research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-N,N-di­allyl­di­thio­carbamato)bis­[(N,N-di­allyl­di­thio­carbamato)cadmium]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, School of Mathematical and Physical Sciences Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa, bMaterial Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa, cC.D. Nenitescu Center of Organic Chemistry of the Romania Academy, Splaiul Independentei, 2023, Bucharest, Romania, dDepartment of Chemistry, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031, South Africa, and eDepartment of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: carderne@uj.ac.za

Edited by M. Zeller, Purdue University, USA (Received 19 July 2017; accepted 7 August 2017; online 21 August 2017)

The title compound, [Cd2(C7H10NS2)4], is a neutral dinuclear cadmium(II) complex bearing four bis N,N-di­allyl­di­thio­carbamate ligands coordinating to two CdII cations. In each of the monomeric subunits, there are four S atoms of two di­thio­carbamate ligands [Cd—S = 2.5558 (3), 2.8016 (3), 2.6050 (3) and 2.5709 (3) Å] that coordinate to one CdII atom in a bidentate mode. The dimers are located over an inversion centre bridged by two additional bridging Cd—S bonds [2.6021 (3) Å], leading to a substantial distortion of the geometry of the monomeric subunit from the expected square-planar geometry. The five-coordinate environment around each of the CdII ions in the dimer is best described as substanti­ally tetra­gonally distorted square pyramidal. The di­thio­carbamate groups are themselves planar and are also coplanar with the CdII ions. The negative charge on these groups is delocalized by resonance across the S atoms bound to the CdII cation. This delocalization of the π electrons in the di­thio­carbamate groups also extends to the C—N bonds as they reveal significant double bond character [C—N = 1.3213 (16) and 1.3333 (15) Å].

1. Chemical context

Inter­est in the study of metal di­thio­carbamates was aroused because of their inter­esting structural features and diverse applications (Thammakan & Somsook, 2006[Thammakan, N. & Somsook, E. (2006). Mater. Lett. 60, 1161-1165.]). Di­thio­carbamate complexes have largely been prepared from the group 12 elements, mostly because they have found wide practical application as additives to pavement asphalt, as anti­oxidants, and as potent pesticides etc (Subha et al., 2010[Subha, P. V., Valarmathi, P., Srinivasan, N., Thirumaran, S. & Saminathan, K. (2010). Polyhedron, 29, 1078-1082.]). The structural chemistry of cadmium di­thio­carbamates of the general formula Cd(S2CNRR′) where R, R′ = alkyl or aryl is dominated by its existence in binuclear form. This common feature has been ascribed to the effect of aggregated species, which they adopt in the solid state, resulting from equal numbers of μ2-tridentate and bidentate (chelating) ligands (Tiekink, 2003[Tiekink, E. R. T. (2003). CrystEngComm, 5, 101-113.]; Tan, Halim et al., 2016[Tan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113-126.]). Only a few exceptions have been reported where the complex exists in a trinuclear form (Kumar et al., 2014[Kumar, V., Singh, V., Gupta, A. N., Manar, K. K., Drew, M. G. B. & Singh, N. (2014). CrystEngComm, 16, 6765-6774.]), or as a one-dimensional polymeric motif (Tan et al., 2013[Tan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N. B. A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046-3056.], 2016[Tan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113-126.]; Ferreira et al., 2016[Ferreira, I. P., de Lima, G. M., Paniago, E. B., Pinheiro, C. B., Wardell, J. L. & Wardell, S. M. S. V. (2016). Inorg. Chim. Acta, 441, 137-145.]). Bis­(N,N-di­allyl­di­thio­carbamato)cadmium compounds have the advantage of having stability similar to that of the zinc complexes, but more favourable stability when compared to the mercury complexes. Cadmium di­thio­carbamate complexes have been widely used as single-source precursors for CdS nanoparticles and thin films, which have application as non-linear optical materials (Thammakan & Somsook, 2006[Thammakan, N. & Somsook, E. (2006). Mater. Lett. 60, 1161-1165.]). Another important practical application of cadmium di­thio­carbamates is their ability to efficiently collect gold from acidic solutions (Rodina et al., 2014[Rodina, T. A., Ivanov, A. V. & Gerasimenko, A. V. (2014). Russ. J. Coord. Chem. 40, 100-108.]). Here we describe the crystal structure of a CdII complex bearing a di­allyl­dithio­carabamate ligand in a chelating and bridging dimeric structure.

[Scheme 1]

2. Structural commentary

The coordination environment of the CdII cation is observed to have a distorted tetra­gonal–pyramidal geometry (Fig. 1[link]). The CdII cation is coordinated by four S atoms with distances ranging from 2.5558 (3) to 2.8016 (3) Å and to a fifth S atom at a distance of 2.6021 (3) Å; these distances are similar to other complexes found to have been published previously (see Section 4: Database survey). A full geometry check carried out with the Mogul Geometry Check tool (Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]) within the CSD suite of programs, showed no unusual geometrical parameters. The fifth S atom, S12i, is from a third ligand that is in the coordination sphere of a centrosymmetrically related CdII ion [symmetry code: (i) –x + 2, –y, –z + 1]. This means that each bridging S atom simultaneously occupies an equatorial coordination site on one CdII ion and an apical site on the other CdII ion to form an edge-shared tetra­gonal–pyramidal geometry. The CdII ion deviates from the S11—S12—S22—S21 mean plane by 0.704016 (17) Å towards S12i. The bridging network Cd1—S12—Cd1i—S12i is completely planar since it lies over the inversion centre with a Cd1⋯Cd1i separation distance of 3.60987 (8) Å and S12—Cd1—S12i and Cd1—S12—Cd1i angles of 96.257 (9) and 83.743 (9)°, respectively. There is substantial distortion of the geometry of the monomeric subunit from the expected square-planar geometry. Deviations from the standard 90° angles are evident in the angles of S11—Cd1—S21 [108.203 (11)°]; S22—Cd1—S21 [70.264 (10)°]; S22—Cd1—S12 [96.950 (10)°] and S11—Cd1—S12 [67.486 (10)°]. Deviations in the standard 180° angles are evident in the angles of S11—Cd1—S22 [143.705 (13)°] and S21—Cd1—S12 [152.651 (11)°]. The Cd1—S12—Cd1i—S12i and S11—S12—S22—S21 mean planes form a dihedral (twist) angle of 84.6228 (18)°. The di­thio­carbamate groups are planar and each group of the monomeric subunit is coplanar with the CdII ion (r.m.s. deviation is 0.010 Å). The mean plane consisting of atoms Cd1, S11, N1, C11, S12 and the mean plane consisting of atoms Cd1, S22, N2, C21, S21 have a plane-normal-to-plane-normal angle of 37.0291 (10)°; a centroid-to-centroid distance of 4.45354 (8) Å; a plane-to-plane shift of 4.22298 (8) Å and a plane-to-plane torsion (twist) angle of 8.0304 (12)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering scheme [symmetry code: (i) −x + 2, −y, −z + 1]. H atoms have been omitted for clarity.

The S12—C11 bond length [1.7532 (13) Å] is longer than the adjacent S11—C11 bond length [1.7162 (13) Å] suggesting that this bond has more double bond character in the di­thio­carbamate portion that coordinates to the CdII cation. On the opposite side of the CdII ion, both S—C bonds have approximately the same length, where S21—C21 and S22—C21 bond lengths are 1.7224 (12) and 1.7263 (12) Å, respectively, suggesting that the double bond of the di­thio­carbamate is spread over the S—C—S bond via resonance. A possible explanation for this may be because of the fact that atom S12 serves as the bridging S atom in the complex. Also, the N1—C11 and N2—C21 distances [1.3213 (16) and 1.3333 (15) Å, respectively] are shorter compared to the other N—C distances indicating considerable double-bond character. The vinyl substituents are also planar and are at an angle of 91.6049 (14)° from the di­thio­carbamate plane and at an angle of 150.9196 (6)° from the vinyl group directly opposite from it. This scenario is comparable with the other structures surveyed in the literature (see Section 4: Database survey). All highlighted and discussed geometrical parameters describing the coordination environment are given in Table 1[link]. Weak intramolecular C—H⋯S inter­actions are observed (Table 2[link])

Table 1
Selected geometric parameters (Å, °)

Cd1—S11 2.5558 (3) S12—C11 1.7532 (13)
Cd1—S22 2.5709 (3) S21—C21 1.7224 (12)
Cd1—S12i 2.6021 (3) S22—C21 1.7263 (12)
Cd1—S21 2.6050 (3) N1—C11 1.3213 (16)
Cd1—S12 2.8016 (3) N2—C21 1.3333 (15)
S11—C11 1.7162 (13)    
       
S11—Cd1—S22 143.705 (13) S22—Cd1—S12 96.950 (10)
S11—Cd1—S21 108.203 (11) S12i—Cd1—S12 96.257 (9)
S22—Cd1—S21 70.264 (10) S21—Cd1—S12 152.651 (11)
S11—Cd1—S12 67.486 (10) Cd1i—S12—Cd1 83.743 (9)
Symmetry code: (i) -x+2, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯S11 0.99 2.59 2.9783 (14) 103
C15—H15A⋯S12 0.99 2.50 3.0438 (14) 115
C22—H22B⋯S21 0.99 2.50 3.0381 (13) 114
C25—H25B⋯S22 0.99 2.56 2.9845 (14) 106

3. Supra­molecular features

The space group of the crystal is P[\overline{1}], and the asymmetric unit consists of one-half of the complex mol­ecule, so that the unit cell contains one complete complex mol­ecule. Each half of the asymmetric unit is related by an inversion centre. In the crystal, weak C—H⋯π inter­actions are observed, forming chains along [001] (see Fig. 2[link] and Table 3[link]).

Table 3
X—H⋯π inter­actions

Cg3 is the centroid of the Cd1—S11—C11—S12—Cd1i—S12i ring.

C—H⋯Cg C—H H⋯Cg C⋯Cg C—H⋯Cg
C15—H15BCg3 0.99 2.94 3.9209 (17) 171
C16—H16⋯Cg3 0.99 2.90 3.7648 (17) 152
Symmetry code: (i) −x + 2, −y, −z + 1.
[Figure 2]
Figure 2
The crystal structure of the title compound constructed from chains formed by C—H⋯S inter­actions (red dashed lines). [Authors: Please add unit cell outline and coordinate axes]

4. Database survey

A search of the Cambridge Structural Database (version 1.19, May 2017 updates) (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that there are a number of similar types of compounds where in place of the N,N-diallyl side chain, the side-chains substituents are di-n-propyl [CSD refodes BEHNOR (Jian et al., 1999a[Jian, F., Wang, Z., Bai, Z., You, X., Fun, H. & Chinnakali, K. (1999a). J. Chem. Crystallogr. 29, 227-231.]), BEHNOR01 (Ivanov et al., 2005[Ivanov, A. V., Konzelko, A. A., Gerasimenko, A. V., Ivanov, M. A., Antsutkin, O. N. & Forsling, W. (2005). Russ. J. Inorg. Chem. 50, 1827.])], di-isobutyl [LESVEK (Cox & Tiekink, 1999[Cox, M. J. & Tiekink, E. R. T. (1999). Z. Kristallogr. 214, 670-676.]), LESVEK01 (Glinskaya et al., 1999[Glinskaya, L. A., Zemskova, S. M. & Klevtsova, R. F. (1999). Zh. Strukt. Khim. (Russ. J. Struct. Chem.), 40, 979-983.])] and di-isopropyl [SUVTUY (Jian et al., 1999b[Jian, F.-F., Wang, Z.-X., Fun, H.-K., Bai, Z.-P. & You, X.-Z. (1999b). Acta Cryst. C55, 174-176.]), SUVTUY01 (Cox & Tiekink, 1999[Cox, M. J. & Tiekink, E. R. T. (1999). Z. Kristallogr. 214, 670-676.])].

5. Synthesis and crystallization

A solution of CdCl2·2H2O (0.55 g, 0.0025 mol) in ethanol (10 ml) was added to a solution of sodium N,N-diallyl di­thio­carbamate (0.98 g, 0.005 mol) in ethanol (10 ml), and the resulting suspension was stirred for 45 min at room temperature. This solution was then filtered, and rinsed several times with distilled water (Onwudiwe et al., 2015[Onwudiwe, D. C., Hrubaru, M. & Ebenso, E. E. (2015). J. Nanomaterials, 2015, 1-9.]) and ethanol. Yield: 1.28 g, 56%. Analysis found: C, 36.38; H, 4.40; N, 6.50; S, 28.42%. Calculated for C14H20N2S4Cd: C, 36.79; H, 4.41; N, 6.13; S, 28.06. Crystals suitable for single-crystal X-ray analysis were obtained by recrystallization from chloro­form/ethanol. Other analytical data for this material (melting point, IR and NMR data) has been published previously (Onwudiwe et al., 2015[Onwudiwe, D. C., Hrubaru, M. & Ebenso, E. E. (2015). J. Nanomaterials, 2015, 1-9.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms were positioned geometrically and refined isotropically using the riding-model approximation with C—H = 0.99 Å and Uiso(H) = 1.2 Ueq(C) for methyl­ene groups and C—H = 0.95 Å and Uiso(H) = 1.2 Ueq(C) for all vinyl groups.

Table 4
Experimental details

Crystal data
Chemical formula [Cd2(C7H10NS2)4]
Mr 913.92
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 8.0872 (2), 9.4146 (2), 13.0721 (3)
α, β, γ (°) 75.858 (1), 78.460 (1), 77.488 (1)
V3) 930.75 (4)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.62
Crystal size (mm) 0.60 × 0.44 × 0.17
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Numerical (SADABS; Bruker, 2011[Bruker (2011). BIS, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.824, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16101, 4644, 4391
Rint 0.015
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.037, 1.15
No. of reflections 4644
No. of parameters 191
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.31
Computer programs: BIS and APEX2 (Bruker, 2011[Bruker (2011). BIS, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: BIS (Bruker, 2011); cell refinement: APEX2 (Bruker, 2011); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

Bis(µ-N,N-diallyldithiocarbamato)bis[(N,N-diallyldithiocarbamato)cadmium] top
Crystal data top
[Cd2(C7H10NS2)4]Z = 1
Mr = 913.92F(000) = 460
Triclinic, P1Dx = 1.631 Mg m3
a = 8.0872 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.4146 (2) ÅCell parameters from 9892 reflections
c = 13.0721 (3) Åθ = 3.1–28.4°
α = 75.858 (1)°µ = 1.62 mm1
β = 78.460 (1)°T = 200 K
γ = 77.488 (1)°Platelet, colourless
V = 930.75 (4) Å30.60 × 0.44 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
4644 independent reflections
Radiation source: sealed tube4391 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 8.3333 pixels mm-1θmax = 28.4°, θmin = 2.5°
φ and ω scansh = 1010
Absorption correction: numerical
(SADABS; Bruker, 2011)
k = 1212
Tmin = 0.824, Tmax = 1.000l = 1617
16101 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.015 w = 1/[σ2(Fo2) + (0.0111P)2 + 0.3546P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.037(Δ/σ)max = 0.002
S = 1.15Δρmax = 0.28 e Å3
4644 reflectionsΔρmin = 0.31 e Å3
191 parametersExtinction correction: SHELXL2017 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0173 (7)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with U(H) set to 1.2 Ueq(C).

Two reflections with large differences between their observed and calculated intensity were omitted. This is probably due to obstruction by the beam stop.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.89235 (2)0.00613 (2)0.63560 (2)0.02744 (4)
S110.78076 (5)0.22154 (4)0.60114 (3)0.03471 (8)
S120.78142 (4)0.06086 (3)0.43671 (3)0.02551 (7)
S210.84065 (5)0.02186 (4)0.84095 (3)0.03026 (7)
S220.80123 (4)0.25713 (4)0.67413 (2)0.02688 (7)
N10.66681 (14)0.17652 (12)0.41751 (9)0.0263 (2)
N20.76538 (14)0.25083 (12)0.88135 (8)0.0252 (2)
C110.73731 (15)0.12060 (14)0.47817 (10)0.0234 (2)
C120.61897 (18)0.32572 (16)0.45381 (11)0.0323 (3)
H12A0.5220860.3280880.4187870.039*
H12B0.5790760.3431920.5318020.039*
C130.7621 (2)0.44839 (16)0.43028 (13)0.0402 (3)
H130.8657730.4575700.4569510.048*
C140.7529 (3)0.54414 (18)0.37491 (16)0.0535 (5)
H14A0.6508430.5375980.3472570.064*
H14B0.8483340.6202040.3623460.064*
C150.6278 (2)0.09675 (16)0.31078 (11)0.0342 (3)
H15A0.6412530.0082540.2996290.041*
H15B0.5068640.0975810.3073480.041*
C160.74035 (18)0.16349 (18)0.22396 (11)0.0367 (3)
H160.8606090.1807140.2236170.044*
C170.6869 (2)0.2001 (2)0.14846 (13)0.0468 (4)
H17A0.5675160.1845850.1461360.056*
H17B0.7670610.2424770.0954780.056*
C210.79907 (15)0.16963 (13)0.80674 (10)0.0221 (2)
C220.78373 (18)0.18663 (15)0.99407 (10)0.0302 (3)
H22A0.8614840.2380771.0157050.036*
H22B0.8369300.0802561.0014040.036*
C230.6172 (2)0.19957 (18)1.06666 (12)0.0420 (4)
H230.5280180.1586231.0533230.050*
C240.5865 (3)0.2647 (2)1.14844 (14)0.0635 (6)
H24A0.6734530.3065971.1635740.076*
H24B0.4774920.2699061.1923820.076*
C250.72097 (18)0.41463 (14)0.85522 (11)0.0307 (3)
H25A0.6403750.4491510.9155410.037*
H25B0.6623230.4458610.7916340.037*
C260.8754 (2)0.48598 (16)0.83349 (13)0.0407 (3)
H260.9644950.4610040.7779550.049*
C270.8956 (3)0.5809 (2)0.88618 (19)0.0629 (5)
H27A0.8087890.6080660.9421600.075*
H27B0.9972420.6225960.8684960.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02830 (6)0.03364 (6)0.02419 (6)0.00931 (4)0.00001 (4)0.01311 (4)
S110.0509 (2)0.03708 (18)0.02178 (15)0.02237 (16)0.00800 (14)0.00194 (13)
S120.02576 (15)0.02429 (14)0.02685 (15)0.00332 (11)0.00321 (12)0.00771 (11)
S210.04427 (19)0.02305 (14)0.02257 (15)0.00670 (13)0.00156 (13)0.00538 (11)
S220.03366 (16)0.02749 (15)0.02034 (14)0.00547 (12)0.00683 (12)0.00441 (11)
N10.0255 (5)0.0302 (5)0.0262 (5)0.0061 (4)0.0051 (4)0.0093 (4)
N20.0296 (5)0.0239 (5)0.0214 (5)0.0007 (4)0.0052 (4)0.0070 (4)
C110.0198 (5)0.0288 (6)0.0225 (5)0.0051 (4)0.0005 (4)0.0093 (5)
C120.0311 (7)0.0389 (7)0.0328 (7)0.0180 (6)0.0036 (5)0.0096 (6)
C130.0388 (8)0.0292 (7)0.0493 (9)0.0108 (6)0.0098 (7)0.0045 (6)
C140.0623 (11)0.0312 (8)0.0604 (11)0.0166 (7)0.0138 (9)0.0086 (7)
C150.0404 (8)0.0328 (7)0.0330 (7)0.0007 (6)0.0179 (6)0.0098 (6)
C160.0267 (6)0.0527 (9)0.0279 (7)0.0097 (6)0.0037 (5)0.0010 (6)
C170.0537 (10)0.0539 (10)0.0336 (8)0.0058 (8)0.0040 (7)0.0163 (7)
C210.0188 (5)0.0252 (6)0.0227 (5)0.0039 (4)0.0028 (4)0.0064 (4)
C220.0365 (7)0.0318 (6)0.0212 (6)0.0017 (5)0.0062 (5)0.0089 (5)
C230.0427 (8)0.0414 (8)0.0309 (7)0.0007 (7)0.0002 (6)0.0023 (6)
C240.0823 (14)0.0469 (10)0.0345 (9)0.0170 (10)0.0156 (9)0.0033 (7)
C250.0376 (7)0.0243 (6)0.0286 (6)0.0035 (5)0.0072 (5)0.0091 (5)
C260.0487 (9)0.0285 (7)0.0445 (9)0.0070 (6)0.0074 (7)0.0067 (6)
C270.0769 (14)0.0452 (10)0.0796 (14)0.0149 (9)0.0308 (12)0.0187 (10)
Geometric parameters (Å, º) top
Cd1—S112.5558 (3)C15—C161.483 (2)
Cd1—S222.5709 (3)C15—H15A0.9900
Cd1—S12i2.6021 (3)C15—H15B0.9900
Cd1—S212.6050 (3)C16—C171.297 (2)
Cd1—S122.8016 (3)C16—H160.9500
S11—C111.7162 (13)C17—H17A0.9500
S12—C111.7532 (13)C17—H17B0.9500
S21—C211.7224 (12)C22—C231.484 (2)
S22—C211.7263 (12)C22—H22A0.9900
N1—C111.3213 (16)C22—H22B0.9900
N1—C151.4735 (17)C23—C241.315 (3)
N1—C121.4779 (17)C23—H230.9500
N2—C211.3333 (15)C24—H24A0.9500
N2—C221.4738 (16)C24—H24B0.9500
N2—C251.4749 (16)C25—C261.490 (2)
C12—C131.490 (2)C25—H25A0.9900
C12—H12A0.9900C25—H25B0.9900
C12—H12B0.9900C26—C271.307 (2)
C13—C141.308 (2)C26—H260.9500
C13—H130.9500C27—H27A0.9500
C14—H14A0.9500C27—H27B0.9500
C14—H14B0.9500
S11—Cd1—S22143.705 (13)N1—C15—H15A109.1
S11—Cd1—S12i103.129 (12)C16—C15—H15A109.1
S22—Cd1—S12i111.289 (11)N1—C15—H15B109.1
S11—Cd1—S21108.203 (11)C16—C15—H15B109.1
S22—Cd1—S2170.264 (10)H15A—C15—H15B107.8
S12i—Cd1—S21110.826 (11)C17—C16—C15124.89 (14)
S11—Cd1—S1267.486 (10)C17—C16—H16117.6
S22—Cd1—S1296.950 (10)C15—C16—H16117.6
S12i—Cd1—S1296.257 (9)C16—C17—H17A120.0
S21—Cd1—S12152.651 (11)C16—C17—H17B120.0
C11—S11—Cd191.26 (4)H17A—C17—H17B120.0
C11—S12—Cd1i100.48 (4)N2—C21—S21120.81 (9)
C11—S12—Cd182.68 (4)N2—C21—S22119.72 (9)
Cd1i—S12—Cd183.743 (9)S21—C21—S22119.47 (7)
C21—S21—Cd184.58 (4)N2—C22—C23112.57 (11)
C21—S22—Cd185.57 (4)N2—C22—H22A109.1
C11—N1—C15123.59 (11)C23—C22—H22A109.1
C11—N1—C12121.48 (11)N2—C22—H22B109.1
C15—N1—C12114.93 (11)C23—C22—H22B109.1
C21—N2—C22123.16 (10)H22A—C22—H22B107.8
C21—N2—C25122.11 (11)C24—C23—C22123.46 (19)
C22—N2—C25114.53 (10)C24—C23—H23118.3
N1—C11—S11120.74 (10)C22—C23—H23118.3
N1—C11—S12120.64 (10)C23—C24—H24A120.0
S11—C11—S12118.58 (7)C23—C24—H24B120.0
N1—C12—C13113.50 (11)H24A—C24—H24B120.0
N1—C12—H12A108.9N2—C25—C26111.95 (11)
C13—C12—H12A108.9N2—C25—H25A109.2
N1—C12—H12B108.9C26—C25—H25A109.2
C13—C12—H12B108.9N2—C25—H25B109.2
H12A—C12—H12B107.7C26—C25—H25B109.2
C14—C13—C12123.61 (16)H25A—C25—H25B107.9
C14—C13—H13118.2C27—C26—C25123.99 (18)
C12—C13—H13118.2C27—C26—H26118.0
C13—C14—H14A120.0C25—C26—H26118.0
C13—C14—H14B120.0C26—C27—H27A120.0
H14A—C14—H14B120.0C26—C27—H27B120.0
N1—C15—C16112.59 (12)H27A—C27—H27B120.0
C15—N1—C11—S11179.31 (10)N1—C15—C16—C17128.82 (17)
C12—N1—C11—S111.48 (17)C22—N2—C21—S218.51 (17)
C15—N1—C11—S122.97 (17)C25—N2—C21—S21176.94 (10)
C12—N1—C11—S12176.24 (9)C22—N2—C21—S22171.47 (10)
Cd1—S11—C11—N1178.09 (10)C25—N2—C21—S223.08 (17)
Cd1—S11—C11—S120.33 (7)Cd1—S21—C21—N2176.69 (10)
Cd1i—S12—C11—N199.72 (10)Cd1—S21—C21—S223.29 (6)
Cd1—S12—C11—N1178.07 (10)Cd1—S22—C21—N2176.65 (10)
Cd1i—S12—C11—S1182.51 (7)Cd1—S22—C21—S213.33 (7)
Cd1—S12—C11—S110.30 (6)C21—N2—C22—C23114.38 (14)
C11—N1—C12—C1386.54 (16)C25—N2—C22—C2370.69 (16)
C15—N1—C12—C1394.18 (15)N2—C22—C23—C24123.84 (16)
N1—C12—C13—C14123.54 (16)C21—N2—C25—C2691.28 (15)
C11—N1—C15—C16110.28 (15)C22—N2—C25—C2683.71 (15)
C12—N1—C15—C1670.47 (16)N2—C25—C26—C27122.19 (18)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···S110.992.592.9783 (14)103
C15—H15A···S120.992.503.0438 (14)115
C22—H22B···S210.992.503.0381 (13)114
C25—H25B···S220.992.562.9845 (14)106
X—H···π interactions top
Cg3 is the centroid of the Cd1—S11—C11—S12—Cd1i—S12i ring.
C—H···CgC—HH···CgC···CgC—H···Cg
C15—H15B···Cg30.992.943.9209 (17)171
C16—H16···Cg30.992.903.7648 (17)152
Symmetry code: (i) -x + 2, -y, -z + 1.
 

Acknowledgements

The authors wish to acknowledge their respective institutions for their facilities to carry out the synthesis and characterization of the title compound.

Funding information

Funding for this research was provided by: North-West University, South Africa.

References

First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). BIS, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  CSD CrossRef PubMed CAS Google Scholar
First citationCox, M. J. & Tiekink, E. R. T. (1999). Z. Kristallogr. 214, 670–676.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerreira, I. P., de Lima, G. M., Paniago, E. B., Pinheiro, C. B., Wardell, J. L. & Wardell, S. M. S. V. (2016). Inorg. Chim. Acta, 441, 137–145.  Web of Science CSD CrossRef CAS Google Scholar
First citationGlinskaya, L. A., Zemskova, S. M. & Klevtsova, R. F. (1999). Zh. Strukt. Khim. (Russ. J. Struct. Chem.), 40, 979–983.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIvanov, A. V., Konzelko, A. A., Gerasimenko, A. V., Ivanov, M. A., Antsutkin, O. N. & Forsling, W. (2005). Russ. J. Inorg. Chem. 50, 1827.  Google Scholar
First citationJian, F., Wang, Z., Bai, Z., You, X., Fun, H. & Chinnakali, K. (1999a). J. Chem. Crystallogr. 29, 227–231.  CSD CrossRef CAS Google Scholar
First citationJian, F.-F., Wang, Z.-X., Fun, H.-K., Bai, Z.-P. & You, X.-Z. (1999b). Acta Cryst. C55, 174–176.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKumar, V., Singh, V., Gupta, A. N., Manar, K. K., Drew, M. G. B. & Singh, N. (2014). CrystEngComm, 16, 6765–6774.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOnwudiwe, D. C., Hrubaru, M. & Ebenso, E. E. (2015). J. Nanomaterials, 2015, 1–9.  CrossRef Google Scholar
First citationRodina, T. A., Ivanov, A. V. & Gerasimenko, A. V. (2014). Russ. J. Coord. Chem. 40, 100–108.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubha, P. V., Valarmathi, P., Srinivasan, N., Thirumaran, S. & Saminathan, K. (2010). Polyhedron, 29, 1078–1082.  CSD CrossRef CAS Google Scholar
First citationTan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113–126.  CAS Google Scholar
First citationTan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N. B. A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046–3056.  Web of Science CSD CrossRef CAS Google Scholar
First citationThammakan, N. & Somsook, E. (2006). Mater. Lett. 60, 1161–1165.  CrossRef CAS Google Scholar
First citationTiekink, E. R. T. (2003). CrystEngComm, 5, 101–113.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds