research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-amino-3-(thio­phen-3-ylmeth­yl)-1H-1,2,4-triazole-5(4H)-thione

CROSSMARK_Color_square_no_text.svg

aFaculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, bFaculty of Basic Sciences, University of Mining and Geology, Duc Thang, Bac Tu Liem, Hanoi, Vietnam, cVNU University of Science, Department of Inorganic Chemistry, 19 Le Thanh Tong Street, Hoan Kiem Discrict, Hanoi, Vietnam, and dDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: luc.vanmeervelt@kuleuven.be

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary (Received 31 July 2017; accepted 22 August 2017; online 30 August 2017)

In the title compound, C7H8N4S2, the thio­phene ring shows rotational disorder over two orientations in a 0.6957 (15):0.3043 (15) ratio. The plane of the 1,2,4-triazole ring makes a dihedral angle of 75.02 (17)° with the major-disorder component of the thiophene ring. In the crystal, two types of inversion dimers, described by the graph-set motifs R22(8) and R22(10), are formed by N—H⋯S inter­actions. Chains of mol­ecules running in the [101] direction are linked by weaker N—H⋯N inter­actions. The thio­phene ring is involved in ππ and C—H⋯π inter­actions.

1. Chemical context

Recently, the synthesis, characterization and anti­fungal activities, together with crystal structure determinations, of thio­phene-based heterocyclic chalcones have been investigated (Ming et al., 2017[Ming, L. S., Jamalis, J., Al-Maqtari, H. M., Rosli, M. M., Sankaranarayanan, M., Chander, S. & Fun, H.-K. (2017). Chem. Data Collect. 9-10, 104-113.]). Thio­phene-containing β-diketonate complexes of copper(II) have been studied and their deposits obtained by electropolymerization have been characterized (Oyarce et al., 2017[Oyarce, J., Hernández, L., Ahumada, G., Soto, J. P., Valle, M. A., Dorcet, V., Carrillo, D., Hamon, J.-R. & Manzur, C. (2017). Polyhedron, 123, 277-284.]). Combinations of the thio­phene ring with other heterocyclic rings have also been investigated, such as a β-keto–enol group embedded with thio­phene and pyridine moieties giving inter­esting applications in the field of solid-phase extraction (Radi et al., 2016[Radi, S., Tighadouini, S., Bacquet, M., Degoutin, S., Dacquin, J.-P., Eddike, D., Tillard, M. & Mabkho, Y. N. (2016). Molecules, 21, 888.]).

[Scheme 1]

As part of our ongoing studies of new polythio­phenes and their properties (Nguyen et al., 2016[Nguyen, N. L., Tran, T. D., Nguyen, T. C., Duong, K. L., Pfleger, J. & Vu, Q. T. (2016). Vietnam. J. Chem. 54, 259-263.]; Vu et al., 2016[Vu, Q. T., Nguyen, N. L., Duong, K. L. & Pfleger, J. (2016). Vietnam. J. Chem. 54, 730-735.]; Vu Quoc et al., 2017[Vu Quoc, T., Nguyen Ngoc, L., Nguyen Tien, C., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 901-904.]), we have synthesized a new thio­phene monomer containing an additional 1,2,4-triazole ring. The polymer obtained from 4-amino-3-(thio­phen-3-ylmeth­yl)-1H-1,2,4-triazole-5(4H)-thione using FeCl3 as oxidant was further characterized by IR and NMR spectroscopy, and TGA and is soluble in most common organic solvents, such as DMF and DMSO. We present here the synthesis and crystal structure of the title compound, 3.

2. Structural commentary

The title compound (Fig. 1[link]) crystallizes in the monoclinic space group P21/n with one mol­ecule in the asymmetric unit. The thio­phene ring is disordered over two orientations in a rotation of approximately 180° around the C5—C3 bond [occupancy factors = 0.6957 (15) for ring A or S1A/C1A/C2A/C3/C4A and 0.3043 (15) for ring B or S1B/C1B/C2B/C3/C4B]. The 1,2,4-triazole ring is almost planar (r.m.s. deviation = 0.001 Å for ring N2/N3/N4/C6/C7), with the substituents N1, S2 and C5 deviating by −0.034 (1), 0.008 (1) and 0.093 (1) Å, respectively. Due to the sp3 character of the linking atom C5, the planes of the five-membered rings make dihedral angles of 75.02 (17) (ring A) and 76.4 (4)° (ring B), which results in a V-shaped conformation. Atom N1 clearly has an sp3 hybridization as shown by the bond angles.

[Figure 1]
Figure 1
A view of the asymmetric unit of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radii. The minor component of the disordered thio­phene rings is shown in pale yellow.

3. Supra­molecular features

The crystal packing of the title compound is shown in Fig. 2[link]. The 1H-1,2,4-triazole-5(4H)-thione ring possesses an NH2 group, which, in principle, can act as a donor or acceptor for hydrogen bonding, an NH group, which can act as a donor, and an N atom and C=S group, which can only act as acceptors. Two types of inversion dimers are formed (Fig. 3[link] and Table 1[link]). The first one, described as graph-set motif R22(8), involves hydrogen bonds between the NH and C=S groups, whereas in the second one, the NH2 group interacts with the C=S grouping, resulting in a ring structure of graph-set R22(10). The second H atom of the NH2 group inter­acts with the N atom of a neighbouring 1H-1,2,4-triazole-5(4H)-thione ring, resulting in chains of graph-set C(5) in the [101] direction (Fig. 3[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the N2/N3/N4/C6/C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯N3i 0.909 (15) 2.622 (15) 3.3847 (13) 142.0 (12)
N1—H1D⋯S2ii 0.849 (17) 2.628 (16) 3.4163 (9) 154.9 (13)
N4—H4⋯S2iii 0.890 (16) 2.395 (15) 3.2847 (9) 178.2 (12)
C1B—H1BCg3iv 0.95 2.78 3.503 (11) 134
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+2, -z+1; (iii) -x, -y+2, -z+1; (iv) -x+1, -y+2, -z.
[Figure 2]
Figure 2
Crystal packing of the title compound shown in projection down the a axis.
[Figure 3]
Figure 3
Part of the crystal packing of the title compound, showing the rings of graph-set motif R22(8) and R22(10) formed by N—H⋯S hydrogen-bond inter­actions [see Table 1[link]; symmetry codes: (i) −x, −y + 2, −z + 1; (ii) −x + 1, −y + 2, −z + 1; (iii) x + [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}]] and a chain of graph-set motif C(5).

The disordered thio­phene ring is only involved in a ππ stacking inter­action with the 1,2,4-triazole ring [Cg1⋯Cg3i = 3.415 (2) Å and Cg2⋯Cg3i = 3.440 (5) Å; Cg1, Cg2 and Cg3 are the centroids of ring A, ring B and the 1,2,4-triazole ring, respectively; symmetry code: (i) x + [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; Fig. 4[link]]. The crystal packing shows a weak C—H⋯π inter­action (Table 1[link]) and contains no voids.

[Figure 4]
Figure 4
Part of the crystal packing of the title compound, showing the ππ stacking inter­actions between the thio­phene (yellow) and 1,2,4-triazole (blue) rings (only the major component of the disordered thio­phene ring is shown).

The packing was further investigated by an analysis of the Hirshfeld surface and two-dimensional fingerprint plots using CrystalExplorer (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). The donors and acceptors corresponding to the N—H⋯S inter­actions are visible as bright-red spots in Fig. 5[link](a). The pale-red spots in Fig. 5[link](b) are the weaker N—H⋯N and C—H⋯N inter­actions. The relative contributions of the different inter­molecular inter­actions to the Hirshfeld surface area in descending order are: H⋯H (40.4%), S⋯H (26.7%), N⋯H (13.3%), C⋯H (8.2%), C⋯C (4.1%), C⋯N (3.7%), S⋯C (2.3%) and S⋯N (1.2%). This illustrates that the weak N—H⋯N and C—H⋯N inter­actions contribute significantly to the packing of the title compound.

[Figure 5]
Figure 5
Hirshfeld surface for title compound mapped over dnorm over the range −0.436 to 1.179 a.u., highlighting (a) the N—H⋯S hydrogen bonding and (b) the N—H⋯N and C—H⋯N inter­actions.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.38, last update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures containing an 4-amino-3-methyl-1H-1,2,4-triazole-5(4H)-thione moiety gave 69 hits; in 41 of these structures, the C=S and/or NH2 groups are complexed with a metal ion. The 1,2,4-triazole ring is almost planar, with the largest deviation from the best plane through the ring atoms being 0.034 Å [for the complex mer-tri­chlorido­(dimethyl sulfoxide-κS)(4-amino-3-ethyl-1,2,4-Δ2-triazoline-5-thione-κ2N,S)ruthenium(III) hemi­hydrate; CSD refcode KESQOO; Cingi et al., 2000[Cingi, M. B., Lanfranchi, M., Pellinghelli, M. A. & Tegoni, M. (2000). Eur. J. Inorg. Chem. pp. 703-711.]].

5. Synthesis and crystallization

The reaction scheme used to synthesize the title compound, 3, is given in Fig. 6[link]. Methyl 2-(thio­phen-3-yl)acetate, 1, and 2-(thio­phen-3-yl)acetohydrazide, 2, were synthesized as described in a previous study (Vu Quoc et al., 2017[Vu Quoc, T., Nguyen Ngoc, L., Nguyen Tien, C., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 901-904.]).

[Figure 6]
Figure 6
Reaction scheme for the title compound.

For the synthesis of 4-amino-3-(thio­phen-3-ylmeth­yl)-1H-1,2,4-triazole-5(4H)-thione, 3, a mixture of hydrazide 2 (5 mmol), KOH (0.01 mol), ethanol (10 ml) and carbon di­sulfide (10 mmol) was stirred at room temperature until the formation of hydrogen sulfide stopped. An excess of alcohol was removed by distillation and the solid was washed with diethyl ether. A mixture of the resulting solid in water (10 ml) and hydrazine hydrate (15 ml) was then refluxed for 8 h at 353 K. The reaction mixture was cooled and neutralized with dilute hydro­chloric acid. The solid which precipitated was filtered off, washed thoroughly with water, dried and recrystallized from an ethanol–water solvent mixture (4:1 v/v) to give 0.63 g (yield 60.0%) of 3 in the form of colourless crystals (m.p. 378 K). IR (Nicolet Impact 410 FT–IR, KBr, cm−1): 3452 (νNH), 3088, 2911 (νCH), 1576 (νC=C thio­phene), 1278, 1207 (νC=S). 1H NMR [Bruker XL-500, 500 MHz, d6-DMSO, δ (ppm), J (Hz)]: 7.33 (m, 1H, 4J = 1.0, H2), 7.06 (m, 1H, 2J = 1.0, 5J = 5.0, H4), 7.49 (dd, 1H, 2J = 3.0, 4J = 5.0, H5), 4.04 (s, 2H, H6), 13.54 (s, 1H, H8), 5.58 (s, 2H, H10). 13C NMR [Bruker XL-500, 125 MHz, d6-DMSO, δ (ppm)]: 123.03 (C2), 135.61 (C3), 128.98 (C4), 126.67 (C5), 25.60 (C6), 151.55 (C7), 166.47 (C9). Calculation for C7H8N4S2: M = 212 a.u.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Both thio­phene rings are disordered over two orientations by a rotation of approximately 180° around the C5—C3 bond. The final occupancy factors are 0.6957 (15) and 0.3043 (15). For the disordered thio­phene ring, bond lengths and angles were restrained to the target mean values observed in 3-CH2-thio­phene fragments in the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) and the same anisotropic displacement parameters were used for equivalent atoms. The H atoms attached to atoms N1 and N4 were found in a difference density Fourier map and refined freely. The other H atoms were placed at calculated positions and refined in riding mode, with C—H distances of 0.95 (aromatic) and 0.99 Å (CH2), and isotropic displacement parameters equal to 1.2Ueq of the parent atoms. In the final cycles of refinement, two reflections showing very poor agreement were omitted as outliers.

Table 2
Experimental details

Crystal data
Chemical formula C7H8N4S2
Mr 212.29
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 7.6904 (4), 13.0429 (7), 9.0220 (4)
β (°) 90.081 (2)
V3) 904.95 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.54
Crystal size (mm) 0.32 × 0.20 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.710, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 27159, 2784, 2536
Rint 0.025
(sin θ/λ)max−1) 0.718
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.071, 1.05
No. of reflections 2784
No. of parameters 143
No. of restraints 20
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.43, −0.35
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

4-Amino-3-(thiophen-3-ylmethyl)-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C7H8N4S2F(000) = 440
Mr = 212.29Dx = 1.558 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.6904 (4) ÅCell parameters from 9996 reflections
b = 13.0429 (7) Åθ = 3.1–30.7°
c = 9.0220 (4) ŵ = 0.54 mm1
β = 90.081 (2)°T = 100 K
V = 904.95 (8) Å3Block, colorless
Z = 40.32 × 0.20 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
2536 reflections with I > 2σ(I)
φ and ω scansRint = 0.025
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 30.7°, θmin = 2.8°
Tmin = 0.710, Tmax = 0.746h = 1111
27159 measured reflectionsk = 1818
2784 independent reflectionsl = 1212
Refinement top
Refinement on F220 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0367P)2 + 0.3687P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2784 reflectionsΔρmax = 0.43 e Å3
143 parametersΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S1A0.63885 (12)0.92996 (9)0.14786 (11)0.02217 (15)0.6957 (15)
C1A0.7802 (4)0.9045 (2)0.0018 (3)0.0237 (6)0.6957 (15)
H1A0.8942520.9316120.0118380.028*0.6957 (15)
C2A0.7019 (5)0.8398 (5)0.1017 (6)0.0164 (5)0.6957 (15)
H2A0.7558680.8162790.1901840.020*0.6957 (15)
S1B0.7968 (3)0.92242 (15)0.0160 (2)0.02217 (15)0.3043 (15)
C1B0.6169 (13)0.9240 (9)0.1362 (11)0.0237 (6)0.3043 (15)
H1B0.6068460.9627830.2249120.028*0.3043 (15)
C2B0.4838 (15)0.8542 (12)0.0748 (15)0.0164 (5)0.3043 (15)
H2B0.3764670.8402040.1229890.020*0.3043 (15)
C30.52961 (13)0.81192 (7)0.05711 (11)0.01448 (18)
C4A0.4817 (8)0.8574 (6)0.0767 (6)0.0211 (5)0.6957 (15)
H4A0.3714710.8479450.1223280.025*0.6957 (15)
C4B0.6897 (15)0.8412 (12)0.1007 (13)0.0211 (5)0.3043 (15)
H4B0.7399390.8179430.1909000.025*0.3043 (15)
C50.40813 (13)0.74501 (8)0.14692 (11)0.01518 (18)
H5A0.3306630.7064100.0792460.018*
H5B0.4768530.6948740.2049320.018*
C60.30116 (12)0.80879 (7)0.24957 (10)0.01347 (17)
N30.14624 (11)0.84574 (7)0.22259 (9)0.01560 (16)
N40.10978 (11)0.90487 (7)0.34611 (9)0.01478 (16)
H40.011 (2)0.9399 (12)0.3552 (18)0.030 (4)*
C70.23720 (12)0.90463 (7)0.44686 (10)0.01315 (17)
N20.36064 (10)0.84243 (6)0.38483 (9)0.01294 (15)
S20.25221 (3)0.96465 (2)0.61239 (3)0.01586 (7)
N10.52086 (11)0.81396 (7)0.44672 (10)0.01611 (17)
H1C0.5008 (19)0.7808 (12)0.5337 (17)0.023 (4)*
H1D0.576 (2)0.8692 (13)0.4631 (17)0.028 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0285 (3)0.0166 (2)0.0214 (2)0.0005 (2)0.0079 (2)0.00146 (16)
C1A0.0256 (11)0.0213 (13)0.0241 (12)0.0030 (9)0.0027 (9)0.0011 (8)
C2A0.0091 (10)0.0171 (9)0.0229 (9)0.0038 (9)0.0006 (7)0.0041 (7)
S1B0.0285 (3)0.0166 (2)0.0214 (2)0.0005 (2)0.0079 (2)0.00146 (16)
C1B0.0256 (11)0.0213 (13)0.0241 (12)0.0030 (9)0.0027 (9)0.0011 (8)
C2B0.0091 (10)0.0171 (9)0.0229 (9)0.0038 (9)0.0006 (7)0.0041 (7)
C30.0150 (4)0.0134 (4)0.0151 (4)0.0023 (3)0.0032 (3)0.0021 (3)
C4A0.0270 (10)0.0233 (12)0.0131 (8)0.0096 (8)0.0020 (7)0.0019 (7)
C4B0.0270 (10)0.0233 (12)0.0131 (8)0.0096 (8)0.0020 (7)0.0019 (7)
C50.0145 (4)0.0144 (4)0.0167 (4)0.0002 (3)0.0023 (3)0.0024 (3)
C60.0131 (4)0.0131 (4)0.0142 (4)0.0012 (3)0.0011 (3)0.0001 (3)
N30.0140 (4)0.0182 (4)0.0146 (4)0.0010 (3)0.0005 (3)0.0022 (3)
N40.0124 (4)0.0169 (4)0.0151 (4)0.0027 (3)0.0001 (3)0.0015 (3)
C70.0122 (4)0.0127 (4)0.0145 (4)0.0002 (3)0.0019 (3)0.0020 (3)
N20.0105 (3)0.0146 (4)0.0138 (3)0.0015 (3)0.0000 (3)0.0007 (3)
S20.01442 (12)0.01893 (13)0.01423 (12)0.00179 (8)0.00036 (8)0.00250 (8)
N10.0113 (4)0.0190 (4)0.0181 (4)0.0018 (3)0.0029 (3)0.0020 (3)
Geometric parameters (Å, º) top
S1Aa—C1A1.763 (4)C3—C4B1.347 (10)
C1Aa—H1A0.9500C3—C51.5143 (14)
C1Aa—C2A1.375 (5)C5—H5A0.9900
C2Aa—H2A0.9500C5—H5B0.9900
S1Bb—C1B1.757 (11)C5—C61.4929 (13)
C1Bb—H1B0.9500C6—N31.3077 (13)
C1Bb—C2B1.478 (12)C6—N21.3745 (12)
C2Bb—H2B0.9500N3—N41.3842 (11)
C2Aa—C31.431 (3)N4—H40.889 (17)
C2Bb—C31.357 (11)N4—C71.3356 (12)
S1Aa—C4A1.665 (5)C7—N21.3689 (12)
C4Aa—H4A0.9500C7—S21.6900 (10)
S1Bb—C4B1.707 (11)N2—N11.4021 (11)
C4Bb—H4B0.9500N1—H1C0.909 (15)
C3—C4A1.394 (5)N1—H1D0.849 (17)
C2Aa—C1Aa—S1A110.3 (3)C3—C2Bb—H2B123.2
C4Aa—S1Aa—C1A92.56 (19)C3—C5—H5B109.5
C2Aa—C1Aa—H1A124.8H5A—C5—H5B108.1
S1Aa—C1Aa—H1A124.8C3—C4Aa—H4A123.7
C1Aa—C2Aa—H2A123.9C3—C4Bb—H4B122.0
C2Bb—C1Bb—S1B107.9 (7)C6—C5—C3110.59 (8)
C4Bb—S1Bb—C1B90.4 (5)C6—C5—H5A109.5
S1Bb—C1Bb—H1B126.1C6—C5—H5B109.5
C2Bb—C1Bb—H1B126.1N3—C6—C5126.34 (9)
C1Bb—C2Bb—H2B123.2N3—C6—N2110.46 (8)
C1Aa—C2Aa—C3112.2 (3)N2—C6—C5123.07 (9)
S1Aa—C4Aa—H4A123.7C6—N3—N4103.94 (8)
S1Bb—C4Bb—H4B122.0N3—N4—H4122.3 (11)
C4Aa—C3—C2A112.3 (3)C7—N4—N3113.41 (8)
C4Bb—C3—C2B112.1 (6)C7—N4—H4124.3 (11)
C4Aa—C3—C5123.1 (2)N4—C7—N2103.39 (8)
C2Aa—C3—C5124.6 (2)N4—C7—S2130.50 (8)
C2Bb—C3—C5122.9 (4)N2—C7—S2126.10 (7)
C4Bb—C3—C5124.8 (4)C6—N2—N1124.07 (8)
C3—C5—H5A109.5C7—N2—C6108.79 (8)
C3—C4Aa—S1A112.6 (3)C7—N2—N1127.13 (8)
C3—C2Aa—H2A123.9N2—N1—H1C108.7 (9)
C3—C4Bb—S1B115.9 (7)N2—N1—H1D106.5 (11)
C3—C2Bb—C1B113.6 (7)H1C—N1—H1D109.7 (14)
C4Aa—S1Aa—C1Aa—C2Aa0.5 (5)C2Aa—C3—C5—C689.6 (3)
S1Aa—C1Aa—C2Aa—C30.2 (6)C3—C5—C6—N393.21 (12)
C4Bb—S1Bb—C1Bb—C2Bb2.2 (12)C3—C5—C6—N282.26 (11)
S1Bb—C1Bb—C2Bb—C32.7 (17)N2—C6—N3—N40.31 (11)
C1Bb—C2Bb—C3—C4Bb1.8 (18)C5—C6—N3—N4175.64 (9)
C1Bb—C2Bb—C3—C5174.8 (8)C6—N3—N4—C70.17 (11)
C1Aa—C2Aa—C3—C4Aa0.3 (6)N3—N4—C7—N20.04 (11)
C1Aa—C2Aa—C3—C5177.5 (3)N3—N4—C7—S2179.78 (8)
C2Aa—C3—C4Aa—S1Aa0.7 (7)N4—C7—N2—C60.23 (10)
C5—C3—C4Aa—S1Aa178.0 (2)S2—C7—N2—C6179.61 (7)
C1Aa—S1Aa—C4Aa—C30.7 (5)N4—C7—N2—N1178.40 (9)
C2Bb—C3—C4Bb—S1Bb0.0 (16)S2—C7—N2—N11.77 (14)
C5—C3—C4Bb—S1Bb176.6 (5)N3—C6—N2—C70.36 (11)
C1Bb—S1Bb—C4Bb—C31.4 (12)C5—C6—N2—C7175.75 (9)
C4Bb—C3—C5—C687.4 (9)N3—C6—N2—N1178.32 (9)
C2Bb—C3—C5—C688.8 (10)C5—C6—N2—N15.57 (14)
C4Aa—C3—C5—C687.3 (4)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the N2/N3/N4/C6/C7 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1C···N3i0.909 (15)2.622 (15)3.3847 (13)142.0 (12)
N1—H1D···S2ii0.849 (17)2.628 (16)3.4163 (9)154.9 (13)
N4—H4···S2iii0.890 (16)2.395 (15)3.2847 (9)178.2 (12)
C1B—H1B···Cg3iv0.952.783.503 (11)134
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y+2, z+1; (iii) x, y+2, z+1; (iv) x+1, y+2, z.
 

Funding information

Funding for this research was provided by: VLIR–UOS (project No. ZEIN2014Z18 to LVM).

References

First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCingi, M. B., Lanfranchi, M., Pellinghelli, M. A. & Tegoni, M. (2000). Eur. J. Inorg. Chem. pp. 703–711.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMing, L. S., Jamalis, J., Al-Maqtari, H. M., Rosli, M. M., Sankaranarayanan, M., Chander, S. & Fun, H.-K. (2017). Chem. Data Collect. 9–10, 104–113.  CrossRef Google Scholar
First citationNguyen, N. L., Tran, T. D., Nguyen, T. C., Duong, K. L., Pfleger, J. & Vu, Q. T. (2016). Vietnam. J. Chem. 54, 259–263.  Google Scholar
First citationOyarce, J., Hernández, L., Ahumada, G., Soto, J. P., Valle, M. A., Dorcet, V., Carrillo, D., Hamon, J.-R. & Manzur, C. (2017). Polyhedron, 123, 277–284.  CrossRef CAS Google Scholar
First citationRadi, S., Tighadouini, S., Bacquet, M., Degoutin, S., Dacquin, J.-P., Eddike, D., Tillard, M. & Mabkho, Y. N. (2016). Molecules, 21, 888.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationVu, Q. T., Nguyen, N. L., Duong, K. L. & Pfleger, J. (2016). Vietnam. J. Chem. 54, 730–735.  Google Scholar
First citationVu Quoc, T., Nguyen Ngoc, L., Nguyen Tien, C., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 901–904.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds