single crystals of the title compound suitable for X-ray analysis were obtained after several months by slow evaporation of the solvent at room temperature.

5. Refinement

Details of data collection and structure refinement are summarized in Table 3[link]. The calculated strategy was based on monoclinic chiral symmetry, with a completeness of 100%, an average multiplicity of 11.4 and no missing reflections. However, some reflections were still missing after data collection, thus reducing the completeness to less than 100%. All H atoms were located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were refined with soft restraints on bond lengths and angles to regularize their geometry (C—H = 0.93–0.98 Å, N—H = 0.86–0.89 Å, N—H = 0.86 Å and O—H = 0.82 Å) and Uiso(H) values (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints (Cooper et al., 2010[Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.]).

Table 3
Experimental details

Crystal data
Chemical formula [Co(C7H7N4O2)2(H2O)4]
Mr 489.31
Crystal system, space group Monoclinic, P21/c
Temperature (K) 175
a, b, c (Å) 7.6304 (3), 13.1897 (6), 9.6670 (4)
β (°) 104.9744 (17)
V3) 939.87 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.98
Crystal size (mm) 0.20 × 0.20 × 0.15
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.81, 0.86
No. of measured, independent and observed [I > 2.0σ(I)] reflections 41453, 1736, 1704
Rint 0.028
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.023, 1.00
No. of reflections 1686
No. of parameters 142
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.22
Computer programs: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.])., DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2001).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: APEX2 (Bruker, 2006); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Tetraaquabis(1,3-dimethyl-2,6-dioxo-7H-purin-7-ido-κN7)cobalt(II) top
Crystal data top
[Co(C7H7N4O2)2(H2O)4]F(000) = 506
Mr = 489.31Dx = 1.729 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9823 reflections
a = 7.6304 (3) Åθ = 3–25°
b = 13.1897 (6) ŵ = 0.98 mm1
c = 9.6670 (4) ÅT = 175 K
β = 104.9744 (17)°Block, pale pink
V = 939.87 (7) Å30.20 × 0.20 × 0.15 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
1704 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.028
φ & ω scansθmax = 25.4°, θmin = 2.7°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 99
Tmin = 0.81, Tmax = 0.86k = 1515
41453 measured reflectionsl = 1111
1736 independent reflections
Refinement top
Refinement on FPrimary atom site location: other
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.023 Method = Quasi-Unit weights W = 1.0 or 1./4Fsq
S = 1.00(Δ/σ)max = 0.0003458
1686 reflectionsΔρmax = 0.29 e Å3
142 parametersΔρmin = 0.22 e Å3
0 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.05846 (17)0.45527 (9)0.72491 (13)0.0126
N30.04606 (18)0.33836 (10)0.89795 (13)0.0151
N50.24314 (17)0.42364 (10)1.10036 (13)0.0143
N70.34987 (17)0.58201 (10)1.04872 (13)0.0139
C20.0068 (2)0.36737 (12)0.75802 (16)0.0143
C40.1522 (2)0.41609 (11)0.95762 (15)0.0124
C60.3386 (2)0.50912 (12)1.14880 (16)0.0145
C80.2695 (2)0.57724 (11)0.89958 (16)0.0136
C90.16404 (19)0.48879 (11)0.85772 (15)0.0119
C100.2355 (2)0.34042 (13)1.19853 (17)0.0218
C120.4475 (2)0.67528 (12)1.10615 (17)0.0196
O110.41386 (15)0.52183 (9)1.27770 (11)0.0188
O130.29724 (16)0.64754 (8)0.82313 (12)0.0206
O140.26896 (14)0.46163 (9)0.50496 (11)0.0197
O150.08751 (15)0.64646 (8)0.55927 (11)0.0172
Co10.00000.50000.50000.0103
H210.08640.32790.68950.0161*
H1030.34470.34231.27690.0336*
H1010.12960.34671.23520.0345*
H1020.23160.27701.14860.0330*
H1210.43450.72421.03250.0318*
H1220.40180.70251.18140.0314*
H1230.57410.66141.14590.0311*
H1420.34870.46540.57860.0298*
H1510.16010.64670.63920.0273*
H1410.30560.48240.43830.0306*
H1520.02800.69870.55750.0275*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0148 (6)0.0118 (6)0.0100 (6)0.0004 (5)0.0012 (5)0.0006 (5)
N30.0188 (7)0.0135 (6)0.0124 (6)0.0009 (5)0.0031 (5)0.0011 (5)
N50.0164 (6)0.0158 (6)0.0094 (6)0.0006 (5)0.0010 (5)0.0024 (5)
N70.0138 (6)0.0148 (6)0.0114 (6)0.0019 (5)0.0003 (5)0.0019 (5)
C20.0163 (7)0.0135 (7)0.0122 (7)0.0016 (6)0.0019 (6)0.0014 (6)
C40.0125 (7)0.0136 (7)0.0109 (7)0.0021 (6)0.0026 (6)0.0001 (6)
C60.0112 (7)0.0191 (8)0.0129 (7)0.0028 (6)0.0026 (6)0.0008 (6)
C80.0127 (7)0.0150 (7)0.0122 (7)0.0020 (6)0.0015 (6)0.0008 (6)
C90.0124 (7)0.0129 (7)0.0097 (7)0.0015 (6)0.0014 (5)0.0002 (6)
C100.0312 (9)0.0187 (8)0.0139 (8)0.0009 (7)0.0030 (7)0.0065 (6)
C120.0216 (8)0.0177 (8)0.0171 (8)0.0042 (7)0.0004 (6)0.0049 (6)
O110.0170 (5)0.0280 (6)0.0089 (5)0.0012 (5)0.0008 (4)0.0012 (5)
O130.0272 (6)0.0171 (6)0.0141 (5)0.0082 (5)0.0008 (5)0.0032 (5)
O140.0146 (5)0.0329 (7)0.0105 (5)0.0010 (5)0.0012 (4)0.0005 (5)
O150.0236 (6)0.0119 (5)0.0125 (5)0.0007 (5)0.0021 (4)0.0016 (4)
Co10.01218 (14)0.00993 (14)0.00793 (14)0.00056 (11)0.00085 (10)0.00020 (11)
Geometric parameters (Å, º) top
N1—C21.333 (2)C8—C91.416 (2)
N1—C91.3994 (18)C8—O131.2375 (19)
N1—Co12.1847 (12)C10—H1030.971
N3—C21.363 (2)C10—H1010.966
N3—C41.341 (2)C10—H1020.962
N5—C41.3786 (19)C12—H1210.947
N5—C61.358 (2)C12—H1220.955
N5—C101.4620 (19)C12—H1230.961
N7—C61.382 (2)O14—Co12.1022 (11)
N7—C81.4149 (19)O14—H1420.810
N7—C121.4706 (19)O14—H1410.813
C2—H210.933O15—Co12.0756 (10)
C4—C91.380 (2)O15—H1510.826
C6—O111.2414 (18)O15—H1520.823
C2—N1—C9102.52 (12)H103—C10—H102108.8
C2—N1—Co1118.74 (10)H101—C10—H102109.7
C9—N1—Co1138.49 (10)N7—C12—H121110.0
C2—N3—C4101.73 (12)N7—C12—H122110.7
C4—N5—C6119.43 (13)H121—C12—H122109.2
C4—N5—C10120.08 (13)N7—C12—H123110.6
C6—N5—C10120.48 (13)H121—C12—H123109.2
C6—N7—C8126.39 (13)H122—C12—H123107.1
C6—N7—C12115.76 (12)Co1—O14—H142120.9
C8—N7—C12117.76 (13)Co1—O14—H141115.7
N3—C2—N1116.71 (13)H142—O14—H141110.0
N3—C2—H21121.3Co1—O15—H151110.6
N1—C2—H21122.0Co1—O15—H152129.6
N5—C4—N3125.28 (14)H151—O15—H152104.5
N5—C4—C9122.90 (14)N1—Co1—N1i180
N3—C4—C9111.81 (13)N1—Co1—O14i92.00 (4)
N7—C6—N5117.44 (13)N1i—Co1—O14i88.00 (4)
N7—C6—O11120.82 (14)N1—Co1—O1488.00 (4)
N5—C6—O11121.74 (14)N1i—Co1—O1492.00 (4)
N7—C8—C9113.12 (13)O14i—Co1—O14180
N7—C8—O13118.63 (13)N1—Co1—O15i89.53 (4)
C9—C8—O13128.25 (14)N1i—Co1—O15i90.47 (4)
C8—C9—N1132.26 (13)O14i—Co1—O15i88.58 (4)
C8—C9—C4120.50 (13)O14—Co1—O15i91.42 (4)
N1—C9—C4107.23 (13)N1—Co1—O1590.47 (4)
N5—C10—H103108.5N1i—Co1—O1589.53 (4)
N5—C10—H101110.6O14i—Co1—O1591.42 (4)
H103—C10—H101110.0O14—Co1—O1588.58 (4)
N5—C10—H102109.2O15i—Co1—O15180
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H142···O11ii0.811.992.773 (2)164
O15—H151···O130.831.822.638 (2)173
O14—H141···O11iii0.812.012.817 (2)174
O15—H152···N3iv0.822.012.799 (2)162
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x, y, z1; (iv) x, y+1/2, z+3/2.
 

Acknowledgements

The authors would like to thank the LCC CNRS (Laboratory of Chemistry of Coordination) for their help.

References

First citationAoki, K. & Yamazaki, H. (1980). Chem. Commun. pp. 186–188.  CrossRef Web of Science Google Scholar
First citationBegum, N. S. & Manohar, H. (1994). Polyhedron, 13, 307–312.  CSD CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBombicz, P., Madarasz, J., Forizs, E. & Foch, I. (1997). Polyhedron, 16, 3601–3607.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuncel, E., Kumar, R., Norris, A. R. & Beauchamp, A. L. (1985). Can. J. Chem. 63, 2575–2581.  CSD CrossRef CAS Web of Science Google Scholar
First citationChen, A. M., Ellison, M. E., Peresypkin, A., Wenslow, R. M., Variankaval, N., Savarin, C. G., Natishan, T. K., Mathre, D. J., Dormer, P. G., Euler, D. H., Ball, R. G., Ye, Z., Wang, Y. & Santos, I. (2007). Chem. Commun. pp. 419–421.  Web of Science CSD CrossRef Google Scholar
First citationChilds, S. L. (2004). J. Am. Chem. Soc. 126, 13335–13342.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCozak, D., Mardhy, A., Olivier, M. J. & Beauchamp, A. L. (1986). Inorg. Chem. 25, 2600–2606.  CSD CrossRef CAS Web of Science Google Scholar
First citationMarzilli, L. G., Kistenmacher, T. J. & Chang, C. H. (1973). J. Am. Chem. Soc. 95, 7507–7508.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOrbell, J. D., Taylor, M. R., Birch, S. L., Lowton, S. E., Vilkins, L. M. & Keefe, L. J. (1988). Inorg. Chim. Acta, 152, 125–134.  CSD CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShukla, M. K. & Mishra, P. C. (1994). J. Mol. Struct. 324, 241–249.  CrossRef CAS Web of Science Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds