research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Pseudosymmetry and high Z′ structures: the case of rac-(2R,2′R,5′S)-2-methyl-5′-[(1R,2R,5S,5′S)-1,4,4,5′-tetra­methyl­di­hydro-3′H-3,8-dioxa­spiro­[bi­cyclo­[3.2.1]octane-2,2′-furan]-5′-yl]-3,4,1′,2′,3′,4′-hexa­hydro-[2,2′-bi­furan]-5(2H)-one

CROSSMARK_Color_square_no_text.svg

aDipartimento di Scienze Chimiche, Università degli Studi di Napoli 'Federico II', Complesso di Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy
*Correspondence e-mail: vinpicci@unina.it, roberto.centore@unina.it

Edited by O. Blacque, University of Zürich, Switzerland (Received 14 July 2017; accepted 21 July 2017; online 1 August 2017)

The title compound, C22H34O6, is one of the products obtained by oxidation of squalene with the catalytic system RuO4(cat.)/NaIO4. It crystallizes in the P-1 space group, with four crystallographically independent mol­ecules related by a pseudo-C2 symmetry axis. The structural analysis also shows that the title compound is isomeric with two products previously reported in the literature and that are obtained by the same reaction procedure. In particular, out of the seven chiral C atoms present in the mol­ecule, the title compound shows the opposite configuration at, respectively, four and two chiral centres with respect to the isomeric compounds.

1. Chemical context

The search for new lead compounds is a major goal in drug discovery and chemistry of materials (Teta et al., 2013[Teta, R., Irollo, E., Della Sala, G., Pirozzi, G., Mangoni, A. & Costantino, V. (2013). Marine Drugs, 11, 4451-4463.]). Our group has long been involved in the synthesis of new biologically active heterocyclic compounds, including purine nucleoside analogues (D'Errico et al., 2012a[D'Errico, S., Oliviero, G., Amato, J., Borbone, N., Cerullo, V., Hemminki, A., Piccialli, V., Zaccaria, S., Mayol, L. & Piccialli, G. (2012a). Chem. Commun. 48, 9310-9312.],b[D'Errico, S., Oliviero, G., Borbone, N., Amato, J., D'Alonzo, D., Piccialli, V., Mayol, L. & Piccialli, G. (2012b). Molecules, 17, 13036-13044.]; Oliviero et al., 2008[Oliviero, G., Amato, J., Borbone, N., D'Errico, S., Piccialli, G., Bucci, E., Piccialli, V. & Mayol, L. (2008). Tetrahedron, 64, 6475-6481.], 2010a[Oliviero, G., D'Errico, S., Borbone, N., Amato, J., Piccialli, V., Piccialli, G. & Mayol, L. (2010a). Eur. J. Org. Chem. pp. 1517-1524.],b[Oliviero, G., D'Errico, S., Borbone, N., Amato, J., Piccialli, V., Varra, M., Piccialli, G. & Mayol, L. (2010b). Tetrahedron, 66, 1931-1936.]), cyclic ethers (Piccialli et al., 2007[Piccialli, V., Borbone, N. & Oliviero, G. (2007). Tetrahedron Lett. 48, 5131-5135.], 2013[Piccialli, V., D'Errico, S., Borbone, N., Oliviero, G., Centore, R. & Zaccaria, S. (2013). Eur. J. Org. Chem. 2013, 1781-1789.]), triazoles (Iovine et al., 2014[Iovine, B., Oliviero, B., Garofalo, M., Orefice, M., Nocella, F., Borbone, N., Piccialli, V., Centore, R., Mazzone, M., Piccialli, G. & Bevilacqua, M. A. (2014). PLoS One, 9, e96755. doi: 10.1371/journal.pone.0096755.]) and spiro­ketal compounds (Piccialli et al., 2009[Piccialli, V., Oliviero, G., Borbone, N., Tuzi, A., Centore, R., Hemminki, A., Ugolini, M. & Cerullo, V. (2009). Org. Biomol. Chem. 7, 3036-3039.]; Piccialli, 2014[Piccialli, V. (2014). Molecules, 19, 6534-6582.]). Heterocyclic compounds as building blocks for advanced materials have also been studied, including fused-ring heteroarenes (Centore et al., 1999[Centore, R., Concilio, S., Panunzi, B., Sirigu, A. & Tirelli, N. (1999). J. Polym. Sci. A Polym. Chem. 37, 603-608.]; Carella et al., 2007[Carella, A., Centore, R., Mager, L., Barsella, A. & Fort, A. (2007). Org. Electron. 8, 57-62.]) and N-rich aromatics (Centore et al., 2013[Centore, R., Fusco, S., Capobianco, A., Piccialli, V., Zaccaria, S. & Peluso, A. (2013). Eur. J. Org. Chem. pp. 3721-3728.]). In particular, we have recently reported the synthesis of structurally new spiro­ketal compounds through ruthenium and chromium chemistry (Piccialli et al., 2009[Piccialli, V., Oliviero, G., Borbone, N., Tuzi, A., Centore, R., Hemminki, A., Ugolini, M. & Cerullo, V. (2009). Org. Biomol. Chem. 7, 3036-3039.]).

As a continuation of our efforts in this area, we report here the isolation of the title compound from the oxidation of squalene with the catalytic system RuO4/NaIO4. In particular, the stereoselective polycyclization of squalene with catalytic amounts of RuO4 (Fig. 1[link]) (Bifulco et al., 2003[Bifulco, G., Caserta, T., Gomez-Paloma, L. & Piccialli, V. (2003). Tetrahedron Lett. 44, 3429-3429.]) allows penta-THF 1 to be obtained in a straightforward way and high yields (50% for five consecutive cyclization steps; 87% per cyclization step) through a unique oxidative cascade process. In this way, multi-gram amounts of this substance can easily be obtained from a cheap starting material. Compound 1 has been used as the starting material for the synthesis of a number of new poly-THF and spiro­ketal substances (2–8, Figs. 1[link] and 2[link]), among which compounds 2 and 3 (Fig. 1[link]) that have shown anti-cancer activity against ovarian (HEY) and breast cancer-derived (BT474) cell lines (Piccialli et al., 2009[Piccialli, V., Oliviero, G., Borbone, N., Tuzi, A., Centore, R., Hemminki, A., Ugolini, M. & Cerullo, V. (2009). Org. Biomol. Chem. 7, 3036-3039.]).

[Figure 1]
Figure 1
Scheme of synthesis showing the oxidative cyclization of squalene with RuO4 and post-cyclization oxidative chemistry.
[Figure 2]
Figure 2
Some small-sized spiro­ketal analogues of compounds 2 and 3 of Fig. 1[link].

The title compound is a stereoisomer of two spiro­ketal compounds previously reported by us (Piccialli et al., 2009[Piccialli, V., Oliviero, G., Borbone, N., Tuzi, A., Centore, R., Hemminki, A., Ugolini, M. & Cerullo, V. (2009). Org. Biomol. Chem. 7, 3036-3039.], 2017[Piccialli, V., Tuzi, A. & Centore, R. (2017). Acta Cryst. E73, 780-784.]). The determination of the configuration of the numerous stereogenic centres belonging to polycyclic polyether compounds such as the title compound, which contains seven chiral carbons, can be a challenging task. Although NMR data generally provide pivotal information on the stereostructure of such substances, definitive confirmation has very often required total synthesis or X-ray diffraction analysis, as experienced by us and reported by others. Indeed, NMR data alone gave conflicting evidence on the relative configuration of the title compound as well. Therefore, an X-ray diffraction experiment was undertaken in order to assess the differences in the stereochemistry with respect to the previously synthesized compounds and the possible mechanistic implications related to the concomitant formation of such stereoisomers in the same reaction.

[Scheme 1]

2. Structural commentary

The crystallographically independent unit contains four mol­ecules of identical configuration. The ORTEP diagram of one independent mol­ecule is shown in Fig. 3[link]. The conformation of the four independent mol­ecules is almost the same, with the exception of the lactone ring, whose orientation is slightly different (Fig. 4[link]).

[Figure 3]
Figure 3
The mol­ecular structure of one of the four crystallographically independent mol­ecules of the title compound (mol­ecule B). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
Overlay of the four independent mol­ecules A, B, C and D of the title compound viewed in two different orientations (a) and (b). For mol­ecule A, only the major occupancy orientation of the disordered rings is shown.

The cluster of four independent mol­ecules has approximate local non-crystallographic C2 symmetry with respect to an axis parallel to a and inter­secting the bc plane at (b/4, c/4). This is clearly shown in Fig. 5[link]. We also note that the pseudo-C2 symmetry, coupled with truly crystallographic inversion centres, would induce a pseudo-P2/n symmetry with unique axis a (Brock & Dunitz, 1994[Brock, C. P. & Dunitz, J. D. (1994). Chem. Mater. 6, 1118-1127.]).

[Figure 5]
Figure 5
The cluster of the four crystallographic independent mol­ecules of the title compound. (a) Skew view; (b) view down a. For mol­ecule A, only the major occupancy orientation of the disordered rings is shown.

The presence of more than one formula unit in the asymmetric unit (Z′ > 1) can be considered as an `exception' to the normal crystallization behaviour, because only about 12% of the structures archived in the Cambridge Structural Database have Z′ > 1 (Brock, 2016[Brock, C. P. (2016). Acta Cryst. B72, 807-821.]). Actually, the understanding of this phenomenon has been tackled from different points of view. So, structures with Z′ > 1 have been considered as the result of `mol­ecular association' (Kitaigorodskii, 1961[Kitaigorodskii, A. I. (1961). In Organic Chemical Crystallography. New York: Consultants Bureau.]), or as `frustrated' crystal structures resulting from competing packing requirements (Anderson et al., 2008[Anderson, K. M., Goeta, A. E. & Steed, J. W. (2008). Cryst. Growth Des. 8, 2517-2524.]) or as products obtained under kinetic control, i.e. `fossil relics' (Steed, 2003[Steed, J. W. (2003). CrystEngComm, 5, 169-179.]) or `crystals on the way' (Desiraju, 2007[Desiraju, G. R. (2007). CrystEngComm, 9, 91-92.]). Actually, one of the problems with high Z′ structures is that the apparently most simple and acceptable explanation for their occurrence, i.e. that the crystallographic independence comes from the fact that the mol­ecules are related by symmetry operations forbidden in crystals, does not stand. In fact, in many cases of high Z′ structures, including the present one, the independent mol­ecules are related to each other by local symmetry operations fully compatible, in principle, with the translational symmetry of the crystals (i.e. pseudo inversion centers, pseudo binary axes, etc.).

From the analysis of the mol­ecular structure with respect to one previously reported isomeric compound (Piccialli et al., 2017[Piccialli, V., Tuzi, A. & Centore, R. (2017). Acta Cryst. E73, 780-784.]), it can be seen that the title compound has the same configuration at the stereogenic carbons of the spiro­chetal moiety (C12, C13 and C16), while all of the other four stereogenic carbons (i.e. C4, C5, C8, C9) have the opposite configuration, Fig. 6[link]. This results in a different shape for the two isomers; compared to the previously reported isomer, the title compound has a more horseshoe-type shape. This, in turn, could imply different metal-chelating abilities, that characterize structurally related ionophoric anti­biotics. On the other hand, with respect to the other isomeric compound (compound 10 of Scheme 3 in Piccialli et al., 2009[Piccialli, V., Oliviero, G., Borbone, N., Tuzi, A., Centore, R., Hemminki, A., Ugolini, M. & Cerullo, V. (2009). Org. Biomol. Chem. 7, 3036-3039.]), the title compound has the opposite configuration only at the C4 and C5 stereogenic carbons.

[Figure 6]
Figure 6
Overlay of mol­ecule D of the title compound (green) with mol­ecule B of the stereoisomeric compound reported in Piccialli et al. (2017[Piccialli, V., Tuzi, A. & Centore, R. (2017). Acta Cryst. E73, 780-784.]) (orange), in two different orientations, (a) and (b).

3. Supra­molecular features

Mol­ecules are held in the crystal basically through van der Waals contacts between H atoms and weak C—H⋯O inter­actions that are detailed in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3C—H3C1⋯O6Bi 0.99 2.64 3.300 (4) 125
C22D—H22K⋯O6Aii 0.98 2.55 3.400 (3) 146
C2B—H2B2⋯O6Diii 0.99 2.62 3.423 (4) 139
C22B—H22E⋯O6Civ 0.98 2.68 3.501 (4) 142
C5B—H5B⋯O4A 1.00 2.66 3.510 (3) 143
C2D—H2D2⋯O6Cv 0.99 2.67 3.573 (4) 152
C16D—H16D⋯O1Bi 1.00 2.61 3.591 (3) 166
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y, -z+1; (iii) x, y, z-1; (iv) -x, -y+1, -z; (v) -x, -y+1, -z+1.

In order to assess possible packing differences involving the four independent mol­ecules, we have examined their Hirshfeld surfaces (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]; Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.]). Fig. 7[link] shows the Hirshfeld fingerprint plots of the four independent mol­ecules, while the relevant mol­ecular parameters are reported in Table 2[link]. In the plots, the distance di to the nearest atom inside the surface and the distance de to the nearest atom outside the surface are reported for each point of the Hirshfeld surface enveloping the mol­ecule in the crystal. The color of each point in the plot is related to the abundance of that inter­action, from blue (low) to green (high) to red (very high).

Table 2
Parameters of the Hirshfeld surface (Å3, Å2) of the four crystallographically independent mol­ecules

Mol­ecule Volume Area Globularity Asphericity
A 524.70 395.49 0.795 0.170
B 519.88 392.58 0.796 0.196
C 514.41 392.68 0.791 0.181
D 524.65 395.99 0.794 0.187
Hirshfeld surface analysis was performed using the program CrystalExplorer (Wolff et al. 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.]).
[Figure 7]
Figure 7
Hirshfeld fingerprint plots of the four crystallographically independent mol­ecules of the title compound.

A common feature of each plot of Fig. 7[link] is represented by the central green stripe, roughly along the diagonal, and centered at di + de = 3.6 Å. It corresponds to the loose van der Waals contacts present in the packing, and mainly involving H atoms. Another relevant feature is the sting along the diagonal, down to di = de = 1.0 Å, which reflects points on the Hirshfeld surface that involve nearly head-to-head close H⋯H contacts. This feature is clearly more pronounced in the plots of mol­ecules A, B and C.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.38, last update May 2017) gave no match for the title compound. A search for spiro-THF compounds gave the same results we have already reported (Piccialli et al., 2017[Piccialli, V., Tuzi, A. & Centore, R. (2017). Acta Cryst. E73, 780-784.]): six hits (GUHXOX, GUHXUD, MUZTEH, MUZTIL, MUZTOR and MUZTUX) all coming from our research group. The overall fraction of structures deposited in the CSD and having Z′ = 4 is 0.48%. This figure drops to 0.24% if the same filters used by Brock (Brock, 2016[Brock, C. P. (2016). Acta Cryst. B72, 807-821.]) are applied.

5. Synthesis and crystallization

The title compound was prepared by oxidation of squalene with RuO4(cat.)/NaIO4, as previously reported (Bifulco et al., 2003[Bifulco, G., Caserta, T., Gomez-Paloma, L. & Piccialli, V. (2003). Tetrahedron Lett. 44, 3429-3429.]). The crude product obtained from the reaction mixture was purified by silica gel column chromatography, eluting with increasing amounts of Et2O in hexane. The fractions enriched in the tile compound were collected and evaporated under reduced pressure. Further separation was performed by reversed-phase HPLC (Hibar RP-18 columns, 250 × 10 and 250 × 4 mm, eluent MeOH/H2O, 6:4) to give the pure title compound as an oil. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of an MeOH solution of the compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms were generated stereochemically and were refined by the riding model. For all H atoms Uiso = 1.2×Ueq of the carrier atom was assumed (1.5 in the case of methyl groups). Some C atoms of two tetra­hydro­furan rings of the independent mol­ecule A are disordered over two orientations. The two split positions of the two THF rings were refined by applying DFIX restraints on bond lengths and SIMU restraints on thermal parameters. The final refined occupancy factors of the two components of disorder are 0.694 (9) and 0.306 (9) for one ring and 0.764 (13) and 0.236 (13) for the other.

Table 3
Experimental details

Crystal data
Chemical formula C22H34O6
Mr 394.49
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 13.709 (2), 14.198 (2), 23.339 (2)
α, β, γ (°) 72.878 (10), 82.765 (15), 77.051 (14)
V3) 4222.2 (11)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.50 × 0.37 × 0.25
 
Data collection
Diffractometer Bruker–Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.938, 0.958
No. of measured, independent and observed [I > 2σ(I)] reflections 57303, 19079, 8893
Rint 0.065
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.157, 1.03
No. of reflections 19079
No. of parameters 1058
No. of restraints 52
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.44, −0.33
Computer programs: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]), DIRAX/LSQ (Duisenberg et al., 2000[Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]), EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

rac-(2R,2'R,5'S)-2-Methyl-5'-[(1R,2R,5S,5'S)-1,4,4,5'-tetramethyldihydro-3'H-3,8-dioxaspiro[bicyclo[3.2.1]octane-2,2'-furan]-5'-yl]-3,4,1',2',3',4'-hexahydro-[2,2'-bifuran]-5(2H)-one top
Crystal data top
C22H34O6Z = 8
Mr = 394.49F(000) = 1712
Triclinic, P1Dx = 1.241 Mg m3
a = 13.709 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.198 (2) ÅCell parameters from 132 reflections
c = 23.339 (2) Åθ = 3.0–22.9°
α = 72.878 (10)°µ = 0.09 mm1
β = 82.765 (15)°T = 173 K
γ = 77.051 (14)°Prism, colourless
V = 4222.2 (11) Å30.50 × 0.37 × 0.25 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
19079 independent reflections
Radiation source: normal-focus sealed tube8893 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD rotation images, thick slices scansh = 1716
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1818
Tmin = 0.938, Tmax = 0.958l = 3025
57303 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.052P)2 + 1.6298P]
where P = (Fo2 + 2Fc2)/3
19079 reflections(Δ/σ)max < 0.001
1058 parametersΔρmax = 0.44 e Å3
52 restraintsΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Some C atoms of two tetrahydrofuran rings of the independent molecule A are disordered over two orientations. The two split positions were refined by applying DFIX restraints on bond lengths and SIMU restraints on thermal parameters. The final refined occupancy factors of the two components of disorder are 0.694 (9) and 0.306 (9) for one split position and 0.764 (13) and 0.236 (13) for the other.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1A0.1868 (2)0.1356 (2)0.32673 (12)0.0385 (7)
C2A0.2631 (2)0.2133 (2)0.30641 (14)0.0530 (9)
H2A10.2599730.2048060.2629890.064*
H2A20.2528900.2816280.3290350.064*
C3A0.3614 (2)0.1965 (2)0.31902 (14)0.0496 (8)
H3A10.4128750.2053980.2862610.060*
H3A20.3852640.2438330.3573470.060*
C4A0.33930 (19)0.0889 (2)0.32283 (12)0.0354 (7)
C5A0.3626 (2)0.0131 (2)0.26344 (12)0.0374 (7)
H5A0.4367570.0260070.2539020.045*
C6A0.3274 (2)0.0972 (2)0.26096 (11)0.0440 (8)0.306 (9)
H6A10.2683580.1066180.2893040.053*0.306 (9)
H6A20.3814930.1242150.2711910.053*0.306 (9)
C7A0.3004 (12)0.1487 (3)0.1969 (3)0.0475 (16)0.306 (9)
H7A10.2390670.2014810.1954080.057*0.306 (9)
H7A20.3558350.1794010.1728740.057*0.306 (9)
C8A0.28292 (19)0.06497 (18)0.17423 (11)0.0350 (7)0.306 (9)
H8A0.3377750.0629600.1417630.042*0.306 (9)
C6Y0.3274 (2)0.0972 (2)0.26096 (11)0.0440 (8)0.694 (9)
H6Y10.2962350.1052010.3003040.053*0.694 (9)
H6Y20.3839330.1332950.2492630.053*0.694 (9)
C7Y0.2514 (4)0.1354 (3)0.2137 (2)0.0478 (15)0.694 (9)
H7Y10.2537420.2055390.1904280.057*0.694 (9)
H7Y20.1827430.1322660.2321980.057*0.694 (9)
C8Y0.28292 (19)0.06497 (18)0.17423 (11)0.0350 (7)0.694 (9)
H8Y0.3398530.0855580.1440140.042*0.694 (9)
C10A0.1145 (9)0.0695 (12)0.1927 (5)0.0571 (14)0.236 (13)
H10A0.0825790.0099990.2058020.069*0.236 (13)
H10B0.1440300.0755620.2277040.069*0.236 (13)
C11A0.0374 (12)0.1630 (12)0.16835 (18)0.0570 (14)0.236 (13)
H11A0.0413690.2172270.1861100.068*0.236 (13)
H11B0.0312780.1488010.1766770.068*0.236 (13)
C10Y0.0985 (2)0.0392 (5)0.1794 (2)0.0570 (14)0.764 (13)
H10W0.1087480.0147450.2229460.068*0.764 (13)
H10Z0.0715870.0108920.1674860.068*0.764 (13)
C11Y0.0283 (4)0.1404 (5)0.16451 (15)0.0569 (14)0.764 (13)
H11W0.0328470.1788620.1929330.068*0.764 (13)
H11Z0.0419770.1328590.1655200.068*0.764 (13)
C9A0.19546 (18)0.0575 (2)0.14357 (12)0.0434 (8)
C12A0.0652 (2)0.1915 (2)0.10166 (10)0.0414 (7)
C13A0.0459 (2)0.3066 (2)0.07821 (12)0.0417 (7)
C14A0.0665 (2)0.3506 (3)0.07832 (14)0.0617 (10)
H14A0.1038150.3079850.1110480.074*
H14B0.0803870.4193960.0832410.074*
C15A0.0950 (2)0.3520 (3)0.01711 (14)0.0659 (10)
H15A0.1212280.4214670.0067240.079*
H15B0.1462740.3107100.0213170.079*
C16A0.0033 (2)0.3071 (2)0.01210 (13)0.0446 (8)
H16A0.0063030.3391860.0564410.054*
C17A0.0239 (2)0.1937 (2)0.00080 (13)0.0486 (8)
C18A0.0575 (3)0.1569 (3)0.02122 (17)0.0789 (12)
H18A0.0387420.0839580.0146370.118*
H18B0.0642440.1898120.0641800.118*
H18C0.1214530.1735310.0010740.118*
C19A0.1258 (3)0.1552 (2)0.02619 (14)0.0599 (9)
H19A0.1773340.1786540.0114990.090*
H19B0.1266930.1805100.0700730.090*
H19C0.1394550.0815670.0144850.090*
C20A0.1028 (3)0.3543 (2)0.10965 (15)0.0609 (9)
H20A0.1746830.3265740.1056890.091*
H20B0.0800110.3402210.1522970.091*
H20C0.0905000.4271770.0913740.091*
C21A0.2313 (4)0.0238 (3)0.10951 (18)0.0958 (15)
H21A0.1757280.0281510.0884590.144*
H21B0.2543140.0888700.1382000.144*
H21C0.2867170.0057340.0803050.144*
C22A0.3893 (3)0.0750 (3)0.37312 (14)0.0646 (10)
H22A0.3636960.0070610.3773640.097*
H22B0.4620030.0846160.3638270.097*
H22C0.3747060.1244690.4107730.097*
C1B0.4756 (2)0.3466 (3)0.18165 (12)0.0492 (8)
C2B0.4330 (2)0.2585 (2)0.18156 (13)0.0506 (8)
H2B10.4544350.2003660.1468850.061*
H2B20.4541680.2383270.2191030.061*
C3B0.3201 (2)0.2961 (2)0.17680 (13)0.0426 (7)
H3B10.2866570.2437970.1487920.051*
H3B20.2921160.3148550.2166160.051*
C4B0.3061 (2)0.3875 (2)0.15308 (12)0.0364 (7)
C5B0.2899 (2)0.3621 (2)0.08511 (12)0.0378 (7)
H5B0.2222720.3443600.0729580.045*
C6B0.3002 (3)0.4416 (2)0.05548 (14)0.0597 (10)
H6B10.3406070.4888840.0822990.072*
H6B20.2334130.4802780.0463320.072*
C7B0.3505 (2)0.3868 (2)0.00005 (14)0.0532 (9)
H7B10.3050900.3943040.0355060.064*
H7B20.4113660.4126460.0011090.064*
C8B0.37856 (19)0.27638 (19)0.00052 (11)0.0324 (6)
H8B0.3306050.2385630.0279510.039*
C9B0.48522 (19)0.22082 (19)0.01340 (11)0.0305 (6)
C10B0.5671 (2)0.2792 (2)0.01944 (12)0.0468 (8)
H10D0.6225550.2352760.0363520.056*
H10E0.5392720.3374170.0524680.056*
C11B0.6037 (2)0.3141 (2)0.02845 (12)0.0417 (7)
H11C0.6763260.3145900.0216850.050*
H11D0.5665130.3821380.0292850.050*
C12B0.58132 (19)0.23567 (19)0.08594 (11)0.0312 (6)
C13B0.56715 (19)0.26748 (19)0.14441 (11)0.0324 (6)
C14B0.6639 (2)0.2933 (2)0.15682 (13)0.0421 (7)
H14C0.7016430.3210950.1188350.051*
H14D0.6489250.3426520.1806810.051*
C15B0.7225 (2)0.1930 (2)0.19216 (13)0.0430 (7)
H15C0.7343070.1955120.2326370.052*
H15D0.7879480.1745210.1708390.052*
C16B0.65518 (19)0.1188 (2)0.19629 (12)0.0357 (7)
H16B0.6616850.0654760.2354760.043*
C17B0.6726 (2)0.0712 (2)0.14429 (12)0.0365 (7)
C18B0.7790 (2)0.0116 (2)0.13886 (14)0.0546 (9)
H18D0.7855570.0181080.1052880.082*
H18E0.7931170.0419070.1761840.082*
H18F0.8267820.0565600.1316300.082*
C19B0.5978 (2)0.0038 (2)0.15013 (14)0.0502 (8)
H19D0.5294270.0432070.1513490.075*
H19E0.6073590.0511720.1872210.075*
H19F0.6084490.0240860.1155850.075*
C20B0.4746 (2)0.3481 (2)0.14775 (14)0.0492 (8)
H20D0.4154750.3263040.1405090.074*
H20E0.4825020.4107360.1172110.074*
H20F0.4661930.3594190.1876870.074*
C21B0.5027 (2)0.1174 (2)0.00401 (13)0.0508 (8)
H21D0.5700040.0808000.0156480.076*
H21E0.4968830.1237110.0384280.076*
H21F0.4525880.0807180.0287290.076*
C22B0.2252 (2)0.4739 (2)0.18264 (13)0.0527 (9)
H22D0.2232620.5317210.1673630.079*
H22E0.1600750.4534310.1734310.079*
H22F0.2400830.4926360.2262390.079*
C1C0.0283 (2)0.6706 (2)0.18597 (12)0.0414 (7)
C2C0.0875 (2)0.7326 (2)0.20448 (13)0.0427 (7)
H2C10.0839420.7185800.2487440.051*
H2C20.0624650.8052270.1866260.051*
C3C0.1939 (2)0.7000 (2)0.18031 (13)0.0380 (7)
H3C10.2430350.6968500.2087940.046*
H3C20.2088880.7470750.1411170.046*
C4C0.19635 (19)0.5958 (2)0.17344 (12)0.0320 (6)
C5C0.22903 (19)0.5119 (2)0.22866 (12)0.0338 (7)
H5C0.2995970.5119440.2354430.041*
C6C0.2222 (2)0.4072 (2)0.22795 (14)0.0534 (9)
H6C10.1626700.4085770.2074570.064*
H6C20.2831550.3754050.2077960.064*
C7C0.2130 (2)0.3527 (2)0.29386 (14)0.0571 (9)
H7C10.2799820.3209010.3093750.069*
H7C20.1726970.3001050.3008320.069*
C8C0.16093 (19)0.43333 (19)0.32405 (12)0.0332 (7)
H8C0.2009550.4281350.3582260.040*
C9C0.05220 (19)0.43183 (19)0.34820 (12)0.0325 (6)
C10C0.0189 (2)0.4321 (2)0.30422 (14)0.0555 (9)
H10F0.0144940.4425310.2633120.067*
H10G0.0782710.4868990.3035170.067*
C11C0.0501 (2)0.3319 (2)0.32427 (12)0.0448 (8)
H11E0.0120890.2866660.3004660.054*
H11F0.1226990.3397200.3202920.054*
C12C0.02518 (19)0.29144 (19)0.38989 (11)0.0311 (6)
C13C0.0059 (2)0.1767 (2)0.41399 (11)0.0359 (7)
C14C0.0818 (2)0.1254 (2)0.41442 (13)0.0468 (8)
H14E0.1271270.1659350.3823530.056*
H14F0.0569730.0576350.4085380.056*
C15C0.1361 (2)0.1186 (2)0.47678 (13)0.0449 (8)
H15E0.2075890.1521630.4735500.054*
H15F0.1318310.0477910.5008770.054*
C16C0.07903 (19)0.1736 (2)0.50414 (12)0.0347 (7)
H16C0.0789920.1440510.5486840.042*
C17C0.11614 (19)0.28712 (19)0.48896 (11)0.0327 (6)
C18C0.0526 (2)0.3350 (2)0.51683 (12)0.0417 (7)
H18G0.0183120.3145230.5049150.063*
H18H0.0627680.3130650.5607020.063*
H18I0.0724690.4083850.5028460.063*
C19C0.2261 (2)0.3160 (2)0.50934 (14)0.0487 (8)
H19G0.2440500.3888080.5035470.073*
H19H0.2367480.2812950.5519550.073*
H19I0.2681680.2963480.4856050.073*
C20C0.1034 (2)0.1333 (2)0.38366 (14)0.0536 (9)
H20G0.1561490.1680230.3863590.080*
H20H0.0937130.1423750.3413340.080*
H20I0.1230660.0614120.4037740.080*
C21C0.0165 (3)0.5165 (2)0.37882 (16)0.0657 (10)
H21G0.0506970.5123930.3982590.099*
H21H0.0142740.5816330.3486990.099*
H21I0.0630090.5096100.4090910.099*
C22C0.2586 (2)0.5767 (2)0.11794 (12)0.0464 (8)
H22G0.2501600.5130540.1127770.070*
H22H0.3295140.5731830.1226670.070*
H22I0.2364700.6316680.0825610.070*
C1D0.2932 (2)0.1876 (2)0.68680 (12)0.0398 (7)
C2D0.1954 (2)0.2611 (2)0.68290 (13)0.0431 (7)
H2D10.1968320.3190920.6468960.052*
H2D20.1800660.2860050.7190760.052*
C3D0.1188 (2)0.2012 (2)0.67864 (12)0.0393 (7)
H3D10.0693070.2420970.6490580.047*
H3D20.0827970.1783700.7181550.047*
C4D0.18073 (18)0.11127 (19)0.65821 (11)0.0306 (6)
C5D0.18832 (19)0.12934 (18)0.59030 (11)0.0305 (6)
H5D0.1214890.1303070.5769640.037*
C6D0.2681 (2)0.0571 (2)0.56448 (12)0.0382 (7)
H6D10.3277800.0332520.5886050.046*
H6D20.2417970.0017270.5632660.046*
C7D0.2938 (2)0.1189 (2)0.50161 (12)0.0420 (7)
H7D10.2582150.1046170.4716800.050*
H7D20.3668630.1038220.4913820.050*
C8D0.25913 (19)0.22884 (19)0.50289 (11)0.0302 (6)
H8D0.2058220.2622730.4737970.036*
C9D0.33869 (19)0.29360 (19)0.49047 (11)0.0299 (6)
C10D0.43078 (19)0.2442 (2)0.52723 (12)0.0388 (7)
H10H0.4181630.1837930.5592130.047*
H10I0.4484720.2917820.5459760.047*
C11D0.51483 (19)0.2156 (2)0.48180 (11)0.0374 (7)
H11G0.5801300.2243800.4911950.045*
H11H0.5205480.1451480.4812400.045*
C12D0.48164 (18)0.28854 (19)0.42232 (11)0.0296 (6)
C13D0.5210 (2)0.25438 (19)0.36537 (11)0.0332 (7)
C14D0.6361 (2)0.2378 (2)0.35804 (13)0.0456 (8)
H14G0.6637180.1876750.3353820.055*
H14H0.6654080.2144400.3976710.055*
C15D0.6579 (2)0.3418 (2)0.32287 (14)0.0479 (8)
H15G0.6968480.3665850.3463080.058*
H15H0.6952790.3397500.2839660.058*
C16D0.5536 (2)0.4073 (2)0.31351 (12)0.0405 (7)
H16D0.5530830.4589630.2736690.049*
C17D0.5108 (2)0.4578 (2)0.36347 (13)0.0404 (7)
C18D0.5752 (2)0.5278 (2)0.37062 (15)0.0592 (9)
H18J0.5437090.5599020.4020130.089*
H18K0.5813370.5794350.3325350.089*
H18L0.6419750.4889260.3819140.089*
C19D0.4044 (2)0.5160 (2)0.35213 (14)0.0498 (8)
H19J0.3624630.4705820.3487180.075*
H19K0.4048500.5702590.3147370.075*
H19L0.3773320.5446130.3856150.075*
C20D0.4788 (2)0.1671 (2)0.36103 (13)0.0440 (8)
H20J0.4053940.1836640.3652220.066*
H20K0.5034460.1071200.3931230.066*
H20L0.5002300.1541650.3219250.066*
C21D0.2919 (2)0.3975 (2)0.49753 (13)0.0437 (7)
H21J0.3431700.4389420.4883170.066*
H21K0.2640310.3915900.5389350.066*
H21L0.2381610.4289590.4698780.066*
C22D0.1456 (2)0.0137 (2)0.68931 (12)0.0416 (7)
H22J0.1906980.0416020.6765480.062*
H22K0.0773840.0189350.6785590.062*
H22L0.1460880.0005940.7329190.062*
O1A0.23110 (13)0.06762 (13)0.33770 (8)0.0365 (5)
O2A0.31488 (13)0.02972 (13)0.21708 (8)0.0387 (5)
O3A0.17068 (12)0.15433 (13)0.09896 (7)0.0349 (5)
O4A0.07830 (14)0.33320 (13)0.01515 (8)0.0403 (5)
O5A0.01713 (14)0.15112 (15)0.06549 (9)0.0518 (6)
O6A0.09722 (16)0.12853 (18)0.33498 (10)0.0674 (7)
O1B0.40236 (15)0.42114 (15)0.16971 (8)0.0452 (5)
O2B0.36471 (13)0.27671 (12)0.06046 (7)0.0339 (4)
O3B0.49111 (12)0.21154 (12)0.07695 (7)0.0304 (4)
O4B0.55606 (13)0.18001 (13)0.19357 (8)0.0367 (5)
O5B0.66391 (12)0.15248 (13)0.08878 (7)0.0344 (4)
O6B0.56108 (17)0.3572 (2)0.19166 (10)0.0772 (8)
O1C0.09137 (13)0.59730 (14)0.16562 (8)0.0388 (5)
O2C0.16517 (13)0.52856 (12)0.28005 (7)0.0331 (4)
O3C0.05591 (12)0.33612 (12)0.39349 (7)0.0299 (4)
O4C0.02136 (13)0.15488 (12)0.47703 (7)0.0350 (4)
O5C0.11309 (12)0.32704 (12)0.42397 (7)0.0329 (4)
O6C0.06097 (16)0.68048 (17)0.18648 (10)0.0639 (6)
O1D0.28161 (12)0.10150 (14)0.67671 (8)0.0352 (5)
O2D0.21528 (12)0.22575 (12)0.56301 (7)0.0331 (4)
O3D0.37532 (12)0.30237 (12)0.42818 (7)0.0294 (4)
O4D0.51448 (13)0.37898 (13)0.41994 (8)0.0368 (5)
O5D0.49112 (13)0.33788 (13)0.31422 (7)0.0372 (5)
O6D0.37341 (16)0.19660 (17)0.69788 (9)0.0562 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0334 (18)0.0439 (19)0.0296 (16)0.0088 (15)0.0077 (13)0.0061 (14)
C2A0.079 (3)0.0385 (19)0.0424 (19)0.0107 (17)0.0058 (17)0.0129 (15)
C3A0.0412 (19)0.0433 (19)0.0465 (19)0.0076 (15)0.0068 (15)0.0010 (15)
C4A0.0246 (15)0.0374 (17)0.0350 (17)0.0027 (12)0.0054 (12)0.0014 (13)
C5A0.0262 (16)0.0485 (19)0.0325 (17)0.0045 (13)0.0077 (12)0.0035 (14)
C6A0.0500 (19)0.0409 (18)0.0410 (18)0.0148 (14)0.0147 (14)0.0018 (14)
C7A0.045 (4)0.035 (2)0.067 (3)0.012 (3)0.035 (3)0.005 (2)
C8A0.0330 (16)0.0339 (16)0.0315 (16)0.0058 (12)0.0050 (13)0.0017 (13)
C6Y0.0500 (19)0.0409 (18)0.0410 (18)0.0148 (14)0.0147 (14)0.0018 (14)
C7Y0.046 (3)0.035 (2)0.066 (3)0.011 (2)0.034 (3)0.005 (2)
C8Y0.0330 (16)0.0339 (16)0.0315 (16)0.0058 (12)0.0050 (13)0.0017 (13)
C10A0.0392 (18)0.077 (3)0.0436 (17)0.0289 (16)0.0147 (14)0.0194 (17)
C11A0.0392 (18)0.077 (3)0.0434 (17)0.0286 (16)0.0144 (14)0.0190 (17)
C10Y0.0393 (17)0.077 (3)0.0436 (17)0.0293 (15)0.0149 (13)0.0196 (16)
C11Y0.0391 (17)0.077 (3)0.0432 (17)0.0283 (15)0.0141 (13)0.0187 (16)
C9A0.0461 (19)0.0359 (17)0.0416 (18)0.0127 (14)0.0150 (14)0.0078 (15)
C12A0.0297 (17)0.058 (2)0.0289 (16)0.0106 (14)0.0072 (13)0.0038 (15)
C13A0.0407 (18)0.0478 (19)0.0301 (17)0.0012 (14)0.0072 (13)0.0044 (14)
C14A0.046 (2)0.080 (3)0.042 (2)0.0147 (17)0.0088 (15)0.0080 (18)
C15A0.051 (2)0.081 (3)0.054 (2)0.0073 (18)0.0184 (17)0.0082 (19)
C16A0.049 (2)0.0465 (19)0.0328 (17)0.0064 (15)0.0144 (14)0.0004 (14)
C17A0.056 (2)0.046 (2)0.0408 (19)0.0146 (16)0.0194 (16)0.0014 (15)
C18A0.098 (3)0.065 (2)0.078 (3)0.030 (2)0.054 (2)0.004 (2)
C19A0.087 (3)0.046 (2)0.046 (2)0.0029 (18)0.0196 (18)0.0137 (16)
C20A0.078 (3)0.048 (2)0.058 (2)0.0036 (18)0.0280 (18)0.0194 (17)
C21A0.164 (4)0.041 (2)0.088 (3)0.007 (2)0.068 (3)0.013 (2)
C22A0.068 (2)0.075 (2)0.044 (2)0.0219 (19)0.0301 (17)0.0096 (18)
C1B0.041 (2)0.075 (2)0.0243 (17)0.0205 (19)0.0005 (14)0.0033 (16)
C2B0.046 (2)0.073 (2)0.0369 (18)0.0143 (17)0.0040 (14)0.0223 (17)
C3B0.0445 (19)0.056 (2)0.0344 (17)0.0196 (15)0.0058 (13)0.0154 (15)
C4B0.0348 (17)0.0428 (17)0.0342 (17)0.0168 (14)0.0045 (13)0.0069 (14)
C5B0.0363 (17)0.0389 (17)0.0357 (17)0.0046 (13)0.0068 (13)0.0066 (14)
C6B0.092 (3)0.0417 (19)0.042 (2)0.0097 (18)0.0229 (18)0.0152 (16)
C7B0.056 (2)0.0436 (19)0.061 (2)0.0117 (15)0.0263 (17)0.0228 (17)
C8B0.0378 (17)0.0336 (16)0.0258 (15)0.0084 (13)0.0014 (12)0.0072 (12)
C9B0.0339 (16)0.0318 (15)0.0237 (15)0.0053 (12)0.0015 (12)0.0068 (12)
C10B0.0386 (18)0.069 (2)0.0283 (17)0.0197 (16)0.0004 (13)0.0003 (15)
C11B0.0363 (17)0.0444 (18)0.0392 (18)0.0151 (14)0.0031 (13)0.0017 (14)
C12B0.0257 (15)0.0306 (15)0.0339 (16)0.0059 (12)0.0012 (12)0.0039 (13)
C13B0.0355 (16)0.0284 (15)0.0305 (16)0.0027 (12)0.0036 (12)0.0059 (13)
C14B0.0424 (18)0.0413 (18)0.0451 (18)0.0069 (14)0.0117 (14)0.0130 (15)
C15B0.0383 (18)0.0451 (18)0.0437 (18)0.0004 (14)0.0114 (14)0.0117 (15)
C16B0.0354 (17)0.0340 (16)0.0305 (16)0.0022 (13)0.0040 (12)0.0038 (13)
C17B0.0376 (17)0.0311 (16)0.0340 (17)0.0007 (13)0.0043 (13)0.0033 (13)
C18B0.051 (2)0.053 (2)0.053 (2)0.0160 (16)0.0129 (16)0.0182 (17)
C19B0.063 (2)0.0321 (17)0.049 (2)0.0045 (15)0.0137 (16)0.0007 (15)
C20B0.050 (2)0.0448 (19)0.052 (2)0.0099 (15)0.0115 (15)0.0225 (16)
C21B0.069 (2)0.0379 (18)0.0423 (19)0.0086 (15)0.0119 (16)0.0175 (15)
C22B0.053 (2)0.057 (2)0.0443 (19)0.0081 (16)0.0203 (15)0.0024 (16)
C1C0.0346 (19)0.050 (2)0.0304 (17)0.0059 (15)0.0018 (14)0.0009 (15)
C2C0.0441 (19)0.0368 (17)0.0436 (18)0.0068 (14)0.0006 (14)0.0074 (14)
C3C0.0395 (18)0.0374 (17)0.0393 (17)0.0136 (13)0.0010 (13)0.0100 (14)
C4C0.0268 (15)0.0397 (17)0.0330 (16)0.0136 (12)0.0014 (12)0.0115 (13)
C5C0.0264 (15)0.0382 (17)0.0339 (16)0.0078 (12)0.0055 (12)0.0075 (13)
C6C0.063 (2)0.0353 (18)0.056 (2)0.0119 (15)0.0277 (17)0.0155 (16)
C7C0.049 (2)0.0345 (18)0.068 (2)0.0028 (15)0.0178 (17)0.0013 (17)
C8C0.0307 (16)0.0355 (16)0.0299 (16)0.0087 (12)0.0056 (12)0.0007 (13)
C9C0.0301 (16)0.0262 (15)0.0351 (16)0.0044 (12)0.0015 (12)0.0005 (13)
C10C0.0436 (19)0.067 (2)0.047 (2)0.0250 (16)0.0222 (15)0.0174 (17)
C11C0.058 (2)0.0448 (19)0.0329 (17)0.0125 (15)0.0084 (14)0.0084 (14)
C12C0.0311 (16)0.0330 (16)0.0297 (16)0.0070 (12)0.0042 (12)0.0081 (13)
C13C0.0475 (18)0.0329 (16)0.0262 (16)0.0072 (13)0.0020 (13)0.0090 (13)
C14C0.068 (2)0.0372 (18)0.0397 (18)0.0227 (16)0.0023 (15)0.0084 (14)
C15C0.054 (2)0.0357 (17)0.0430 (19)0.0162 (15)0.0030 (15)0.0027 (14)
C16C0.0342 (17)0.0364 (17)0.0267 (15)0.0038 (13)0.0031 (12)0.0029 (13)
C17C0.0309 (16)0.0353 (16)0.0287 (16)0.0056 (12)0.0009 (12)0.0058 (13)
C18C0.0491 (19)0.0435 (18)0.0331 (17)0.0088 (14)0.0019 (13)0.0134 (14)
C19C0.0397 (18)0.0480 (19)0.052 (2)0.0050 (14)0.0067 (15)0.0102 (16)
C20C0.071 (2)0.0324 (17)0.049 (2)0.0006 (16)0.0126 (17)0.0123 (15)
C21C0.080 (3)0.0372 (19)0.070 (2)0.0110 (17)0.0275 (19)0.0123 (18)
C22C0.0497 (19)0.054 (2)0.0369 (18)0.0201 (15)0.0136 (14)0.0144 (15)
C1D0.0393 (19)0.055 (2)0.0273 (16)0.0129 (15)0.0019 (13)0.0114 (14)
C2D0.0441 (19)0.0486 (19)0.0405 (18)0.0070 (15)0.0030 (14)0.0196 (15)
C3D0.0324 (17)0.0464 (18)0.0352 (17)0.0005 (14)0.0030 (13)0.0112 (14)
C4D0.0232 (15)0.0360 (16)0.0291 (16)0.0018 (12)0.0064 (11)0.0048 (13)
C5D0.0295 (15)0.0283 (15)0.0316 (16)0.0060 (12)0.0070 (12)0.0028 (12)
C6D0.0415 (18)0.0335 (16)0.0409 (18)0.0077 (13)0.0011 (13)0.0125 (14)
C7D0.0481 (19)0.0395 (18)0.0404 (18)0.0142 (14)0.0066 (14)0.0137 (14)
C8D0.0318 (16)0.0335 (16)0.0239 (15)0.0055 (12)0.0019 (12)0.0068 (12)
C9D0.0326 (16)0.0317 (15)0.0222 (15)0.0015 (12)0.0033 (11)0.0053 (12)
C10D0.0354 (17)0.0498 (18)0.0302 (16)0.0062 (14)0.0090 (13)0.0082 (14)
C11D0.0306 (16)0.0411 (17)0.0350 (17)0.0058 (13)0.0112 (13)0.0006 (13)
C12D0.0271 (16)0.0297 (15)0.0301 (16)0.0046 (12)0.0059 (12)0.0044 (12)
C13D0.0377 (17)0.0298 (15)0.0277 (16)0.0026 (12)0.0053 (12)0.0027 (13)
C14D0.0383 (18)0.0500 (19)0.0400 (18)0.0009 (14)0.0024 (14)0.0076 (15)
C15D0.0408 (19)0.055 (2)0.0472 (19)0.0134 (15)0.0043 (14)0.0131 (16)
C16D0.0458 (19)0.0404 (17)0.0338 (17)0.0181 (15)0.0030 (13)0.0004 (14)
C17D0.0474 (19)0.0312 (16)0.0396 (18)0.0126 (14)0.0051 (14)0.0008 (14)
C18D0.067 (2)0.050 (2)0.067 (2)0.0293 (18)0.0009 (18)0.0152 (18)
C19D0.056 (2)0.0313 (17)0.051 (2)0.0022 (15)0.0039 (16)0.0006 (15)
C20D0.054 (2)0.0362 (17)0.0419 (18)0.0054 (14)0.0007 (14)0.0149 (15)
C21D0.052 (2)0.0385 (18)0.0402 (18)0.0074 (14)0.0008 (14)0.0126 (14)
C22D0.0400 (18)0.0423 (18)0.0371 (17)0.0075 (14)0.0031 (13)0.0029 (14)
O1A0.0297 (11)0.0381 (11)0.0368 (11)0.0005 (9)0.0019 (8)0.0099 (9)
O2A0.0457 (12)0.0323 (11)0.0314 (11)0.0019 (9)0.0116 (9)0.0020 (9)
O3A0.0309 (11)0.0348 (11)0.0329 (11)0.0072 (8)0.0074 (8)0.0030 (9)
O4A0.0459 (12)0.0387 (11)0.0320 (11)0.0100 (9)0.0052 (9)0.0009 (9)
O5A0.0504 (13)0.0557 (13)0.0436 (13)0.0246 (11)0.0220 (10)0.0132 (10)
O6A0.0361 (14)0.0854 (18)0.0640 (16)0.0196 (12)0.0130 (11)0.0144 (13)
O1B0.0462 (13)0.0499 (13)0.0387 (12)0.0257 (11)0.0087 (10)0.0033 (10)
O2B0.0418 (11)0.0318 (10)0.0267 (10)0.0033 (9)0.0064 (8)0.0070 (8)
O3B0.0297 (10)0.0327 (10)0.0267 (10)0.0075 (8)0.0019 (8)0.0041 (8)
O4B0.0345 (11)0.0405 (11)0.0292 (11)0.0024 (9)0.0023 (8)0.0059 (9)
O5B0.0305 (11)0.0365 (11)0.0295 (11)0.0018 (8)0.0010 (8)0.0064 (9)
O6B0.0413 (15)0.114 (2)0.0636 (16)0.0334 (14)0.0026 (12)0.0048 (14)
O1C0.0365 (12)0.0531 (13)0.0313 (11)0.0197 (10)0.0018 (9)0.0102 (10)
O2C0.0386 (11)0.0322 (11)0.0277 (10)0.0112 (8)0.0005 (8)0.0051 (9)
O3C0.0310 (10)0.0281 (10)0.0277 (10)0.0058 (8)0.0036 (8)0.0026 (8)
O4C0.0365 (11)0.0332 (11)0.0295 (11)0.0005 (8)0.0011 (8)0.0060 (8)
O5C0.0307 (11)0.0327 (11)0.0307 (11)0.0037 (8)0.0031 (8)0.0035 (8)
O6C0.0324 (13)0.0878 (18)0.0617 (15)0.0113 (12)0.0046 (11)0.0053 (13)
O1D0.0251 (10)0.0434 (12)0.0341 (11)0.0013 (8)0.0085 (8)0.0076 (9)
O2D0.0364 (11)0.0305 (10)0.0291 (11)0.0044 (8)0.0009 (8)0.0062 (8)
O3D0.0271 (10)0.0328 (10)0.0259 (10)0.0029 (8)0.0055 (8)0.0052 (8)
O4D0.0427 (12)0.0372 (11)0.0325 (11)0.0155 (9)0.0073 (8)0.0047 (9)
O5D0.0470 (12)0.0345 (11)0.0283 (11)0.0096 (9)0.0072 (9)0.0026 (9)
O6D0.0405 (13)0.0847 (17)0.0534 (14)0.0198 (12)0.0081 (10)0.0263 (12)
Geometric parameters (Å, º) top
C1A—O6A1.205 (3)C20B—H20E0.9800
C1A—O1A1.346 (3)C20B—H20F0.9800
C1A—C2A1.484 (4)C21B—H21D0.9800
C2A—C3A1.498 (4)C21B—H21E0.9800
C2A—H2A10.9900C21B—H21F0.9800
C2A—H2A20.9900C22B—H22D0.9800
C3A—C4A1.516 (4)C22B—H22E0.9800
C3A—H3A10.9900C22B—H22F0.9800
C3A—H3A20.9900C1C—O6C1.198 (3)
C4A—O1A1.464 (3)C1C—O1C1.356 (3)
C4A—C22A1.512 (4)C1C—C2C1.501 (4)
C4A—C5A1.532 (4)C2C—C3C1.517 (4)
C5A—O2A1.433 (3)C2C—H2C10.9900
C5A—C6Y1.517 (4)C2C—H2C20.9900
C5A—C6A1.517 (4)C3C—C4C1.527 (4)
C5A—H5A1.0000C3C—H3C10.9900
C6A—C7A1.5100 (10)C3C—H3C20.9900
C6A—H6A10.9900C4C—O1C1.468 (3)
C6A—H6A20.9900C4C—C5C1.511 (4)
C7A—C8A1.5099 (10)C4C—C22C1.518 (4)
C7A—H7A10.9900C5C—O2C1.439 (3)
C7A—H7A20.9900C5C—C6C1.515 (4)
C8A—O2A1.433 (3)C5C—H5C1.0000
C8A—C9A1.509 (4)C6C—C7C1.508 (4)
C8A—H8A1.0000C6C—H6C10.9900
C6Y—C7Y1.5095 (10)C6C—H6C20.9900
C6Y—H6Y10.9900C7C—C8C1.516 (4)
C6Y—H6Y20.9900C7C—H7C10.9900
C7Y—C8Y1.5112 (10)C7C—H7C20.9900
C7Y—H7Y10.9900C8C—O2C1.445 (3)
C7Y—H7Y20.9900C8C—C9C1.528 (3)
C8Y—O2A1.433 (3)C8C—H8C1.0000
C8Y—C9A1.509 (4)C9C—O3C1.450 (3)
C8Y—H8Y1.0169C9C—C10C1.501 (4)
C10A—C11A1.5101 (11)C9C—C21C1.533 (4)
C10A—C9A1.5108 (11)C10C—C11C1.501 (4)
C10A—H10A0.9900C10C—H10F0.9900
C10A—H10B0.9900C10C—H10G0.9900
C11A—C12A1.5101 (10)C11C—C12C1.522 (4)
C11A—H11A0.9900C11C—H11E0.9900
C11A—H11B0.9900C11C—H11F0.9900
C10Y—C9A1.5097 (10)C12C—O3C1.420 (3)
C10Y—C11Y1.5108 (11)C12C—O5C1.436 (3)
C10Y—H10W0.9900C12C—C13C1.537 (4)
C10Y—H10Z0.9900C13C—O4C1.444 (3)
C11Y—C12A1.5112 (10)C13C—C20C1.522 (4)
C11Y—H11W0.9900C13C—C14C1.537 (4)
C11Y—H11Z0.9900C14C—C15C1.536 (4)
C9A—O3A1.458 (3)C14C—H14E0.9900
C9A—C21A1.547 (5)C14C—H14F0.9900
C12A—O3A1.424 (3)C15C—C16C1.524 (4)
C12A—O5A1.439 (3)C15C—H15E0.9900
C12A—C13A1.535 (4)C15C—H15F0.9900
C13A—O4A1.445 (3)C16C—O4C1.443 (3)
C13A—C20A1.510 (4)C16C—C17C1.524 (4)
C13A—C14A1.527 (4)C16C—H16C1.0000
C14A—C15A1.522 (4)C17C—O5C1.453 (3)
C14A—H14A0.9900C17C—C18C1.521 (4)
C14A—H14B0.9900C17C—C19C1.524 (4)
C15A—C16A1.525 (4)C18C—H18G0.9800
C15A—H15A0.9900C18C—H18H0.9800
C15A—H15B0.9900C18C—H18I0.9800
C16A—O4A1.440 (3)C19C—H19G0.9800
C16A—C17A1.515 (4)C19C—H19H0.9800
C16A—H16A1.0000C19C—H19I0.9800
C17A—O5A1.451 (3)C20C—H20G0.9800
C17A—C19A1.512 (4)C20C—H20H0.9800
C17A—C18A1.531 (4)C20C—H20I0.9800
C18A—H18A0.9800C21C—H21G0.9800
C18A—H18B0.9800C21C—H21H0.9800
C18A—H18C0.9800C21C—H21I0.9800
C19A—H19A0.9800C22C—H22G0.9800
C19A—H19B0.9800C22C—H22H0.9800
C19A—H19C0.9800C22C—H22I0.9800
C20A—H20A0.9800C1D—O6D1.203 (3)
C20A—H20B0.9800C1D—O1D1.357 (3)
C20A—H20C0.9800C1D—C2D1.497 (4)
C21A—H21A0.9800C2D—C3D1.521 (4)
C21A—H21B0.9800C2D—H2D10.9900
C21A—H21C0.9800C2D—H2D20.9900
C22A—H22A0.9800C3D—C4D1.532 (4)
C22A—H22B0.9800C3D—H3D10.9900
C22A—H22C0.9800C3D—H3D20.9900
C1B—O6B1.200 (3)C4D—O1D1.465 (3)
C1B—O1B1.354 (4)C4D—C22D1.516 (4)
C1B—C2B1.494 (4)C4D—C5D1.523 (3)
C2B—C3B1.520 (4)C5D—O2D1.439 (3)
C2B—H2B10.9900C5D—C6D1.519 (4)
C2B—H2B20.9900C5D—H5D1.0000
C3B—C4B1.521 (4)C6D—C7D1.515 (4)
C3B—H3B10.9900C6D—H6D10.9900
C3B—H3B20.9900C6D—H6D20.9900
C4B—O1B1.472 (3)C7D—C8D1.535 (4)
C4B—C22B1.515 (4)C7D—H7D10.9900
C4B—C5B1.519 (4)C7D—H7D20.9900
C5B—O2B1.426 (3)C8D—O2D1.448 (3)
C5B—C6B1.526 (4)C8D—C9D1.527 (3)
C5B—H5B1.0000C8D—H8D1.0000
C6B—C7B1.465 (4)C9D—O3D1.456 (3)
C6B—H6B10.9900C9D—C21D1.519 (4)
C6B—H6B20.9900C9D—C10D1.531 (3)
C7B—C8B1.531 (4)C10D—C11D1.534 (4)
C7B—H7B10.9900C10D—H10H0.9900
C7B—H7B20.9900C10D—H10I0.9900
C8B—O2B1.434 (3)C11D—C12D1.519 (3)
C8B—C9B1.522 (3)C11D—H11G0.9900
C8B—H8B1.0000C11D—H11H0.9900
C9B—O3B1.461 (3)C12D—O3D1.421 (3)
C9B—C21B1.509 (4)C12D—O4D1.437 (3)
C9B—C10B1.536 (4)C12D—C13D1.541 (4)
C10B—C11B1.525 (4)C13D—O5D1.439 (3)
C10B—H10D0.9900C13D—C20D1.513 (4)
C10B—H10E0.9900C13D—C14D1.537 (4)
C11B—C12B1.518 (4)C14D—C15D1.538 (4)
C11B—H11C0.9900C14D—H14G0.9900
C11B—H11D0.9900C14D—H14H0.9900
C12B—O3B1.410 (3)C15D—C16D1.522 (4)
C12B—O5B1.433 (3)C15D—H15G0.9900
C12B—C13B1.536 (4)C15D—H15H0.9900
C13B—O4B1.443 (3)C16D—O5D1.440 (3)
C13B—C20B1.517 (4)C16D—C17D1.533 (4)
C13B—C14B1.534 (4)C16D—H16D1.0000
C14B—C15B1.522 (4)C17D—O4D1.454 (3)
C14B—H14C0.9900C17D—C19D1.519 (4)
C14B—H14D0.9900C17D—C18D1.524 (4)
C15B—C16B1.525 (4)C18D—H18J0.9800
C15B—H15C0.9900C18D—H18K0.9800
C15B—H15D0.9900C18D—H18L0.9800
C16B—O4B1.437 (3)C19D—H19J0.9800
C16B—C17B1.524 (4)C19D—H19K0.9800
C16B—H16B1.0000C19D—H19L0.9800
C17B—O5B1.457 (3)C20D—H20J0.9800
C17B—C19B1.522 (4)C20D—H20K0.9800
C17B—C18B1.524 (4)C20D—H20L0.9800
C18B—H18D0.9800C21D—H21J0.9800
C18B—H18E0.9800C21D—H21K0.9800
C18B—H18F0.9800C21D—H21L0.9800
C19B—H19D0.9800C22D—H22J0.9800
C19B—H19E0.9800C22D—H22K0.9800
C19B—H19F0.9800C22D—H22L0.9800
C20B—H20D0.9800
O6A—C1A—O1A120.1 (3)H21D—C21B—H21F109.5
O6A—C1A—C2A129.5 (3)H21E—C21B—H21F109.5
O1A—C1A—C2A110.4 (2)C4B—C22B—H22D109.5
C1A—C2A—C3A104.5 (2)C4B—C22B—H22E109.5
C1A—C2A—H2A1110.8H22D—C22B—H22E109.5
C3A—C2A—H2A1110.8C4B—C22B—H22F109.5
C1A—C2A—H2A2110.8H22D—C22B—H22F109.5
C3A—C2A—H2A2110.8H22E—C22B—H22F109.5
H2A1—C2A—H2A2108.9O6C—C1C—O1C121.4 (3)
C2A—C3A—C4A104.5 (2)O6C—C1C—C2C128.7 (3)
C2A—C3A—H3A1110.8O1C—C1C—C2C109.9 (2)
C4A—C3A—H3A1110.8C1C—C2C—C3C104.1 (2)
C2A—C3A—H3A2110.8C1C—C2C—H2C1110.9
C4A—C3A—H3A2110.8C3C—C2C—H2C1110.9
H3A1—C3A—H3A2108.9C1C—C2C—H2C2110.9
O1A—C4A—C22A106.6 (2)C3C—C2C—H2C2110.9
O1A—C4A—C3A104.3 (2)H2C1—C2C—H2C2109.0
C22A—C4A—C3A113.5 (2)C2C—C3C—C4C104.3 (2)
O1A—C4A—C5A108.36 (19)C2C—C3C—H3C1110.9
C22A—C4A—C5A110.1 (2)C4C—C3C—H3C1110.9
C3A—C4A—C5A113.4 (2)C2C—C3C—H3C2110.9
O2A—C5A—C6Y106.56 (19)C4C—C3C—H3C2110.9
O2A—C5A—C6A106.56 (19)H3C1—C3C—H3C2108.9
O2A—C5A—C4A108.2 (2)O1C—C4C—C5C108.15 (19)
C6Y—C5A—C4A116.4 (2)O1C—C4C—C22C107.9 (2)
C6A—C5A—C4A116.4 (2)C5C—C4C—C22C110.5 (2)
O2A—C5A—H5A108.5O1C—C4C—C3C103.7 (2)
C6A—C5A—H5A108.5C5C—C4C—C3C113.1 (2)
C4A—C5A—H5A108.5C22C—C4C—C3C113.0 (2)
C7A—C6A—C5A105.0 (3)O2C—C5C—C4C109.4 (2)
C7A—C6A—H6A1110.7O2C—C5C—C6C104.4 (2)
C5A—C6A—H6A1110.7C4C—C5C—C6C116.1 (2)
C7A—C6A—H6A2110.7O2C—C5C—H5C108.9
C5A—C6A—H6A2110.7C4C—C5C—H5C108.9
H6A1—C6A—H6A2108.8C6C—C5C—H5C108.9
C8A—C7A—C6A104.0 (2)C7C—C6C—C5C102.8 (2)
C8A—C7A—H7A1111.0C7C—C6C—H6C1111.2
C6A—C7A—H7A1111.0C5C—C6C—H6C1111.2
C8A—C7A—H7A2111.0C7C—C6C—H6C2111.2
C6A—C7A—H7A2111.0C5C—C6C—H6C2111.2
H7A1—C7A—H7A2109.0H6C1—C6C—H6C2109.1
O2A—C8A—C9A108.5 (2)C6C—C7C—C8C104.9 (2)
O2A—C8A—C7A109.4 (2)C6C—C7C—H7C1110.8
C9A—C8A—C7A130.7 (5)C8C—C7C—H7C1110.8
O2A—C8A—H8A101.1C6C—C7C—H7C2110.8
C9A—C8A—H8A101.1C8C—C7C—H7C2110.8
C7A—C8A—H8A101.4H7C1—C7C—H7C2108.8
C7Y—C6Y—C5A103.9 (2)O2C—C8C—C7C106.2 (2)
C7Y—C6Y—H6Y1111.0O2C—C8C—C9C108.98 (19)
C5A—C6Y—H6Y1111.0C7C—C8C—C9C117.2 (2)
C7Y—C6Y—H6Y2111.0O2C—C8C—H8C108.0
C5A—C6Y—H6Y2111.0C7C—C8C—H8C108.0
H6Y1—C6Y—H6Y2109.0C9C—C8C—H8C108.0
C6Y—C7Y—C8Y103.9 (2)O3C—C9C—C10C105.1 (2)
C6Y—C7Y—H7Y1111.0O3C—C9C—C8C105.05 (19)
C8Y—C7Y—H7Y1111.0C10C—C9C—C8C116.1 (2)
C6Y—C7Y—H7Y2111.0O3C—C9C—C21C108.7 (2)
C8Y—C7Y—H7Y2111.0C10C—C9C—C21C113.1 (3)
H7Y1—C7Y—H7Y2109.0C8C—C9C—C21C108.3 (2)
O2A—C8Y—C9A108.5 (2)C9C—C10C—C11C107.3 (2)
O2A—C8Y—C7Y102.2 (2)C9C—C10C—H10F110.3
C9A—C8Y—C7Y111.8 (2)C11C—C10C—H10F110.3
O2A—C8Y—H8Y111.7C9C—C10C—H10G110.3
C9A—C8Y—H8Y111.5C11C—C10C—H10G110.3
C7Y—C8Y—H8Y110.9H10F—C10C—H10G108.5
C11A—C10A—C9A108.5 (8)C10C—C11C—C12C104.0 (2)
C11A—C10A—H10A110.0C10C—C11C—H11E111.0
C9A—C10A—H10A110.0C12C—C11C—H11E111.0
C11A—C10A—H10B110.0C10C—C11C—H11F111.0
C9A—C10A—H10B110.0C12C—C11C—H11F111.0
H10A—C10A—H10B108.4H11E—C11C—H11F109.0
C10A—C11A—C12A103.6 (8)O3C—C12C—O5C111.2 (2)
C10A—C11A—H11A111.0O3C—C12C—C11C104.4 (2)
C12A—C11A—H11A111.0O5C—C12C—C11C106.1 (2)
C10A—C11A—H11B111.0O3C—C12C—C13C109.0 (2)
C12A—C11A—H11B111.0O5C—C12C—C13C109.6 (2)
H11A—C11A—H11B109.0C11C—C12C—C13C116.4 (2)
C9A—C10Y—C11Y104.7 (3)O4C—C13C—C20C107.5 (2)
C9A—C10Y—H10W110.8O4C—C13C—C12C107.1 (2)
C11Y—C10Y—H10W110.8C20C—C13C—C12C113.3 (2)
C9A—C10Y—H10Z110.8O4C—C13C—C14C103.1 (2)
C11Y—C10Y—H10Z110.8C20C—C13C—C14C114.2 (2)
H10W—C10Y—H10Z108.9C12C—C13C—C14C110.8 (2)
C10Y—C11Y—C12A103.4 (3)C15C—C14C—C13C104.6 (2)
C10Y—C11Y—H11W111.1C15C—C14C—H14E110.8
C12A—C11Y—H11W111.1C13C—C14C—H14E110.8
C10Y—C11Y—H11Z111.1C15C—C14C—H14F110.8
C12A—C11Y—H11Z111.1C13C—C14C—H14F110.8
H11W—C11Y—H11Z109.0H14E—C14C—H14F108.9
O3A—C9A—C8A105.2 (2)C16C—C15C—C14C102.9 (2)
O3A—C9A—C8Y105.2 (2)C16C—C15C—H15E111.2
O3A—C9A—C10Y106.1 (2)C14C—C15C—H15E111.2
O3A—C9A—C10A101.2 (6)C16C—C15C—H15F111.2
O3A—C9A—C21A107.7 (2)C14C—C15C—H15F111.2
C8A—C9A—C21A108.5 (2)H15E—C15C—H15F109.1
C8Y—C9A—C21A108.5 (2)O4C—C16C—C15C103.5 (2)
C10Y—C9A—C21A108.5 (4)O4C—C16C—C17C107.7 (2)
C10A—C9A—C21A133.0 (8)C15C—C16C—C17C114.8 (2)
O3A—C12A—O5A110.3 (2)O4C—C16C—H16C110.2
O3A—C12A—C11A102.6 (6)C15C—C16C—H16C110.2
O5A—C12A—C11A116.6 (8)C17C—C16C—H16C110.2
O3A—C12A—C11Y105.1 (2)O5C—C17C—C18C111.4 (2)
O5A—C12A—C11Y102.0 (3)O5C—C17C—C19C104.5 (2)
O3A—C12A—C13A108.5 (2)C18C—C17C—C19C109.5 (2)
O5A—C12A—C13A109.8 (2)O5C—C17C—C16C108.3 (2)
C11A—C12A—C13A108.6 (7)C18C—C17C—C16C110.6 (2)
C11Y—C12A—C13A120.8 (3)C19C—C17C—C16C112.4 (2)
O4A—C13A—C20A107.6 (2)C17C—C18C—H18G109.5
O4A—C13A—C14A103.2 (2)C17C—C18C—H18H109.5
C20A—C13A—C14A113.1 (3)H18G—C18C—H18H109.5
O4A—C13A—C12A108.3 (2)C17C—C18C—H18I109.5
C20A—C13A—C12A113.1 (2)H18G—C18C—H18I109.5
C14A—C13A—C12A110.9 (2)H18H—C18C—H18I109.5
C15A—C14A—C13A104.0 (2)C17C—C19C—H19G109.5
C15A—C14A—H14A111.0C17C—C19C—H19H109.5
C13A—C14A—H14A111.0H19G—C19C—H19H109.5
C15A—C14A—H14B111.0C17C—C19C—H19I109.5
C13A—C14A—H14B111.0H19G—C19C—H19I109.5
H14A—C14A—H14B109.0H19H—C19C—H19I109.5
C14A—C15A—C16A103.7 (2)C13C—C20C—H20G109.5
C14A—C15A—H15A111.0C13C—C20C—H20H109.5
C16A—C15A—H15A111.0H20G—C20C—H20H109.5
C14A—C15A—H15B111.0C13C—C20C—H20I109.5
C16A—C15A—H15B111.0H20G—C20C—H20I109.5
H15A—C15A—H15B109.0H20H—C20C—H20I109.5
O4A—C16A—C17A107.8 (2)C9C—C21C—H21G109.5
O4A—C16A—C15A103.4 (2)C9C—C21C—H21H109.5
C17A—C16A—C15A114.8 (3)H21G—C21C—H21H109.5
O4A—C16A—H16A110.2C9C—C21C—H21I109.5
C17A—C16A—H16A110.2H21G—C21C—H21I109.5
C15A—C16A—H16A110.2H21H—C21C—H21I109.5
O5A—C17A—C19A111.0 (2)C4C—C22C—H22G109.5
O5A—C17A—C16A108.0 (2)C4C—C22C—H22H109.5
C19A—C17A—C16A111.2 (3)H22G—C22C—H22H109.5
O5A—C17A—C18A104.1 (2)C4C—C22C—H22I109.5
C19A—C17A—C18A110.2 (3)H22G—C22C—H22I109.5
C16A—C17A—C18A112.2 (2)H22H—C22C—H22I109.5
C17A—C18A—H18A109.5O6D—C1D—O1D120.8 (3)
C17A—C18A—H18B109.5O6D—C1D—C2D128.7 (3)
H18A—C18A—H18B109.5O1D—C1D—C2D110.5 (2)
C17A—C18A—H18C109.5C1D—C2D—C3D104.2 (2)
H18A—C18A—H18C109.5C1D—C2D—H2D1110.9
H18B—C18A—H18C109.5C3D—C2D—H2D1110.9
C17A—C19A—H19A109.5C1D—C2D—H2D2110.9
C17A—C19A—H19B109.5C3D—C2D—H2D2110.9
H19A—C19A—H19B109.5H2D1—C2D—H2D2108.9
C17A—C19A—H19C109.5C2D—C3D—C4D104.7 (2)
H19A—C19A—H19C109.5C2D—C3D—H3D1110.8
H19B—C19A—H19C109.5C4D—C3D—H3D1110.8
C13A—C20A—H20A109.5C2D—C3D—H3D2110.8
C13A—C20A—H20B109.5C4D—C3D—H3D2110.8
H20A—C20A—H20B109.5H3D1—C3D—H3D2108.9
C13A—C20A—H20C109.5O1D—C4D—C22D107.83 (19)
H20A—C20A—H20C109.5O1D—C4D—C5D107.55 (19)
H20B—C20A—H20C109.5C22D—C4D—C5D110.5 (2)
C9A—C21A—H21A109.5O1D—C4D—C3D104.0 (2)
C9A—C21A—H21B109.5C22D—C4D—C3D113.2 (2)
H21A—C21A—H21B109.5C5D—C4D—C3D113.2 (2)
C9A—C21A—H21C109.5O2D—C5D—C6D104.1 (2)
H21A—C21A—H21C109.5O2D—C5D—C4D108.2 (2)
H21B—C21A—H21C109.5C6D—C5D—C4D117.0 (2)
C4A—C22A—H22A109.5O2D—C5D—H5D109.1
C4A—C22A—H22B109.5C6D—C5D—H5D109.1
H22A—C22A—H22B109.5C4D—C5D—H5D109.1
C4A—C22A—H22C109.5C7D—C6D—C5D104.1 (2)
H22A—C22A—H22C109.5C7D—C6D—H6D1110.9
H22B—C22A—H22C109.5C5D—C6D—H6D1110.9
O6B—C1B—O1B120.6 (3)C7D—C6D—H6D2110.9
O6B—C1B—C2B128.6 (3)C5D—C6D—H6D2110.9
O1B—C1B—C2B110.8 (3)H6D1—C6D—H6D2108.9
C1B—C2B—C3B104.0 (3)C6D—C7D—C8D105.2 (2)
C1B—C2B—H2B1111.0C6D—C7D—H7D1110.7
C3B—C2B—H2B1111.0C8D—C7D—H7D1110.7
C1B—C2B—H2B2111.0C6D—C7D—H7D2110.7
C3B—C2B—H2B2111.0C8D—C7D—H7D2110.7
H2B1—C2B—H2B2109.0H7D1—C7D—H7D2108.8
C2B—C3B—C4B105.0 (2)O2D—C8D—C9D106.81 (19)
C2B—C3B—H3B1110.7O2D—C8D—C7D105.97 (19)
C4B—C3B—H3B1110.7C9D—C8D—C7D117.7 (2)
C2B—C3B—H3B2110.7O2D—C8D—H8D108.7
C4B—C3B—H3B2110.7C9D—C8D—H8D108.7
H3B1—C3B—H3B2108.8C7D—C8D—H8D108.7
O1B—C4B—C22B107.3 (2)O3D—C9D—C21D109.2 (2)
O1B—C4B—C5B107.5 (2)O3D—C9D—C8D105.53 (19)
C22B—C4B—C5B110.8 (2)C21D—C9D—C8D110.2 (2)
O1B—C4B—C3B104.1 (2)O3D—C9D—C10D105.35 (19)
C22B—C4B—C3B113.7 (2)C21D—C9D—C10D112.5 (2)
C5B—C4B—C3B112.9 (2)C8D—C9D—C10D113.6 (2)
O2B—C5B—C4B107.8 (2)C9D—C10D—C11D104.9 (2)
O2B—C5B—C6B104.9 (2)C9D—C10D—H10H110.8
C4B—C5B—C6B117.1 (2)C11D—C10D—H10H110.8
O2B—C5B—H5B108.9C9D—C10D—H10I110.8
C4B—C5B—H5B108.9C11D—C10D—H10I110.8
C6B—C5B—H5B108.9H10H—C10D—H10I108.8
C7B—C6B—C5B106.0 (2)C12D—C11D—C10D103.4 (2)
C7B—C6B—H6B1110.5C12D—C11D—H11G111.1
C5B—C6B—H6B1110.5C10D—C11D—H11G111.1
C7B—C6B—H6B2110.5C12D—C11D—H11H111.1
C5B—C6B—H6B2110.5C10D—C11D—H11H111.1
H6B1—C6B—H6B2108.7H11G—C11D—H11H109.1
C6B—C7B—C8B106.3 (2)O3D—C12D—O4D111.39 (19)
C6B—C7B—H7B1110.5O3D—C12D—C11D104.13 (19)
C8B—C7B—H7B1110.5O4D—C12D—C11D104.8 (2)
C6B—C7B—H7B2110.5O3D—C12D—C13D109.34 (19)
C8B—C7B—H7B2110.5O4D—C12D—C13D110.4 (2)
H7B1—C7B—H7B2108.7C11D—C12D—C13D116.6 (2)
O2B—C8B—C9B107.1 (2)O5D—C13D—C20D107.6 (2)
O2B—C8B—C7B105.3 (2)O5D—C13D—C14D102.7 (2)
C9B—C8B—C7B117.6 (2)C20D—C13D—C14D114.1 (2)
O2B—C8B—H8B108.8O5D—C13D—C12D107.6 (2)
C9B—C8B—H8B108.8C20D—C13D—C12D113.4 (2)
C7B—C8B—H8B108.8C14D—C13D—C12D110.6 (2)
O3B—C9B—C21B109.5 (2)C13D—C14D—C15D104.3 (2)
O3B—C9B—C8B104.74 (19)C13D—C14D—H14G110.9
C21B—C9B—C8B110.2 (2)C15D—C14D—H14G110.9
O3B—C9B—C10B105.0 (2)C13D—C14D—H14H110.9
C21B—C9B—C10B112.3 (2)C15D—C14D—H14H110.9
C8B—C9B—C10B114.6 (2)H14G—C14D—H14H108.9
C11B—C10B—C9B105.0 (2)C16D—C15D—C14D103.2 (2)
C11B—C10B—H10D110.8C16D—C15D—H15G111.1
C9B—C10B—H10D110.8C14D—C15D—H15G111.1
C11B—C10B—H10E110.8C16D—C15D—H15H111.1
C9B—C10B—H10E110.8C14D—C15D—H15H111.1
H10D—C10B—H10E108.8H15G—C15D—H15H109.1
C12B—C11B—C10B102.6 (2)O5D—C16D—C15D104.0 (2)
C12B—C11B—H11C111.2O5D—C16D—C17D107.2 (2)
C10B—C11B—H11C111.2C15D—C16D—C17D114.8 (2)
C12B—C11B—H11D111.2O5D—C16D—H16D110.2
C10B—C11B—H11D111.2C15D—C16D—H16D110.2
H11C—C11B—H11D109.2C17D—C16D—H16D110.2
O3B—C12B—O5B111.6 (2)O4D—C17D—C19D111.5 (2)
O3B—C12B—C11B104.71 (19)O4D—C17D—C18D105.1 (2)
O5B—C12B—C11B104.8 (2)C19D—C17D—C18D109.4 (2)
O3B—C12B—C13B108.4 (2)O4D—C17D—C16D107.4 (2)
O5B—C12B—C13B110.5 (2)C19D—C17D—C16D110.9 (2)
C11B—C12B—C13B116.8 (2)C18D—C17D—C16D112.5 (2)
O4B—C13B—C20B107.3 (2)C17D—C18D—H18J109.5
O4B—C13B—C14B103.10 (19)C17D—C18D—H18K109.5
C20B—C13B—C14B113.6 (2)H18J—C18D—H18K109.5
O4B—C13B—C12B107.6 (2)C17D—C18D—H18L109.5
C20B—C13B—C12B113.8 (2)H18J—C18D—H18L109.5
C14B—C13B—C12B110.6 (2)H18K—C18D—H18L109.5
C15B—C14B—C13B103.9 (2)C17D—C19D—H19J109.5
C15B—C14B—H14C111.0C17D—C19D—H19K109.5
C13B—C14B—H14C111.0H19J—C19D—H19K109.5
C15B—C14B—H14D111.0C17D—C19D—H19L109.5
C13B—C14B—H14D111.0H19J—C19D—H19L109.5
H14C—C14B—H14D109.0H19K—C19D—H19L109.5
C14B—C15B—C16B103.9 (2)C13D—C20D—H20J109.5
C14B—C15B—H15C111.0C13D—C20D—H20K109.5
C16B—C15B—H15C111.0H20J—C20D—H20K109.5
C14B—C15B—H15D111.0C13D—C20D—H20L109.5
C16B—C15B—H15D111.0H20J—C20D—H20L109.5
H15C—C15B—H15D109.0H20K—C20D—H20L109.5
O4B—C16B—C17B107.9 (2)C9D—C21D—H21J109.5
O4B—C16B—C15B103.4 (2)C9D—C21D—H21K109.5
C17B—C16B—C15B114.4 (2)H21J—C21D—H21K109.5
O4B—C16B—H16B110.3C9D—C21D—H21L109.5
C17B—C16B—H16B110.3H21J—C21D—H21L109.5
C15B—C16B—H16B110.3H21K—C21D—H21L109.5
O5B—C17B—C19B111.7 (2)C4D—C22D—H22J109.5
O5B—C17B—C18B104.2 (2)C4D—C22D—H22K109.5
C19B—C17B—C18B109.6 (2)H22J—C22D—H22K109.5
O5B—C17B—C16B107.5 (2)C4D—C22D—H22L109.5
C19B—C17B—C16B110.6 (2)H22J—C22D—H22L109.5
C18B—C17B—C16B113.0 (2)H22K—C22D—H22L109.5
C17B—C18B—H18D109.5C1A—O1A—C4A110.8 (2)
C17B—C18B—H18E109.5C5A—O2A—C8Y108.78 (19)
H18D—C18B—H18E109.5C5A—O2A—C8A108.78 (19)
C17B—C18B—H18F109.5C12A—O3A—C9A110.16 (17)
H18D—C18B—H18F109.5C16A—O4A—C13A102.7 (2)
H18E—C18B—H18F109.5C12A—O5A—C17A118.15 (19)
C17B—C19B—H19D109.5C1B—O1B—C4B110.8 (2)
C17B—C19B—H19E109.5C5B—O2B—C8B108.44 (19)
H19D—C19B—H19E109.5C12B—O3B—C9B110.17 (18)
C17B—C19B—H19F109.5C16B—O4B—C13B103.25 (18)
H19D—C19B—H19F109.5C12B—O5B—C17B117.76 (18)
H19E—C19B—H19F109.5C1C—O1C—C4C111.3 (2)
C13B—C20B—H20D109.5C5C—O2C—C8C109.57 (19)
C13B—C20B—H20E109.5C12C—O3C—C9C110.93 (17)
H20D—C20B—H20E109.5C16C—O4C—C13C103.44 (19)
C13B—C20B—H20F109.5C12C—O5C—C17C117.92 (18)
H20D—C20B—H20F109.5C1D—O1D—C4D111.2 (2)
H20E—C20B—H20F109.5C5D—O2D—C8D108.96 (18)
C9B—C21B—H21D109.5C12D—O3D—C9D110.62 (17)
C9B—C21B—H21E109.5C12D—O4D—C17D118.42 (19)
H21D—C21B—H21E109.5C13D—O5D—C16D103.79 (19)
C9B—C21B—H21F109.5
O6A—C1A—C2A—C3A166.6 (3)O4C—C16C—C17C—C18C63.7 (3)
O1A—C1A—C2A—C3A11.8 (3)C15C—C16C—C17C—C18C178.4 (2)
C1A—C2A—C3A—C4A21.2 (3)O4C—C16C—C17C—C19C173.5 (2)
C2A—C3A—C4A—O1A23.0 (3)C15C—C16C—C17C—C19C58.9 (3)
C2A—C3A—C4A—C22A138.7 (3)O6D—C1D—C2D—C3D170.3 (3)
C2A—C3A—C4A—C5A94.6 (3)O1D—C1D—C2D—C3D8.6 (3)
O1A—C4A—C5A—O2A64.4 (3)C1D—C2D—C3D—C4D19.5 (3)
C22A—C4A—C5A—O2A179.3 (2)C2D—C3D—C4D—O1D23.2 (3)
C3A—C4A—C5A—O2A50.9 (3)C2D—C3D—C4D—C22D140.0 (2)
O1A—C4A—C5A—C6Y55.5 (3)C2D—C3D—C4D—C5D93.2 (3)
C22A—C4A—C5A—C6Y60.8 (3)O1D—C4D—C5D—O2D66.3 (2)
C3A—C4A—C5A—C6Y170.7 (2)C22D—C4D—C5D—O2D176.2 (2)
O1A—C4A—C5A—C6A55.5 (3)C3D—C4D—C5D—O2D48.0 (3)
C22A—C4A—C5A—C6A60.8 (3)O1D—C4D—C5D—C6D50.7 (3)
C3A—C4A—C5A—C6A170.7 (2)C22D—C4D—C5D—C6D66.7 (3)
O2A—C5A—C6A—C7A25.8 (7)C3D—C4D—C5D—C6D165.0 (2)
C4A—C5A—C6A—C7A146.5 (6)O2D—C5D—C6D—C7D32.8 (3)
C5A—C6A—C7A—C8A21.2 (10)C4D—C5D—C6D—C7D152.1 (2)
C6A—C7A—C8A—O2A9.8 (10)C5D—C6D—C7D—C8D20.5 (3)
C6A—C7A—C8A—C9A128.4 (5)C6D—C7D—C8D—O2D1.2 (3)
O2A—C5A—C6Y—C7Y4.6 (4)C6D—C7D—C8D—C9D118.2 (2)
C4A—C5A—C6Y—C7Y116.2 (3)O2D—C8D—C9D—O3D175.31 (17)
C5A—C6Y—C7Y—C8Y25.7 (5)C7D—C8D—C9D—O3D65.8 (3)
C6Y—C7Y—C8Y—O2A37.6 (5)O2D—C8D—C9D—C21D57.5 (2)
C6Y—C7Y—C8Y—C9A153.4 (3)C7D—C8D—C9D—C21D176.4 (2)
C9A—C10A—C11A—C12A11.0 (16)O2D—C8D—C9D—C10D69.8 (3)
C9A—C10Y—C11Y—C12A29.0 (4)C7D—C8D—C9D—C10D49.1 (3)
O2A—C8A—C9A—O3A177.29 (19)O3D—C9D—C10D—C11D6.8 (3)
C7A—C8A—C9A—O3A44.2 (6)C21D—C9D—C10D—C11D125.7 (2)
O2A—C8A—C9A—C21A62.3 (3)C8D—C9D—C10D—C11D108.2 (2)
C7A—C8A—C9A—C21A159.2 (6)C9D—C10D—C11D—C12D24.6 (3)
O2A—C8Y—C9A—O3A177.29 (19)C10D—C11D—C12D—O3D33.9 (3)
C7Y—C8Y—C9A—O3A70.8 (3)C10D—C11D—C12D—O4D83.2 (2)
O2A—C8Y—C9A—C21A62.3 (3)C10D—C11D—C12D—C13D154.4 (2)
C7Y—C8Y—C9A—C21A174.2 (3)O3D—C12D—C13D—O5D69.0 (2)
C11Y—C10Y—C9A—O3A15.5 (4)O4D—C12D—C13D—O5D53.9 (3)
C11Y—C10Y—C9A—C21A130.9 (3)C11D—C12D—C13D—O5D173.3 (2)
C11A—C10A—C9A—O3A11.0 (13)O3D—C12D—C13D—C20D49.8 (3)
C11A—C10A—C9A—C21A116.5 (11)O4D—C12D—C13D—C20D172.7 (2)
C10A—C11A—C12A—O3A29.1 (13)C11D—C12D—C13D—C20D67.9 (3)
C10A—C11A—C12A—O5A91.6 (12)O3D—C12D—C13D—C14D179.5 (2)
C10A—C11A—C12A—C13A143.9 (10)O4D—C12D—C13D—C14D57.6 (3)
C10Y—C11Y—C12A—O3A32.3 (4)C11D—C12D—C13D—C14D61.8 (3)
C10Y—C11Y—C12A—O5A82.9 (3)O5D—C13D—C14D—C15D27.0 (3)
C10Y—C11Y—C12A—C13A155.2 (3)C20D—C13D—C14D—C15D143.1 (2)
O3A—C12A—C13A—O4A65.8 (2)C12D—C13D—C14D—C15D87.6 (3)
O5A—C12A—C13A—O4A54.9 (3)C13D—C14D—C15D—C16D0.1 (3)
C11A—C12A—C13A—O4A176.6 (8)C14D—C15D—C16D—O5D27.1 (3)
C11Y—C12A—C13A—O4A173.0 (3)C14D—C15D—C16D—C17D89.7 (3)
O3A—C12A—C13A—C20A53.3 (3)O5D—C16D—C17D—O4D60.5 (3)
O5A—C12A—C13A—C20A174.0 (2)C15D—C16D—C17D—O4D54.5 (3)
C11A—C12A—C13A—C20A57.5 (8)O5D—C16D—C17D—C19D61.5 (3)
C11Y—C12A—C13A—C20A67.9 (4)C15D—C16D—C17D—C19D176.4 (2)
O3A—C12A—C13A—C14A178.3 (2)O5D—C16D—C17D—C18D175.7 (2)
O5A—C12A—C13A—C14A57.7 (3)C15D—C16D—C17D—C18D60.7 (3)
C11A—C12A—C13A—C14A70.8 (8)O6A—C1A—O1A—C4A178.2 (2)
C11Y—C12A—C13A—C14A60.4 (4)C2A—C1A—O1A—C4A3.2 (3)
O4A—C13A—C14A—C15A26.9 (3)C22A—C4A—O1A—C1A137.1 (2)
C20A—C13A—C14A—C15A142.9 (3)C3A—C4A—O1A—C1A16.7 (3)
C12A—C13A—C14A—C15A88.8 (3)C5A—C4A—O1A—C1A104.4 (2)
C13A—C14A—C15A—C16A0.8 (4)C6Y—C5A—O2A—C8Y20.0 (3)
C14A—C15A—C16A—O4A28.4 (3)C4A—C5A—O2A—C8Y145.8 (2)
C14A—C15A—C16A—C17A88.7 (3)C6A—C5A—O2A—C8A20.0 (3)
O4A—C16A—C17A—O5A60.5 (3)C4A—C5A—O2A—C8A145.8 (2)
C15A—C16A—C17A—O5A54.0 (3)C9A—C8Y—O2A—C5A154.2 (2)
O4A—C16A—C17A—C19A61.4 (3)C7Y—C8Y—O2A—C5A36.0 (3)
C15A—C16A—C17A—C19A176.0 (3)C9A—C8A—O2A—C5A154.2 (2)
O4A—C16A—C17A—C18A174.7 (3)C7A—C8A—O2A—C5A6.4 (7)
C15A—C16A—C17A—C18A60.1 (4)O5A—C12A—O3A—C9A85.7 (2)
O6B—C1B—C2B—C3B170.4 (3)C11A—C12A—O3A—C9A39.2 (8)
O1B—C1B—C2B—C3B8.0 (3)C11Y—C12A—O3A—C9A23.6 (4)
C1B—C2B—C3B—C4B19.1 (3)C13A—C12A—O3A—C9A154.0 (2)
C2B—C3B—C4B—O1B23.0 (3)C8A—C9A—O3A—C12A133.4 (2)
C2B—C3B—C4B—C22B139.3 (2)C8Y—C9A—O3A—C12A133.4 (2)
C2B—C3B—C4B—C5B93.3 (3)C10Y—C9A—O3A—C12A5.1 (4)
O1B—C4B—C5B—O2B66.5 (3)C10A—C9A—O3A—C12A31.6 (8)
C22B—C4B—C5B—O2B176.6 (2)C21A—C9A—O3A—C12A110.9 (3)
C3B—C4B—C5B—O2B47.7 (3)C17A—C16A—O4A—C13A75.3 (3)
O1B—C4B—C5B—C6B51.4 (3)C15A—C16A—O4A—C13A46.6 (3)
C22B—C4B—C5B—C6B65.5 (3)C20A—C13A—O4A—C16A165.8 (2)
C3B—C4B—C5B—C6B165.6 (2)C14A—C13A—O4A—C16A46.0 (3)
O2B—C5B—C6B—C7B21.8 (3)C12A—C13A—O4A—C16A71.6 (2)
C4B—C5B—C6B—C7B141.2 (3)O3A—C12A—O5A—C17A77.1 (3)
C5B—C6B—C7B—C8B5.4 (4)C11A—C12A—O5A—C17A166.4 (6)
C6B—C7B—C8B—O2B12.8 (3)C11Y—C12A—O5A—C17A171.6 (3)
C6B—C7B—C8B—C9B131.9 (3)C13A—C12A—O5A—C17A42.4 (3)
O2B—C8B—C9B—O3B173.04 (18)C19A—C17A—O5A—C12A77.2 (3)
C7B—C8B—C9B—O3B68.8 (3)C16A—C17A—O5A—C12A44.9 (3)
O2B—C8B—C9B—C21B55.4 (3)C18A—C17A—O5A—C12A164.3 (3)
C7B—C8B—C9B—C21B173.6 (2)O6B—C1B—O1B—C4B174.4 (3)
O2B—C8B—C9B—C10B72.5 (3)C2B—C1B—O1B—C4B7.0 (3)
C7B—C8B—C9B—C10B45.7 (3)C22B—C4B—O1B—C1B139.8 (2)
O3B—C9B—C10B—C11B8.9 (3)C5B—C4B—O1B—C1B101.0 (2)
C21B—C9B—C10B—C11B127.8 (2)C3B—C4B—O1B—C1B19.0 (3)
C8B—C9B—C10B—C11B105.5 (3)C4B—C5B—O2B—C8B156.4 (2)
C9B—C10B—C11B—C12B26.6 (3)C6B—C5B—O2B—C8B30.9 (3)
C10B—C11B—C12B—O3B35.6 (3)C9B—C8B—O2B—C5B153.4 (2)
C10B—C11B—C12B—O5B82.0 (2)C7B—C8B—O2B—C5B27.5 (3)
C10B—C11B—C12B—C13B155.5 (2)O5B—C12B—O3B—C9B81.2 (2)
O3B—C12B—C13B—O4B67.3 (2)C11B—C12B—O3B—C9B31.7 (3)
O5B—C12B—C13B—O4B55.2 (2)C13B—C12B—O3B—C9B157.00 (19)
C11B—C12B—C13B—O4B174.8 (2)C21B—C9B—O3B—C12B106.5 (2)
O3B—C12B—C13B—C20B51.5 (3)C8B—C9B—O3B—C12B135.3 (2)
O5B—C12B—C13B—C20B174.0 (2)C10B—C9B—O3B—C12B14.2 (3)
C11B—C12B—C13B—C20B66.4 (3)C17B—C16B—O4B—C13B75.4 (2)
O3B—C12B—C13B—C14B179.24 (19)C15B—C16B—O4B—C13B46.2 (2)
O5B—C12B—C13B—C14B56.7 (3)C20B—C13B—O4B—C16B165.8 (2)
C11B—C12B—C13B—C14B62.9 (3)C14B—C13B—O4B—C16B45.6 (2)
O4B—C13B—C14B—C15B26.8 (3)C12B—C13B—O4B—C16B71.3 (2)
C20B—C13B—C14B—C15B142.6 (2)O3B—C12B—O5B—C17B77.2 (3)
C12B—C13B—C14B—C15B88.1 (3)C11B—C12B—O5B—C17B170.0 (2)
C13B—C14B—C15B—C16B0.6 (3)C13B—C12B—O5B—C17B43.4 (3)
C14B—C15B—C16B—O4B27.9 (3)C19B—C17B—O5B—C12B76.3 (3)
C14B—C15B—C16B—C17B89.2 (3)C18B—C17B—O5B—C12B165.4 (2)
O4B—C16B—C17B—O5B60.4 (3)C16B—C17B—O5B—C12B45.2 (3)
C15B—C16B—C17B—O5B54.0 (3)O6C—C1C—O1C—C4C176.0 (2)
O4B—C16B—C17B—C19B61.8 (3)C2C—C1C—O1C—C4C5.4 (3)
C15B—C16B—C17B—C19B176.3 (2)C5C—C4C—O1C—C1C100.6 (2)
O4B—C16B—C17B—C18B174.8 (2)C22C—C4C—O1C—C1C139.9 (2)
C15B—C16B—C17B—C18B60.4 (3)C3C—C4C—O1C—C1C19.8 (3)
O6C—C1C—C2C—C3C167.1 (3)C4C—C5C—O2C—C8C152.4 (2)
O1C—C1C—C2C—C3C11.4 (3)C6C—C5C—O2C—C8C27.5 (3)
C1C—C2C—C3C—C4C22.6 (3)C7C—C8C—O2C—C5C8.7 (3)
C2C—C3C—C4C—O1C25.6 (3)C9C—C8C—O2C—C5C135.8 (2)
C2C—C3C—C4C—C5C91.3 (3)O5C—C12C—O3C—C9C86.2 (2)
C2C—C3C—C4C—C22C142.2 (2)C11C—C12C—O3C—C9C27.8 (3)
O1C—C4C—C5C—O2C58.7 (3)C13C—C12C—O3C—C9C152.8 (2)
C22C—C4C—C5C—O2C176.7 (2)C10C—C9C—O3C—C12C15.8 (3)
C3C—C4C—C5C—O2C55.5 (3)C8C—C9C—O3C—C12C138.7 (2)
O1C—C4C—C5C—C6C59.1 (3)C21C—C9C—O3C—C12C105.6 (2)
C22C—C4C—C5C—C6C58.8 (3)C15C—C16C—O4C—C13C47.5 (2)
C3C—C4C—C5C—C6C173.4 (2)C17C—C16C—O4C—C13C74.5 (2)
O2C—C5C—C6C—C7C34.9 (3)C20C—C13C—O4C—C16C165.2 (2)
C4C—C5C—C6C—C7C155.4 (2)C12C—C13C—O4C—C16C72.8 (2)
C5C—C6C—C7C—C8C29.5 (3)C14C—C13C—O4C—C16C44.2 (2)
C6C—C7C—C8C—O2C13.7 (3)O3C—C12C—O5C—C17C76.2 (3)
C6C—C7C—C8C—C9C108.3 (3)C11C—C12C—O5C—C17C170.8 (2)
O2C—C8C—C9C—O3C177.62 (19)C13C—C12C—O5C—C17C44.4 (3)
C7C—C8C—C9C—O3C61.7 (3)C18C—C17C—O5C—C12C77.1 (3)
O2C—C8C—C9C—C10C66.8 (3)C19C—C17C—O5C—C12C164.9 (2)
C7C—C8C—C9C—C10C53.9 (3)C16C—C17C—O5C—C12C44.8 (3)
O2C—C8C—C9C—C21C61.6 (3)O6D—C1D—O1D—C4D174.2 (2)
C7C—C8C—C9C—C21C177.7 (2)C2D—C1D—O1D—C4D6.7 (3)
O3C—C9C—C10C—C11C3.1 (3)C22D—C4D—O1D—C1D139.5 (2)
C8C—C9C—C10C—C11C112.4 (3)C5D—C4D—O1D—C1D101.3 (2)
C21C—C9C—C10C—C11C121.6 (3)C3D—C4D—O1D—C1D19.0 (3)
C9C—C10C—C11C—C12C19.0 (3)C6D—C5D—O2D—C8D33.5 (2)
C10C—C11C—C12C—O3C28.1 (3)C4D—C5D—O2D—C8D158.65 (19)
C10C—C11C—C12C—O5C89.5 (3)C9D—C8D—O2D—C5D146.59 (19)
C10C—C11C—C12C—C13C148.2 (2)C7D—C8D—O2D—C5D20.3 (2)
O3C—C12C—C13C—O4C64.9 (3)O4D—C12D—O3D—C9D81.1 (2)
O5C—C12C—C13C—O4C57.1 (3)C11D—C12D—O3D—C9D31.3 (2)
C11C—C12C—C13C—O4C177.4 (2)C13D—C12D—O3D—C9D156.59 (19)
O3C—C12C—C13C—C20C53.5 (3)C21D—C9D—O3D—C12D105.7 (2)
O5C—C12C—C13C—C20C175.5 (2)C8D—C9D—O3D—C12D135.87 (19)
C11C—C12C—C13C—C20C64.2 (3)C10D—C9D—O3D—C12D15.4 (3)
O3C—C12C—C13C—C14C176.7 (2)O3D—C12D—O4D—C17D79.3 (3)
O5C—C12C—C13C—C14C54.7 (3)C11D—C12D—O4D—C17D168.7 (2)
C11C—C12C—C13C—C14C65.6 (3)C13D—C12D—O4D—C17D42.4 (3)
O4C—C13C—C14C—C15C23.8 (3)C19D—C17D—O4D—C12D76.5 (3)
C20C—C13C—C14C—C15C140.1 (2)C18D—C17D—O4D—C12D165.0 (2)
C12C—C13C—C14C—C15C90.6 (3)C16D—C17D—O4D—C12D45.1 (3)
C13C—C14C—C15C—C16C4.1 (3)C20D—C13D—O5D—C16D166.1 (2)
C14C—C15C—C16C—O4C30.7 (3)C14D—C13D—O5D—C16D45.4 (2)
C14C—C15C—C16C—C17C86.4 (3)C12D—C13D—O5D—C16D71.4 (2)
O4C—C16C—C17C—O5C58.6 (3)C15D—C16D—O5D—C13D46.0 (2)
C15C—C16C—C17C—O5C56.0 (3)C17D—C16D—O5D—C13D76.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3C—H3C1···O6Bi0.992.643.300 (4)125
C22D—H22K···O6Aii0.982.553.400 (3)146
C2B—H2B2···O6Diii0.992.623.423 (4)139
C22B—H22E···O6Civ0.982.683.501 (4)142
C5B—H5B···O4A1.002.663.510 (3)143
C2D—H2D2···O6Cv0.992.673.573 (4)152
C16D—H16D···O1Bi1.002.613.591 (3)166
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z+1; (iii) x, y, z1; (iv) x, y+1, z; (v) x, y+1, z+1.
Parameters of the Hirshfeld surface (Å3, Å2) of the four crystallographically independent molecules top
MoleculeVolumeAreaGlobularityAsphericity
A524.70395.490.7950.170
B519.88392.580.7960.196
C514.41392.680.7910.181
D524.65395.990.7940.187
Hirshfeld surface analysis was performed using the program CrystalExplorer (Wolff et al. 2012).
 

Acknowledgements

The authors thank the Centro Regionale di Competenza NTAP of Regione Campania (Italy) for the X-ray facility.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAnderson, K. M., Goeta, A. E. & Steed, J. W. (2008). Cryst. Growth Des. 8, 2517–2524.  Web of Science CrossRef CAS Google Scholar
First citationBifulco, G., Caserta, T., Gomez-Paloma, L. & Piccialli, V. (2003). Tetrahedron Lett. 44, 3429–3429.  Web of Science CrossRef CAS Google Scholar
First citationBrock, C. P. (2016). Acta Cryst. B72, 807–821.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrock, C. P. & Dunitz, J. D. (1994). Chem. Mater. 6, 1118–1127.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarella, A., Centore, R., Mager, L., Barsella, A. & Fort, A. (2007). Org. Electron. 8, 57–62.  Web of Science CrossRef CAS Google Scholar
First citationCentore, R., Concilio, S., Panunzi, B., Sirigu, A. & Tirelli, N. (1999). J. Polym. Sci. A Polym. Chem. 37, 603–608.  CrossRef CAS Google Scholar
First citationCentore, R., Fusco, S., Capobianco, A., Piccialli, V., Zaccaria, S. & Peluso, A. (2013). Eur. J. Org. Chem. pp. 3721–3728.  Web of Science CSD CrossRef Google Scholar
First citationD'Errico, S., Oliviero, G., Amato, J., Borbone, N., Cerullo, V., Hemminki, A., Piccialli, V., Zaccaria, S., Mayol, L. & Piccialli, G. (2012a). Chem. Commun. 48, 9310–9312.  CAS Google Scholar
First citationD'Errico, S., Oliviero, G., Borbone, N., Amato, J., D'Alonzo, D., Piccialli, V., Mayol, L. & Piccialli, G. (2012b). Molecules, 17, 13036–13044.  Web of Science CAS PubMed Google Scholar
First citationDesiraju, G. R. (2007). CrystEngComm, 9, 91–92.  Web of Science CrossRef CAS Google Scholar
First citationDuisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIovine, B., Oliviero, B., Garofalo, M., Orefice, M., Nocella, F., Borbone, N., Piccialli, V., Centore, R., Mazzone, M., Piccialli, G. & Bevilacqua, M. A. (2014). PLoS One, 9, e96755. doi: 10.1371/journal.pone.0096755.  Web of Science CrossRef Google Scholar
First citationKitaigorodskii, A. I. (1961). In Organic Chemical Crystallography. New York: Consultants Bureau.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOliviero, G., Amato, J., Borbone, N., D'Errico, S., Piccialli, G., Bucci, E., Piccialli, V. & Mayol, L. (2008). Tetrahedron, 64, 6475–6481.  Web of Science CrossRef CAS Google Scholar
First citationOliviero, G., D'Errico, S., Borbone, N., Amato, J., Piccialli, V., Piccialli, G. & Mayol, L. (2010a). Eur. J. Org. Chem. pp. 1517–1524.  Web of Science CrossRef Google Scholar
First citationOliviero, G., D'Errico, S., Borbone, N., Amato, J., Piccialli, V., Varra, M., Piccialli, G. & Mayol, L. (2010b). Tetrahedron, 66, 1931–1936.  Web of Science CrossRef CAS Google Scholar
First citationPiccialli, V. (2014). Molecules, 19, 6534–6582.  Web of Science CrossRef PubMed Google Scholar
First citationPiccialli, V., Borbone, N. & Oliviero, G. (2007). Tetrahedron Lett. 48, 5131–5135.  Web of Science CSD CrossRef CAS Google Scholar
First citationPiccialli, V., D'Errico, S., Borbone, N., Oliviero, G., Centore, R. & Zaccaria, S. (2013). Eur. J. Org. Chem. 2013, 1781–1789.  Web of Science CSD CrossRef CAS Google Scholar
First citationPiccialli, V., Oliviero, G., Borbone, N., Tuzi, A., Centore, R., Hemminki, A., Ugolini, M. & Cerullo, V. (2009). Org. Biomol. Chem. 7, 3036–3039.  Web of Science CSD CrossRef CAS Google Scholar
First citationPiccialli, V., Tuzi, A. & Centore, R. (2017). Acta Cryst. E73, 780–784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSteed, J. W. (2003). CrystEngComm, 5, 169–179.  Web of Science CrossRef CAS Google Scholar
First citationTeta, R., Irollo, E., Della Sala, G., Pirozzi, G., Mangoni, A. & Costantino, V. (2013). Marine Drugs, 11, 4451–4463.  Web of Science CrossRef PubMed Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds