research communications
N-carbodithioato-L-prolinate trihydrate
of dipotassiumaETH Zurich, Laboratory for Inorganic Chemistry, Vladimir-Prelog-Weg 1-5, 10, 8093 Zurich, Switzerland
*Correspondence e-mail: liebing@inorg.chem.ethz.ch
The molecular and L-proline-derived dithiocarbamate–carboxylate compound poly[tri-μ-aqua-(μ-2-carboxylatopyrrolidine-1-carbodithioato)dipotassium], [K2(C6H7NO2S2)(H2O)3]n or K2(SSC–NC4H7–COO)·3H2O, has been determined. The dithiocarbamate moiety displays a unique coordination mode, comprising a `side-on' π-coordinated K+ cation besides a commonly σ-chelated K+ cation. By bridging coordination of the CSS group, COO group and water molecules, the K+ cations are linked into a two-dimensional coordination polymer extending parallel to the ab plane. These layers are again interconnected by O—H⋯S hydrogen bonds.
of theKeywords: crystal structure; proline; amino acid; dithiocarbamate; π-coordination; coordination polymer; hydrogen bond.
CCDC reference: 1569563
1. Chemical context
Natural amino acids react readily with carbon disulfide in an alkaline environment to give dithiocarbamate-functionalized carboxylates. Since the first report on a series of barium salts in the 1950s (Zahradnik, 1956), numerous transition metal complexes have been explored. More recently, various late transition metal complexes of this family have been investigated due to their biological activity (e.g. Giovagnini et al., 2005; Cachapa et al., 2006; Nagy et al., 2012). In most cases, the dithiocarbamate moiety acts as a classical small-bite chelate ligand, while the carboxylate group (often esterified) does not contribute to metal coordination. The structural chemistry of main group derivatives of dithiocarbamate-derived amino acids is much less explored, even though alkali metal and alkaline earth metal salts are frequently used as precursors for other metal complexes. A key intermediate in our ongoing reasearch on coordination polymers with dithiocarbamate–carboxylates is the L-proline-derived potassium salt K2(SSC–NC4H7–COO). This compound crystallizes from aqueous solution as a trihydrate, which has been structurally characterized in the course of this work.
2. Structural commentary
The title compound, K2(SSC–NC4H7–COO)·3H2O, crystallized as colourless plates in the orthorhombic P212121, with one formula moiety in the (Fig. 1). One K atom (K2) is bonded in a typical chelating fashion by the CSS group, while K1 is coordinated `side-on' to the CSS group, certainly under participation of the delocalized π electrons. This rather uncommon coordination mode might be supported by additional coordination of a carboxylate O atom (O1) to K1. K1 adopts a low-symmetric seven-coordination by four carboxylate O atoms, two H2O molecules and the π-coordinating CSS group. K2 is eight-coordinated by three S atoms and five H2O molecules (Fig. 2). Consequently, the full coordination mode of the carboxylate group is μ3-κ4O,O′:O:O′, and the dithiocarbamate group adopts a μ3-κ6S,S′,C:S,S′:S coordination. One H2O molecule displays a μ3-coordination (O3) and the remaining two H2O molecules are coordinating in a μ-bridging mode (O4 and O5). The K—S distances at the σ-chelated K+ cation (K2) are 3.2176 (8) and 3.2650 (9) Å, while the K—S separations at the π-coordinated K+ cation (K1) are significantly longer at 3.2956 (9) and 3.4463 (8) Å. The coordination mode of the dithiocarbamate group in the title compound [see (C) in Fig. 3] is unique, to our knowledge. The most frequently observed coordination pattern in dithiocarbamates of the heavier alkali metals (K, Rb and Cs) is a symmetric double-chelating mode, leading to a puckered S2M2 ring (e.g. Howie et al., 2008; Reyes-Martínez et al., 2009; Mafud, 2012; see (B) in Fig. 3]. Nonetheless, the values of the K—S separations in the title compound cover the same range as observed in the reference compounds. A simple chelating coordination with significantly shorter K—S contacts is realized when the K+ cation is coordinatively highly saturated, as has been observed in a crown ether complex [Arman et al., 2013; see (A) in Fig. 3]. In the title compound, three of the four K—O(carboxylate) contacts are in a range 2.676 (2)–2.802 (2) Å, which is consistent with the values observed in other potassium carboxylates (e.g. Ilczyszyn et al., 2009; Liebing et al., 2016). However, one contact (K1′—O1) is strongly elongated to 3.358 (2) Å. The K—O(H2O) bond lengths cover a range of 2.723 (2)–3.065 (3) Å.
3. Supramolecular features
As a result of the bridging coordination of the carboxylate group, the dithiocarbamate group and the water molecules, a two-dimensional polymeric structure parallel to the ab plane is built (Figs. 4 and 5). This arrangement is likely supported by O3—H⋯O1i, O3—H⋯S2ii, O4—H⋯O2iii and O5—H⋯O1 hydrogen bonds within the layer (Table 1). The layer surfaces are defined by the hydrophobic hydrocarbon backbones, but additionally the two-dimensional arrays are apparently interconnected by O5—H⋯S1iv hydrogen bonds.
4. Database survey
For other potassium dithiocarbamates, see e.g. Cambridge Structural Database (CSD; Groom et al., 2016) refcode AGEHIF (Arman et al., 2013), KOLLIH (Howie et al., 2008), LEHRUN (Mafud, 2012).
For other potassium carboxylates, see e.g. CONWOS (Ilczyszyn et al., 2009), and BIFMIN01 and BIFMUZ01 (Liebing et al., 2016).
5. Synthesis and crystallization
A slight excess of carbon disulfide (approximately 4 ml, 0.06 mol) was added to a solution of L-proline (5.76 g, 0.05 mol) and potassium hydroxide (5.61 g, 0.10 mol) in 30 ml water and the resulting solution was stirred vigorously overnight. The yellow solution obtained was filtered and reduced to dryness in vacuo. The crystalline residue was washed with several portions of tetrahydrofuran and diethyl ether, and dried in vacuo, providing analytically pure K2(SSC–NC4H7–COO)·3H2O in almost quantitative (>95%) yield as colourless to light-brown low-melting plates, which are very soluble in water. Single crystals suitable for X-ray structure analysis were obtained by slow evaporation of a concentrated aqueous solution at room temperature. IR: 3372 (s br), 3226 (sh br), 2985 (m), 2949 (m), 2875 (w), 1641 (sh), 1603 (sh), 1587 (s), 1497 (s), 1443 (s), 1374 (s), 1338 (m), 1316 (w), 1290 (s), 1257 (m), 1230 (w), 1176 (m), 1155 (s), 1083 (w), 1050 (w), 1003 (m), 948 (m), 918 (m), 899 (w), 846 (m), 794 (m), 666 (s br), 562 (s), 479 (s), 446 (m) cm−1. 1H NMR [400 MHz, D2O, 298 (2) K]: δ 1.89–1.98 (3 × m, 3H; 3-CH2 + 4-CH2), 2.24 (m, 1H; 3-CH2), 3.75 (m, 1H; 5-CH2), 3.83 (m, 1H; 5-CH2), 4.72 (dd, J1 = 8.7, J2 = 3.2 Hz, 1H; 2-CH). 13C NMR [100 MHz, D2O, 298 (2) K]: δ 24.6 (4-CH2), 31.5 (3-CH2), 55.7 (5-CH2), 69.5 (2-CH), 179.9 (COO), 205.8 (CSS).
6. Refinement
Crystal data, data collection and structure . H atoms on C atoms were fixed geometrically and refined using a riding model, with Uiso(H) = 1.2Ueq(C). C—H distances within the CH2 groups were constrained to 0.99 Å and that within the CH group to 1.00 Å. The water H-atom sites were located in difference Fourier maps and refined using restraints on the O—H distance [target value = 0.84 (2) Å]. The corresponding Uiso(H) values were set at 1.5Ueq(O). The reflection (002) disagreed strongly with the structural model and was therefore omitted from the refinement.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1569563
https://doi.org/10.1107/S2056989017011999/zl2712sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017011999/zl2712Isup2.hkl
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-AREA and X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).[K2(C6H7NO2S2)(H2O)3] | Dx = 1.673 Mg m−3 |
Mr = 321.49 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 10736 reflections |
a = 7.1700 (3) Å | θ = 2.5–29.2° |
b = 8.9723 (4) Å | µ = 1.07 mm−1 |
c = 19.8379 (7) Å | T = 153 K |
V = 1276.20 (9) Å3 | Plate, colorless |
Z = 4 | 0.44 × 0.10 × 0.07 mm |
F(000) = 664 |
Stoe IPDS 2T diffractometer | 2794 independent reflections |
Radiation source: fine-focus sealed tube | 2511 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.038 |
ω scan | θmax = 27.0°, θmin = 2.5° |
Absorption correction: numerical (X-AREA and X-RED; Stoe & Cie, 2002) | h = −9→9 |
Tmin = 0.741, Tmax = 0.935 | k = −11→11 |
8831 measured reflections | l = −22→25 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.023 | w = 1/[σ2(Fo2) + (0.0175P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.042 | (Δ/σ)max = 0.001 |
S = 0.97 | Δρmax = 0.25 e Å−3 |
2794 reflections | Δρmin = −0.22 e Å−3 |
164 parameters | Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
6 restraints | Extinction coefficient: 0.0051 (7) |
Primary atom site location: heavy-atom method | Absolute structure: Flack x determined using 979 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.00 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.0231 (3) | 0.2133 (3) | 0.89993 (13) | 0.0120 (5) | |
C2 | −0.0116 (3) | 0.3153 (3) | 0.83918 (13) | 0.0103 (5) | |
H1 | −0.098814 | 0.397715 | 0.851816 | 0.012* | |
C3 | 0.2180 (4) | 0.3035 (3) | 0.74906 (14) | 0.0140 (6) | |
H3 | 0.348536 | 0.268134 | 0.751636 | 0.017* | |
H2 | 0.205712 | 0.372618 | 0.710395 | 0.017* | |
C4 | 0.0837 (4) | 0.1734 (3) | 0.74238 (15) | 0.0157 (6) | |
H5 | 0.135307 | 0.082539 | 0.763649 | 0.019* | |
H4 | 0.056006 | 0.152175 | 0.694439 | 0.019* | |
C5 | −0.0907 (4) | 0.2267 (3) | 0.77943 (14) | 0.0156 (6) | |
H6 | −0.166526 | 0.141324 | 0.795180 | 0.019* | |
H7 | −0.168314 | 0.290872 | 0.750111 | 0.019* | |
C6 | 0.2657 (3) | 0.4759 (3) | 0.84517 (12) | 0.0098 (5) | |
N | 0.1619 (3) | 0.3766 (2) | 0.81226 (11) | 0.0092 (4) | |
O1 | 0.1821 (2) | 0.1556 (2) | 0.90730 (10) | 0.0157 (4) | |
O2 | −0.1122 (2) | 0.1894 (2) | 0.93751 (12) | 0.0207 (4) | |
O3 | 0.7663 (3) | 0.5383 (3) | 0.98964 (10) | 0.0217 (4) | |
H8 | 0.856 (4) | 0.512 (4) | 0.9680 (15) | 0.033* | |
H9 | 0.747 (4) | 0.471 (4) | 1.0179 (15) | 0.033* | |
O4 | 0.9025 (3) | 0.8561 (2) | 0.92654 (13) | 0.0280 (5) | |
H10 | 0.999 (4) | 0.821 (4) | 0.912 (2) | 0.042* | |
H11 | 0.914 (5) | 0.943 (3) | 0.934 (2) | 0.042* | |
O5 | 0.4779 (3) | 0.0059 (2) | 0.85399 (10) | 0.0240 (5) | |
H13 | 0.373 (3) | 0.038 (4) | 0.8575 (18) | 0.036* | |
H12 | 0.505 (4) | −0.005 (4) | 0.8144 (12) | 0.036* | |
K1 | 0.53230 (8) | 0.28003 (6) | 0.93500 (3) | 0.01712 (14) | |
K2 | 0.54335 (7) | 0.76029 (6) | 0.93744 (3) | 0.01595 (13) | |
S1 | 0.47870 (8) | 0.52667 (8) | 0.81344 (3) | 0.01487 (14) | |
S2 | 0.18705 (8) | 0.54540 (7) | 0.92079 (3) | 0.01487 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0121 (11) | 0.0107 (12) | 0.0133 (13) | −0.0024 (9) | −0.0008 (10) | −0.0016 (9) |
C2 | 0.0068 (11) | 0.0108 (11) | 0.0134 (13) | 0.0003 (9) | −0.0006 (10) | 0.0007 (9) |
C3 | 0.0154 (14) | 0.0153 (13) | 0.0112 (14) | −0.0017 (10) | 0.0030 (10) | −0.0030 (11) |
C4 | 0.0192 (14) | 0.0133 (13) | 0.0145 (15) | −0.0047 (10) | −0.0023 (10) | −0.0031 (11) |
C5 | 0.0151 (12) | 0.0151 (14) | 0.0167 (15) | −0.0028 (10) | −0.0038 (10) | −0.0007 (11) |
C6 | 0.0097 (10) | 0.0096 (11) | 0.0100 (12) | 0.0016 (10) | −0.0005 (8) | 0.0021 (11) |
N | 0.0095 (9) | 0.0086 (10) | 0.0096 (11) | −0.0024 (8) | −0.0003 (8) | −0.0004 (8) |
O1 | 0.0135 (8) | 0.0164 (9) | 0.0171 (11) | 0.0057 (8) | 0.0000 (8) | 0.0034 (8) |
O2 | 0.0127 (8) | 0.0312 (12) | 0.0183 (11) | −0.0002 (7) | 0.0040 (9) | 0.0082 (10) |
O3 | 0.0206 (9) | 0.0208 (10) | 0.0237 (11) | 0.0048 (8) | 0.0084 (8) | 0.0098 (10) |
O4 | 0.0223 (10) | 0.0214 (11) | 0.0403 (16) | −0.0048 (8) | 0.0009 (10) | −0.0010 (12) |
O5 | 0.0233 (9) | 0.0330 (13) | 0.0158 (10) | 0.0126 (9) | 0.0033 (8) | 0.0009 (9) |
K1 | 0.0115 (2) | 0.0201 (3) | 0.0197 (3) | 0.0003 (2) | −0.0003 (3) | 0.0014 (2) |
K2 | 0.0146 (3) | 0.0140 (3) | 0.0192 (3) | −0.0005 (2) | −0.0023 (3) | −0.0006 (2) |
S1 | 0.0125 (3) | 0.0187 (3) | 0.0134 (3) | −0.0058 (3) | 0.0023 (2) | −0.0005 (3) |
S2 | 0.0135 (3) | 0.0182 (3) | 0.0129 (3) | −0.0022 (3) | 0.0020 (2) | −0.0062 (3) |
C1—O2 | 1.242 (3) | O3—K1 | 3.060 (2) |
C1—O1 | 1.261 (3) | O3—H8 | 0.81 (2) |
C1—C2 | 1.533 (4) | O3—H9 | 0.83 (2) |
C1—K1i | 3.276 (3) | O4—K2 | 2.723 (2) |
C2—N | 1.462 (3) | O4—K2iii | 3.065 (3) |
C2—C5 | 1.536 (4) | O4—H10 | 0.81 (2) |
C2—H1 | 1.0000 | O4—H11 | 0.80 (2) |
C3—N | 1.471 (3) | O5—K2iv | 2.796 (2) |
C3—C4 | 1.519 (4) | O5—K1 | 2.964 (2) |
C3—H3 | 0.9900 | O5—H13 | 0.81 (2) |
C3—H2 | 0.9900 | O5—H12 | 0.81 (2) |
C4—C5 | 1.527 (4) | K1—O2v | 2.6758 (19) |
C4—H5 | 0.9900 | K1—O2vi | 2.747 (2) |
C4—H4 | 0.9900 | K1—C1vi | 3.276 (3) |
C5—H6 | 0.9900 | K1—S1 | 3.2956 (9) |
C5—H7 | 0.9900 | K1—O1vi | 3.358 (2) |
C6—N | 1.332 (3) | K1—S2 | 3.4463 (8) |
C6—S1 | 1.714 (2) | K1—H9 | 2.83 (4) |
C6—S2 | 1.719 (3) | K1—H13 | 2.90 (4) |
C6—K1 | 3.150 (2) | K2—O5vii | 2.796 (2) |
O1—K1 | 2.8023 (19) | K2—O3viii | 3.050 (2) |
O1—K1i | 3.358 (2) | K2—O4viii | 3.065 (3) |
O2—K1ii | 2.6758 (19) | K2—S2 | 3.2176 (8) |
O2—K1i | 2.747 (2) | K2—S1 | 3.2650 (9) |
O3—K2 | 2.756 (2) | K2—S2iii | 3.4656 (9) |
O3—K2iii | 3.050 (2) | S2—K2viii | 3.4656 (9) |
O2—C1—O1 | 124.5 (2) | C6—K1—K2 | 57.29 (5) |
O2—C1—C2 | 116.6 (2) | C1vi—K1—K2 | 88.33 (4) |
O1—C1—C2 | 118.9 (2) | S1—K1—K2 | 48.625 (16) |
O2—C1—K1i | 54.47 (14) | O1vi—K1—K2 | 79.14 (4) |
O1—C1—K1i | 82.72 (15) | S2—K1—K2 | 47.420 (14) |
C2—C1—K1i | 141.07 (16) | O2v—K1—K1vi | 35.39 (5) |
N—C2—C1 | 111.93 (19) | O2vi—K1—K1vi | 77.43 (4) |
N—C2—C5 | 103.1 (2) | O1—K1—K1vi | 141.94 (4) |
C1—C2—C5 | 110.9 (2) | O5—K1—K1vi | 108.66 (4) |
N—C2—H1 | 110.2 | O3—K1—K1vi | 56.26 (4) |
C1—C2—H1 | 110.2 | C6—K1—K1vi | 152.21 (5) |
C5—C2—H1 | 110.2 | C1vi—K1—K1vi | 55.88 (5) |
N—C3—C4 | 104.1 (2) | S1—K1—K1vi | 126.83 (2) |
N—C3—H3 | 110.9 | O1vi—K1—K1vi | 39.01 (3) |
C4—C3—H3 | 110.9 | S2—K1—K1vi | 135.23 (3) |
N—C3—H2 | 110.9 | K2—K1—K1vi | 95.725 (18) |
C4—C3—H2 | 110.9 | O2v—K1—H9 | 69.9 (7) |
H3—C3—H2 | 109.0 | O2vi—K1—H9 | 67.0 (6) |
C3—C4—C5 | 103.7 (2) | O1—K1—H9 | 147.4 (6) |
C3—C4—H5 | 111.0 | O5—K1—H9 | 152.8 (7) |
C5—C4—H5 | 111.0 | O3—K1—H9 | 15.6 (5) |
C3—C4—H4 | 111.0 | C6—K1—H9 | 108.6 (6) |
C5—C4—H4 | 111.0 | C1vi—K1—H9 | 54.5 (5) |
H5—C4—H4 | 109.0 | S1—K1—H9 | 94.6 (5) |
C4—C5—C2 | 103.4 (2) | O1vi—K1—H9 | 35.0 (5) |
C4—C5—H6 | 111.1 | S2—K1—H9 | 91.1 (6) |
C2—C5—H6 | 111.1 | K2—K1—H9 | 51.5 (6) |
C4—C5—H7 | 111.1 | K1vi—K1—H9 | 45.5 (6) |
C2—C5—H7 | 111.1 | O2v—K1—H13 | 99.1 (5) |
H6—C5—H7 | 109.0 | O2vi—K1—H13 | 114.5 (7) |
N—C6—S1 | 119.70 (18) | O1—K1—H13 | 40.8 (5) |
N—C6—S2 | 119.16 (17) | O5—K1—H13 | 15.8 (4) |
S1—C6—S2 | 121.09 (15) | O3—K1—H13 | 166.5 (6) |
N—C6—K1 | 104.05 (16) | C6—K1—H13 | 83.0 (6) |
S1—C6—K1 | 79.34 (8) | C1vi—K1—H13 | 122.4 (7) |
S2—C6—K1 | 84.71 (9) | S1—K1—H13 | 94.0 (7) |
C6—N—C2 | 123.2 (2) | O1vi—K1—H13 | 138.6 (7) |
C6—N—C3 | 124.3 (2) | S2—K1—H13 | 101.0 (5) |
C2—N—C3 | 112.12 (18) | K2—K1—H13 | 139.7 (7) |
C1—O1—K1 | 132.01 (16) | K1vi—K1—H13 | 122.3 (6) |
C1—O1—K1i | 75.41 (15) | H9—K1—H13 | 167.8 (8) |
K1—O1—K1i | 92.03 (5) | O4—K2—O3 | 73.12 (7) |
C1—O2—K1ii | 132.87 (17) | O4—K2—O5vii | 82.11 (7) |
C1—O2—K1i | 103.94 (16) | O3—K2—O5vii | 152.81 (6) |
K1ii—O2—K1i | 110.25 (8) | O4—K2—O3viii | 117.80 (6) |
K2—O3—K2iii | 97.35 (7) | O3—K2—O3viii | 128.88 (4) |
K2—O3—K1 | 95.52 (6) | O5vii—K2—O3viii | 72.82 (6) |
K2iii—O3—K1 | 166.87 (8) | O4—K2—O4viii | 119.29 (6) |
K2—O3—H8 | 118 (2) | O3—K2—O4viii | 67.29 (6) |
K2iii—O3—H8 | 85 (3) | O5vii—K2—O4viii | 137.28 (6) |
K1—O3—H8 | 92 (3) | O3viii—K2—O4viii | 64.51 (6) |
K2—O3—H9 | 133 (2) | O4—K2—S2 | 158.71 (6) |
K2iii—O3—H9 | 103 (2) | O3—K2—S2 | 93.79 (5) |
K1—O3—H9 | 66 (2) | O5vii—K2—S2 | 106.15 (5) |
H8—O3—H9 | 106 (3) | O3viii—K2—S2 | 83.48 (4) |
K2—O4—K2iii | 97.70 (8) | O4viii—K2—S2 | 67.94 (5) |
K2—O4—H10 | 135 (3) | O4—K2—S1 | 106.09 (6) |
K2iii—O4—H10 | 84 (3) | O3—K2—S1 | 84.35 (5) |
K2—O4—H11 | 113 (2) | O5vii—K2—S1 | 92.06 (5) |
K2iii—O4—H11 | 98 (3) | O3viii—K2—S1 | 130.18 (4) |
H10—O4—H11 | 111 (4) | O4viii—K2—S1 | 113.44 (5) |
K2iv—O5—K1 | 108.11 (6) | S2—K2—S1 | 54.915 (17) |
K2iv—O5—H13 | 113 (3) | O4—K2—S2iii | 67.95 (6) |
K1—O5—H13 | 77 (3) | O3—K2—S2iii | 83.46 (5) |
K2iv—O5—H12 | 116 (3) | O5vii—K2—S2iii | 97.70 (5) |
K1—O5—H12 | 126 (3) | O3viii—K2—S2iii | 60.71 (4) |
H13—O5—H12 | 110 (3) | O4viii—K2—S2iii | 63.57 (5) |
O2v—K1—O2vi | 111.87 (5) | S2—K2—S2iii | 128.38 (2) |
O2v—K1—O1 | 137.40 (6) | S1—K2—S2iii | 167.58 (2) |
O2vi—K1—O1 | 83.24 (6) | O4—K2—K1 | 109.40 (5) |
O2v—K1—O5 | 83.31 (6) | O3—K2—K1 | 44.96 (5) |
O2vi—K1—O5 | 122.17 (6) | O5vii—K2—K1 | 141.10 (5) |
O1—K1—O5 | 56.29 (5) | O3viii—K2—K1 | 125.84 (4) |
O2v—K1—O3 | 72.61 (6) | O4viii—K2—K1 | 70.31 (4) |
O2vi—K1—O3 | 78.76 (6) | S2—K2—K1 | 52.061 (16) |
O1—K1—O3 | 149.61 (6) | S1—K2—K1 | 49.238 (17) |
O5—K1—O3 | 153.24 (6) | S2iii—K2—K1 | 121.17 (2) |
O2v—K1—C6 | 139.31 (7) | O4—K2—K2iii | 44.10 (5) |
O2vi—K1—C6 | 103.67 (6) | O3—K2—K2iii | 43.88 (5) |
O1—K1—C6 | 64.38 (6) | O5vii—K2—K2iii | 120.53 (5) |
O5—K1—C6 | 94.38 (6) | O3viii—K2—K2iii | 106.88 (4) |
O3—K1—C6 | 96.35 (6) | O4viii—K2—K2iii | 75.86 (5) |
O2v—K1—C1vi | 90.35 (7) | S2—K2—K2iii | 133.26 (3) |
O2vi—K1—C1vi | 21.59 (6) | S1—K2—K2iii | 121.19 (2) |
O1—K1—C1vi | 100.67 (6) | S2iii—K2—K2iii | 46.809 (17) |
O5—K1—C1vi | 123.68 (6) | K1—K2—K2iii | 88.808 (18) |
O3—K1—C1vi | 69.09 (6) | O4—K2—K2viii | 146.64 (6) |
C6—K1—C1vi | 122.90 (6) | O3—K2—K2viii | 103.43 (5) |
O2v—K1—S1 | 109.19 (5) | O5vii—K2—K2viii | 103.43 (4) |
O2vi—K1—S1 | 124.25 (4) | O3viii—K2—K2viii | 38.77 (4) |
O1—K1—S1 | 91.12 (4) | O4viii—K2—K2viii | 38.20 (4) |
O5—K1—S1 | 98.34 (4) | S2—K2—K2viii | 51.744 (13) |
O3—K1—S1 | 79.31 (4) | S1—K2—K2viii | 106.540 (19) |
C6—K1—S1 | 30.73 (4) | S2iii—K2—K2viii | 78.70 (2) |
C1vi—K1—S1 | 135.80 (5) | K1—K2—K2viii | 87.075 (19) |
O2v—K1—O1vi | 74.35 (6) | K2iii—K2—K2viii | 110.46 (3) |
O2vi—K1—O1vi | 41.03 (5) | O4—K2—K1vii | 72.51 (5) |
O1—K1—O1vi | 122.54 (5) | O3—K2—K1vii | 137.42 (5) |
O5—K1—O1vi | 133.64 (5) | O5vii—K2—K1vii | 37.15 (4) |
O3—K1—O1vi | 50.52 (5) | O3viii—K2—K1vii | 53.25 (4) |
C6—K1—O1vi | 128.70 (6) | O4viii—K2—K1vii | 110.14 (5) |
C1vi—K1—O1vi | 21.87 (5) | S2—K2—K1vii | 125.77 (2) |
S1—K1—O1vi | 127.12 (4) | S1—K2—K1vii | 129.17 (2) |
O2v—K1—S2 | 153.59 (5) | S2iii—K2—K1vii | 60.694 (17) |
O2vi—K1—S2 | 74.66 (4) | K1—K2—K1vii | 177.62 (2) |
O1—K1—S2 | 67.40 (4) | K2iii—K2—K1vii | 93.565 (18) |
O5—K1—S2 | 115.75 (4) | K2viii—K2—K1vii | 91.962 (18) |
O3—K1—S2 | 84.23 (4) | C6—S1—K2 | 91.16 (9) |
C6—K1—S2 | 29.79 (5) | C6—S1—K1 | 69.92 (8) |
C1vi—K1—S2 | 93.14 (5) | K2—S1—K1 | 82.14 (2) |
S1—K1—S2 | 52.585 (17) | C6—S2—K2 | 92.67 (8) |
O1vi—K1—S2 | 100.79 (4) | C6—S2—K1 | 65.51 (8) |
O2v—K1—K2 | 106.61 (4) | K2—S2—K1 | 80.519 (19) |
O2vi—K1—K2 | 84.08 (4) | C6—S2—K2viii | 171.04 (10) |
O1—K1—K2 | 114.65 (4) | K2—S2—K2viii | 81.447 (18) |
O5—K1—K2 | 146.95 (4) | K1—S2—K2viii | 119.65 (2) |
O3—K1—K2 | 39.52 (4) | ||
O2—C1—C2—N | 160.5 (2) | C4—C3—N—C2 | −8.5 (3) |
O1—C1—C2—N | −21.9 (3) | O2—C1—O1—K1 | −116.4 (2) |
K1i—C1—C2—N | 95.0 (3) | C2—C1—O1—K1 | 66.3 (3) |
O2—C1—C2—C5 | −84.9 (3) | K1i—C1—O1—K1 | −79.32 (18) |
O1—C1—C2—C5 | 92.6 (3) | O2—C1—O1—K1i | −37.0 (2) |
K1i—C1—C2—C5 | −150.4 (2) | C2—C1—O1—K1i | 145.6 (2) |
N—C3—C4—C5 | 28.1 (3) | O1—C1—O2—K1ii | −176.93 (17) |
C3—C4—C5—C2 | −37.1 (3) | C2—C1—O2—K1ii | 0.5 (3) |
N—C2—C5—C4 | 31.5 (3) | K1i—C1—O2—K1ii | 135.8 (2) |
C1—C2—C5—C4 | −88.5 (3) | O1—C1—O2—K1i | 47.3 (3) |
S1—C6—N—C2 | 173.28 (17) | C2—C1—O2—K1i | −135.35 (18) |
S2—C6—N—C2 | −4.1 (3) | N—C6—S1—K2 | 178.61 (19) |
K1—C6—N—C2 | 87.7 (2) | S2—C6—S1—K2 | −4.09 (15) |
S1—C6—N—C3 | 0.5 (3) | K1—C6—S1—K2 | −81.19 (4) |
S2—C6—N—C3 | −176.82 (19) | N—C6—S1—K1 | −100.2 (2) |
K1—C6—N—C3 | −85.1 (2) | S2—C6—S1—K1 | 77.11 (14) |
C1—C2—N—C6 | −68.8 (3) | N—C6—S2—K2 | −178.53 (19) |
C5—C2—N—C6 | 171.9 (2) | S1—C6—S2—K2 | 4.15 (15) |
C1—C2—N—C3 | 104.8 (2) | K1—C6—S2—K2 | 78.32 (4) |
C5—C2—N—C3 | −14.5 (3) | N—C6—S2—K1 | 103.2 (2) |
C4—C3—N—C6 | 165.0 (2) | S1—C6—S2—K1 | −74.17 (14) |
Symmetry codes: (i) x−1/2, −y+1/2, −z+2; (ii) x−1, y, z; (iii) x+1/2, −y+3/2, −z+2; (iv) x, y−1, z; (v) x+1, y, z; (vi) x+1/2, −y+1/2, −z+2; (vii) x, y+1, z; (viii) x−1/2, −y+3/2, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H9···O1vi | 0.83 (2) | 1.93 (2) | 2.752 (3) | 170 (4) |
O3—H8···S2v | 0.81 (2) | 2.57 (2) | 3.3123 (19) | 153 (3) |
O4—H11···O2ix | 0.80 (2) | 2.22 (2) | 3.000 (3) | 166 (4) |
O5—H13···O1 | 0.81 (2) | 1.99 (3) | 2.724 (3) | 150 (3) |
O5—H12···S1x | 0.81 (2) | 2.55 (2) | 3.341 (2) | 163 (3) |
Symmetry codes: (v) x+1, y, z; (vi) x+1/2, −y+1/2, −z+2; (ix) x+1, y+1, z; (x) −x+1, y−1/2, −z+3/2. |
Acknowledgements
General financial support of this work by the Otto-von-Guericke-Universität Magdeburg, Germany, is gratefully acknowledged.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2013). Acta Cryst. E69, m479–m480. CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Cachapa, A., Mederos, A., Gili, P., Hernández-Molina, R., Domínguez, S., Chinea, E., López Rodríguez, M., Feliz, M., Llusar, R., Brito, F., Ruiz de Galarreta, C. M., Tarbraue, C. & Gallardo, G. (2006). Polyhedron, 25, 3366–3378. CSD CrossRef CAS Google Scholar
Giovagnini, L., Ronconi, L., Aldinucci, D., Lorenzon, D., Sitran, S. & Fregona, D. (2005). J. Med. Chem. 48, 1588–1595. Web of Science CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Howie, A. R., de Lima, G. M., Menezes, D. C., Wardell, J. L., Wardell, S. M. S. V., Young, D. J. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 1626–1637. CSD CrossRef CAS Google Scholar
Ilczyszyn, M. M., Lis, T., Wierzejewska, M. & Zatajska, M. (2009). J. Mol. Struct. 919, 303–311. CSD CrossRef CAS Google Scholar
Liebing, P., Zaeni, A., Olbrich, F. & Edelmann, F. T. (2016). Acta Cryst. E72, 1757–1761. CSD CrossRef IUCr Journals Google Scholar
Mafud, A. C. (2012). Acta Cryst. E68, m1025. CSD CrossRef IUCr Journals Google Scholar
Nagy, E. M., Sitran, S., Montopoli, M., Favaro, M., Marchiò, L., Caparrotta, L. & Fregona, D. (2012). J. Inorg. Biochem. 117, 131–139. CSD CrossRef CAS PubMed Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Google Scholar
Reyes-Martínez, R., Höpfl, H., Godoy-Alcántar, C., Medrano, F. & Tlahuext, H. (2009). CrystEngComm, 11, 2417–2424. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zahradnik, R. (1956). Chem. Listy Vedu Prum. 50, 1892–1898. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.