research communications
Crystal structures of hibiscus acid and hibiscus acid dimethyl ester isolated from Hibiscus sabdariffa (Malvaceae)
aStrathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, and bWestchem, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: a.r.kennedy@strath.ac.uk
The biologically active title compounds have been isolated from Hibiscus sabdariffa plants, hibiscus acid as a dimethyl sulfoxide monosolvate [systematic name: (2S,3R)-3-hydroxy-5-oxo-2,3,4,5-tetrahydrofuran-2,3-dicarboxylic acid dimethyl sulfoxide monosolvate], C6H6O7·C2H6OS, (I), and hibiscus acid dimethyl ester [systematic name: dimethyl (2S,3R)-3-hydroxy-5-oxo-2,3,4,5-tetrahydrofuran-2,3-dicarboxylate], C8H10O7, (II). Compound (I) forms a layered structure with alternating layers of lactone and solvent molecules, that include a two-dimensional hydrogen-bonding construct. Compound (II) has two crystallographically independent and conformationally similar molecules per and forms a one-dimensional hydrogen-bonding construct. The known for both compounds has been confirmed.
Keywords: crystal structure; natural products; hibiscus; lactone acids; hydrogen bonding.
1. Chemical context
Lactone acid producing plants, including Hibiscus sabdariffa (Malvaceae), have been documented to have significant potential in the traditional treatment of various diseases. H. sabdariffa Linn is a species of hibiscus from the Malvaceae family, commonly known as `Karkade' or `red sorrel'. It is used in traditional medicine in the form of herbal teas or cold drinks for its hypotensive and diuretic effects and to lower body temperature and blood viscosity (Ali et al., 2005; Da-Costa-Rocha et al., 2014). Little attention has been paid to organic acids from H. sabdariffa, specifically hibiscus acid. However, studies have documented the activity of hibiscus acid and hibiscus acid methyl ester. These report an inhibitory effect against enzymes, such as α-amylase and α-glucosidase (Hansawasdi et al., 2000, 2001). As these compounds are not available commercially and to enable a study of their biological activities, we report on the extraction of hibiscus acid and hibiscus acid dimethyl ester from H. sabdariffa (Malvaceae), and on their purification and characterization. The crystal structures of the acid, as the dimethyl sulfoxide monosolvate, (I), and the diester, (II), are reported herein.
2. Structural commentary
The crystal structures of the 1:1 dimethyl sulfoxide (DMSO) solvate of hibiscus acid, (I), and of hibiscus acid dimethyl ester, (II), are shown in Figs. 1 and 2. The COOR (R = H or Me) groups lie in equatorial positions on their rings and the of both species is confirmed by the values (Parsons et al., 2013), for arbitrarily named atoms in (I) [C2(R),C1(S), 0.00 (4)] and both arbitrarily named equivalent atoms in (II) [C3(R),C4(S) and C11(R),C12(S), 0.08 (17)] (Table 1). The found thus agrees with that originally proposed by Boll et al. (1969) for hibiscus acid. The structure of garcinia lactone, an epimer of hibiscus acid, has been reported (Mahapatra et al., 2007). The comparable molecular geometries of (I) and its epimer are similar. The five-membered ring of (I) adopts an with the OH-bearing C2 atom 0.582 (6) Å out of the plane defined by the other four atoms.
The structure of (II) contains two crystallographically independent molecules (A and B) (Z′ = 2), whose molecular geometries differ only by small deviations in torsion angles, for example, C3—C5—O5—C6 in A is 175.1 (4)°, whilst the equivalent angle in B (C11—C13—O12—C—14) is 180.0 (4)°. As with structure (I), the five-membered rings adopt envelope conformations, with the OH-bearing C atoms lying out of the plane of the other four atoms, here by 0.505 (5) and 0.530 (5) Å for molecules A and B, respectively.
3. Supramolecular features
Despite containing two carboxylic acid functionalities, the structure of (I) does not feature the classic R22(8) carboxylic acid dimer motif. Instead, each of the three potential hydrogen-bond donors of the acid molecule form interactions with a total of three separate neighbouring molecules (Fig. 3). The H atom of the carboxylic acid group (O3—H) adjacent to the ether forms a bifurcated hydrogen bond that is accepted by the ROH and C=O functions (i.e. O4i and O6i) of one neighbour, whilst the other two donors, the second carboxylic acid (O5—H) and the hydroxy group (O4—H), form hydrogen bonds with atoms O8ii and O8 of DMSO solvent molecules, respectively (Table 2). These interactions combine to give a two-dimensional hydrogen-bonded layered structure, with DMSO and acid layers alternating along the c-cell direction (Fig. 4).
|
Both independent molecules in the structure of (II) donate single hydrogen bonds through their OH groups, but only one molecule (A) acts as a hydrogen-bond acceptor (O3—H⋯O4i and O10—H⋯O2ii; Table 3). That a total of four carbonyl O atoms do not act as acceptors is probably related to the low ratio of classic hydrogen-bond donors to acceptors in this compound. In (II), the hydrogen bonding combines to give a four-molecule-wide one-dimensional ribbon of linked molecules that propagates parallel to the a axis (Fig. 5).
4. Database survey
A search of the Cambridge Structural Database (Version 5.37, searched June 2017; Groom et al., 2016) yielded few relevant structures. For hibiscus acid, only the structures of a Ca salt form (Glusker et al., 1972) and of the diastereomer mentioned previously (Mahapatra et al., 2007) have been reported. The closest relative of (II) to have been structurally described is a derivative with additional OH and Me substituents on the five-membered ring (Evans et al., 1997).
5. Synthesis and crystallization
Dried H. sabdariffa calyces were crushed to a powder (500 g) and extracted in a Soxhlet apparatus using 2500 ml each of hexane, ethyl acetate and methanol. The methanol extract was dried and concentrated at 313 K by rotatory evaporation, yielding about 125 g (25%) of crude extract. The methanol extract (2 g) was dissolved in about 2 ml of methanol and subjected to gel filtration (GFC) using a glass column packed with a wet slurry of 30 g of Sephadex LH20 in methanol. Vials were collected (5 ml each) after elution with 100% methanol, which led to isolation of pure hibiscus acid (0.5%). Crystals of (I) were obtained by recrystallisation from DMSO. For nonsolvated material, 1H NMR [OC(CD3)2]: 5.31 (1H, s), 3.23 (1H, d, J = 17.19 Hz), 2.77 (1H, d, J = 17.18 Hz). HRMS: found 189.0000; calculated 189.0035.
Hibiscus acid dimethyl ester, (II), was obtained from the methanol extract (20 g) using vacuum (VLC) eluted with solvent systems in different ratios to increase the polarity. The ethyl acetate portion was evaporated and a thick paste was obtained. A pure precipitate of the compound (5%) was obtained by addition of propan-2-ol to the dried ethyl acetate fraction. 1H NMR [OC(CD3)2]: 5.35 (1H, s), 3.23 (1H, d, J = 17.28 Hz), 2.77 (1H, d, J = 17.31 Hz), 3.87 (3H, s), 3.76 (3H, s). HRMS: found 218.000; calculated 218.035.
6. Refinement
Crystal data, data collection and structure . For all structures, C-bound H atoms were placed in their expected geometrical positions and treated as riding, with C—H = 0.95–0.99 Å and Uiso(H) = 1.5Ueq(C) for methyl C atoms and 1.2Ueq(C) for the other H atoms. The absolute configuraion was determined for the molecules in both acid (I) for arbitrarily named atoms [C2(R),C1(S), 0.00 (4)] and both arbitrarily named equivalent atoms in (II) [C3(R),C4(S) (molecule A) and C11(R),C12(S) (molecule B), 0.08 (17)] (Parsons et al., 2013).
details are summarized in Table 1Supporting information
https://doi.org/10.1107/S2056989017011902/zs2386sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017011902/zs2386Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989017011902/zs2386IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017011902/zs2386Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989017011902/zs2386IIsup5.cml
For both structures, data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).C6H6O7·C2H6OS | F(000) = 280 |
Mr = 268.24 | Dx = 1.608 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.5418 Å |
a = 5.4258 (2) Å | Cell parameters from 2057 reflections |
b = 8.9491 (3) Å | θ = 6.3–72.8° |
c = 11.4365 (3) Å | µ = 2.94 mm−1 |
β = 94.092 (3)° | T = 123 K |
V = 553.90 (3) Å3 | Fragment from a square plate, colourless |
Z = 2 | 0.30 × 0.15 × 0.05 mm |
Oxford Diffraction Gemini S CCD diffractometer | 1640 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.054 |
ω scans | θmax = 72.8°, θmin = 3.9° |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | h = −6→6 |
Tmin = 0.554, Tmax = 1.000 | k = −10→8 |
4397 measured reflections | l = −14→14 |
1854 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.047 | w = 1/[σ2(Fo2) + (0.0678P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.113 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.44 e Å−3 |
1854 reflections | Δρmin = −0.25 e Å−3 |
169 parameters | Absolute structure: Flack x determined using 698 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
4 restraints | Absolute structure parameter: 0.00 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin |
x | y | z | Uiso*/Ueq | ||
S1 | 0.90564 (19) | 1.26444 (16) | 0.85370 (9) | 0.0235 (3) | |
O1 | 0.6239 (6) | 0.7220 (4) | 0.8066 (3) | 0.0233 (9) | |
O2 | 1.0711 (6) | 0.6125 (5) | 0.7467 (3) | 0.0285 (9) | |
O3 | 0.9028 (6) | 0.5501 (5) | 0.5682 (3) | 0.0276 (8) | |
O4 | 0.8575 (6) | 0.9112 (5) | 0.6333 (3) | 0.0232 (8) | |
O5 | 0.3551 (6) | 0.7366 (5) | 0.4714 (3) | 0.0265 (9) | |
O6 | 0.6572 (6) | 0.8844 (5) | 0.4153 (3) | 0.0254 (8) | |
O7 | 0.4156 (6) | 0.8927 (5) | 0.9015 (3) | 0.0300 (9) | |
O8 | 0.8239 (7) | 1.1798 (5) | 0.7411 (3) | 0.0295 (9) | |
C1 | 0.6534 (8) | 0.6840 (7) | 0.6856 (4) | 0.0231 (11) | |
H1 | 0.5185 | 0.6149 | 0.6557 | 0.028* | |
C2 | 0.6288 (8) | 0.8370 (6) | 0.6206 (4) | 0.0219 (11) | |
C3 | 0.4303 (8) | 0.9097 (7) | 0.6897 (4) | 0.0236 (11) | |
H3A | 0.4466 | 1.0198 | 0.6901 | 0.028* | |
H3B | 0.2627 | 0.8823 | 0.6567 | 0.028* | |
C4 | 0.4814 (8) | 0.8461 (7) | 0.8109 (4) | 0.0244 (11) | |
C5 | 0.9026 (8) | 0.6125 (7) | 0.6737 (4) | 0.0221 (11) | |
C6 | 0.5504 (8) | 0.8209 (6) | 0.4898 (4) | 0.0216 (10) | |
C7 | 1.2345 (8) | 1.2784 (8) | 0.8549 (4) | 0.0273 (12) | |
H7A | 1.2788 | 1.3417 | 0.7897 | 0.041* | |
H7B | 1.3053 | 1.1786 | 0.8465 | 0.041* | |
H7C | 1.2997 | 1.3227 | 0.9292 | 0.041* | |
C8 | 0.8906 (10) | 1.1285 (8) | 0.9679 (4) | 0.0309 (13) | |
H8A | 0.9898 | 1.0411 | 0.9498 | 0.046* | |
H8B | 0.7184 | 1.0981 | 0.9739 | 0.046* | |
H8C | 0.9552 | 1.1720 | 1.0425 | 0.046* | |
H2H | 0.308 (11) | 0.729 (8) | 0.396 (3) | 0.032 (17)* | |
H1H | 1.043 (7) | 0.509 (7) | 0.555 (5) | 0.026 (15)* | |
H3H | 0.865 (17) | 0.987 (7) | 0.682 (6) | 0.07 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0241 (5) | 0.0207 (7) | 0.0254 (5) | 0.0013 (5) | 0.0002 (4) | −0.0021 (5) |
O1 | 0.0228 (14) | 0.024 (3) | 0.0232 (15) | 0.0022 (13) | 0.0016 (11) | 0.0007 (13) |
O2 | 0.0237 (16) | 0.030 (3) | 0.0320 (17) | 0.0050 (15) | 0.0000 (13) | 0.0007 (16) |
O3 | 0.0213 (14) | 0.032 (3) | 0.0299 (16) | 0.0032 (15) | 0.0023 (12) | −0.0049 (16) |
O4 | 0.0187 (14) | 0.021 (2) | 0.0299 (17) | −0.0025 (14) | 0.0029 (12) | −0.0026 (15) |
O5 | 0.0248 (14) | 0.030 (3) | 0.0243 (14) | −0.0046 (15) | −0.0009 (11) | 0.0008 (14) |
O6 | 0.0258 (15) | 0.024 (2) | 0.0267 (15) | −0.0024 (15) | 0.0046 (12) | 0.0010 (15) |
O7 | 0.0308 (16) | 0.033 (3) | 0.0274 (17) | 0.0032 (16) | 0.0073 (13) | −0.0037 (17) |
O8 | 0.0329 (18) | 0.025 (3) | 0.0296 (17) | 0.0006 (17) | −0.0058 (14) | 0.0030 (17) |
C1 | 0.019 (2) | 0.027 (3) | 0.024 (2) | 0.000 (2) | 0.0022 (16) | −0.001 (2) |
C2 | 0.0178 (19) | 0.018 (3) | 0.030 (2) | −0.0008 (19) | 0.0023 (16) | 0.001 (2) |
C3 | 0.0184 (19) | 0.023 (3) | 0.030 (2) | −0.0014 (19) | 0.0027 (16) | −0.003 (2) |
C4 | 0.019 (2) | 0.024 (3) | 0.030 (2) | −0.0040 (19) | 0.0025 (16) | −0.002 (2) |
C5 | 0.023 (2) | 0.017 (3) | 0.028 (2) | 0.0014 (19) | 0.0073 (18) | 0.005 (2) |
C6 | 0.019 (2) | 0.019 (3) | 0.027 (2) | 0.0031 (18) | 0.0028 (16) | −0.0004 (19) |
C7 | 0.0204 (18) | 0.031 (4) | 0.030 (2) | −0.001 (2) | 0.0012 (16) | 0.001 (2) |
C8 | 0.032 (2) | 0.033 (4) | 0.027 (2) | −0.004 (2) | 0.0027 (18) | 0.006 (2) |
S1—O8 | 1.532 (4) | C1—C5 | 1.511 (6) |
S1—C7 | 1.788 (5) | C1—C2 | 1.559 (8) |
S1—C8 | 1.791 (6) | C1—H1 | 1.0000 |
O1—C4 | 1.356 (7) | C2—C3 | 1.525 (6) |
O1—C1 | 1.445 (6) | C2—C6 | 1.532 (6) |
O2—C5 | 1.194 (6) | C3—C4 | 1.505 (7) |
O3—C5 | 1.329 (6) | C3—H3A | 0.9900 |
O3—H1H | 0.87 (3) | C3—H3B | 0.9900 |
O4—C2 | 1.406 (6) | C7—H7A | 0.9800 |
O4—H3H | 0.87 (3) | C7—H7B | 0.9800 |
O5—C6 | 1.306 (6) | C7—H7C | 0.9800 |
O5—H2H | 0.89 (3) | C8—H8A | 0.9800 |
O6—C6 | 1.206 (6) | C8—H8B | 0.9800 |
O7—C4 | 1.195 (6) | C8—H8C | 0.9800 |
O8—S1—C7 | 105.7 (2) | C2—C3—H3B | 111.2 |
O8—S1—C8 | 104.6 (3) | H3A—C3—H3B | 109.1 |
C7—S1—C8 | 98.0 (3) | O7—C4—O1 | 121.5 (5) |
C4—O1—C1 | 109.3 (4) | O7—C4—C3 | 128.3 (5) |
C5—O3—H1H | 113 (4) | O1—C4—C3 | 110.1 (4) |
C2—O4—H3H | 116 (6) | O2—C5—O3 | 125.8 (5) |
C6—O5—H2H | 112 (4) | O2—C5—C1 | 125.6 (5) |
O1—C1—C5 | 110.3 (4) | O3—C5—C1 | 108.6 (4) |
O1—C1—C2 | 103.8 (4) | O6—C6—O5 | 125.7 (4) |
C5—C1—C2 | 112.1 (4) | O6—C6—C2 | 122.1 (5) |
O1—C1—H1 | 110.2 | O5—C6—C2 | 112.1 (4) |
C5—C1—H1 | 110.2 | S1—C7—H7A | 109.5 |
C2—C1—H1 | 110.2 | S1—C7—H7B | 109.5 |
O4—C2—C3 | 113.3 (4) | H7A—C7—H7B | 109.5 |
O4—C2—C6 | 109.0 (4) | S1—C7—H7C | 109.5 |
C3—C2—C6 | 112.9 (4) | H7A—C7—H7C | 109.5 |
O4—C2—C1 | 108.7 (4) | H7B—C7—H7C | 109.5 |
C3—C2—C1 | 99.6 (4) | S1—C8—H8A | 109.5 |
C6—C2—C1 | 113.0 (5) | S1—C8—H8B | 109.5 |
C4—C3—C2 | 103.0 (4) | H8A—C8—H8B | 109.5 |
C4—C3—H3A | 111.2 | S1—C8—H8C | 109.5 |
C2—C3—H3A | 111.2 | H8A—C8—H8C | 109.5 |
C4—C3—H3B | 111.2 | H8B—C8—H8C | 109.5 |
C4—O1—C1—C5 | 148.2 (4) | C2—C3—C4—O7 | 161.1 (5) |
C4—O1—C1—C2 | 27.9 (5) | C2—C3—C4—O1 | −17.9 (5) |
O1—C1—C2—O4 | 82.0 (4) | O1—C1—C5—O2 | −13.6 (8) |
C5—C1—C2—O4 | −37.1 (5) | C2—C1—C5—O2 | 101.5 (6) |
O1—C1—C2—C3 | −36.8 (4) | O1—C1—C5—O3 | 166.6 (4) |
C5—C1—C2—C3 | −155.9 (4) | C2—C1—C5—O3 | −78.3 (6) |
O1—C1—C2—C6 | −156.8 (3) | O4—C2—C6—O6 | −10.2 (7) |
C5—C1—C2—C6 | 84.1 (5) | C3—C2—C6—O6 | 116.7 (5) |
O4—C2—C3—C4 | −83.0 (5) | C1—C2—C6—O6 | −131.2 (5) |
C6—C2—C3—C4 | 152.4 (5) | O4—C2—C6—O5 | 172.0 (4) |
C1—C2—C3—C4 | 32.3 (5) | C3—C2—C6—O5 | −61.2 (6) |
C1—O1—C4—O7 | 174.3 (5) | C1—C2—C6—O5 | 50.9 (5) |
C1—O1—C4—C3 | −6.6 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1H···O4i | 0.87 (2) | 2.42 (4) | 2.996 (4) | 124 (3) |
O3—H1H···O6i | 0.87 (2) | 1.98 (3) | 2.805 (4) | 158 (4) |
O4—H3H···O8 | 0.87 (2) | 1.87 (3) | 2.714 (5) | 160 (7) |
O5—H2H···O8ii | 0.89 (2) | 1.73 (2) | 2.603 (4) | 167 (5) |
Symmetry codes: (i) −x+2, y−1/2, −z+1; (ii) −x+1, y−1/2, −z+1. |
C8H10O7 | F(000) = 456 |
Mr = 218.16 | Dx = 1.519 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.5418 Å |
a = 9.3057 (6) Å | Cell parameters from 3289 reflections |
b = 7.6934 (6) Å | θ = 3.4–72.8° |
c = 13.4012 (11) Å | µ = 1.20 mm−1 |
β = 96.243 (7)° | T = 123 K |
V = 953.74 (12) Å3 | Platey fragment, colourless |
Z = 4 | 0.30 × 0.20 × 0.04 mm |
Oxford Diffraction Gemini S CCD diffractometer | 2976 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.036 |
ω scans | θmax = 73.4°, θmin = 3.3° |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | h = −11→11 |
Tmin = 0.747, Tmax = 1.000 | k = −8→9 |
8046 measured reflections | l = −16→14 |
3506 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.044 | w = 1/[σ2(Fo2) + (0.0568P)2 + 0.1462P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.121 | (Δ/σ)max < 0.001 |
S = 1.10 | Δρmax = 0.23 e Å−3 |
3506 reflections | Δρmin = −0.22 e Å−3 |
281 parameters | Absolute structure: Flack x determined using 1098 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
3 restraints | Absolute structure parameter: 0.08 (17) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.0127 (3) | 0.3894 (4) | 0.4143 (2) | 0.0393 (7) | |
O2 | −0.0438 (4) | 0.4647 (5) | 0.2547 (2) | 0.0502 (8) | |
O3 | 0.3364 (3) | 0.3776 (4) | 0.4119 (2) | 0.0399 (7) | |
H1H | 0.407 (4) | 0.349 (7) | 0.458 (3) | 0.048* | |
O4 | 0.4351 (3) | 0.0487 (4) | 0.4527 (2) | 0.0460 (8) | |
O5 | 0.2148 (3) | −0.0633 (4) | 0.4061 (2) | 0.0432 (7) | |
O6 | 0.1333 (3) | 0.5084 (4) | 0.5929 (2) | 0.0460 (7) | |
O7 | 0.2626 (3) | 0.2625 (4) | 0.6205 (2) | 0.0431 (7) | |
O8 | 0.5725 (3) | 0.4161 (4) | −0.0594 (2) | 0.0391 (7) | |
O9 | 0.6406 (3) | 0.5063 (5) | −0.2045 (2) | 0.0484 (8) | |
O10 | 0.8715 (3) | 0.4023 (4) | 0.0508 (2) | 0.0388 (7) | |
H2H | 0.904 (5) | 0.376 (7) | 0.1128 (16) | 0.047* | |
O11 | 0.9307 (3) | 0.0730 (4) | 0.1173 (2) | 0.0437 (7) | |
O12 | 0.7678 (3) | −0.0374 (4) | −0.0028 (3) | 0.0467 (8) | |
O13 | 0.5379 (3) | 0.5087 (4) | 0.1312 (2) | 0.0443 (7) | |
O14 | 0.6548 (3) | 0.2682 (4) | 0.1911 (2) | 0.0414 (7) | |
C1 | 0.0312 (5) | 0.3802 (6) | 0.3161 (3) | 0.0408 (9) | |
C2 | 0.1501 (5) | 0.2555 (7) | 0.3003 (3) | 0.0424 (10) | |
H2A | 0.2116 | 0.3012 | 0.2505 | 0.051* | |
H2B | 0.1106 | 0.1412 | 0.2771 | 0.051* | |
C3 | 0.2350 (4) | 0.2408 (6) | 0.4034 (3) | 0.0366 (9) | |
C4 | 0.1125 (4) | 0.2751 (6) | 0.4721 (3) | 0.0377 (9) | |
H4 | 0.0637 | 0.1638 | 0.4870 | 0.045* | |
C5 | 0.3083 (5) | 0.0651 (6) | 0.4238 (3) | 0.0389 (9) | |
C6 | 0.2722 (5) | −0.2380 (6) | 0.4145 (4) | 0.0477 (11) | |
H6A | 0.3464 | −0.2521 | 0.3685 | 0.072* | |
H6B | 0.1940 | −0.3216 | 0.3971 | 0.072* | |
H6C | 0.3151 | −0.2587 | 0.4835 | 0.072* | |
C7 | 0.1678 (4) | 0.3672 (6) | 0.5685 (3) | 0.0378 (9) | |
C8 | 0.3289 (6) | 0.3351 (8) | 0.7144 (4) | 0.0564 (13) | |
H8A | 0.3960 | 0.4279 | 0.7003 | 0.085* | |
H8B | 0.3819 | 0.2437 | 0.7538 | 0.085* | |
H8C | 0.2537 | 0.3826 | 0.7524 | 0.085* | |
C9 | 0.6617 (5) | 0.4150 (6) | −0.1329 (3) | 0.0393 (9) | |
C10 | 0.7821 (4) | 0.2878 (6) | −0.1067 (3) | 0.0396 (9) | |
H10A | 0.8750 | 0.3340 | −0.1252 | 0.048* | |
H10B | 0.7616 | 0.1755 | −0.1414 | 0.048* | |
C11 | 0.7864 (4) | 0.2667 (6) | 0.0067 (3) | 0.0352 (9) | |
C12 | 0.6230 (4) | 0.2963 (6) | 0.0191 (3) | 0.0358 (9) | |
H12 | 0.5694 | 0.1840 | 0.0090 | 0.043* | |
C13 | 0.8388 (4) | 0.0905 (6) | 0.0475 (3) | 0.0370 (9) | |
C14 | 0.8023 (5) | −0.2154 (7) | 0.0250 (4) | 0.0478 (11) | |
H14A | 0.8702 | −0.2623 | −0.0192 | 0.072* | |
H14B | 0.7137 | −0.2851 | 0.0182 | 0.072* | |
H14C | 0.8465 | −0.2193 | 0.0947 | 0.072* | |
C15 | 0.5978 (4) | 0.3732 (6) | 0.1191 (3) | 0.0365 (9) | |
C16 | 0.6380 (6) | 0.3211 (7) | 0.2932 (4) | 0.0504 (12) | |
H16A | 0.6857 | 0.4334 | 0.3071 | 0.076* | |
H16B | 0.6820 | 0.2338 | 0.3402 | 0.076* | |
H16C | 0.5349 | 0.3319 | 0.3012 | 0.076* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0391 (13) | 0.0337 (18) | 0.0436 (16) | 0.0050 (13) | −0.0023 (11) | −0.0018 (13) |
O2 | 0.0564 (18) | 0.046 (2) | 0.0456 (17) | 0.0136 (15) | −0.0086 (14) | −0.0029 (14) |
O3 | 0.0377 (14) | 0.0332 (18) | 0.0481 (16) | −0.0031 (13) | 0.0012 (12) | 0.0019 (13) |
O4 | 0.0439 (16) | 0.040 (2) | 0.0519 (17) | 0.0044 (14) | −0.0055 (13) | −0.0016 (13) |
O5 | 0.0441 (16) | 0.0288 (17) | 0.0561 (18) | −0.0004 (13) | 0.0023 (13) | 0.0014 (13) |
O6 | 0.0513 (16) | 0.0371 (19) | 0.0477 (17) | 0.0081 (14) | −0.0031 (14) | −0.0090 (14) |
O7 | 0.0528 (16) | 0.0314 (18) | 0.0429 (16) | 0.0050 (14) | −0.0048 (13) | 0.0029 (13) |
O8 | 0.0386 (14) | 0.0344 (18) | 0.0431 (15) | 0.0009 (12) | −0.0014 (11) | 0.0040 (12) |
O9 | 0.0510 (17) | 0.049 (2) | 0.0441 (17) | −0.0017 (15) | 0.0000 (14) | 0.0089 (14) |
O10 | 0.0405 (14) | 0.0341 (19) | 0.0404 (15) | −0.0032 (13) | −0.0021 (11) | −0.0002 (12) |
O11 | 0.0484 (16) | 0.0373 (18) | 0.0439 (16) | 0.0042 (14) | −0.0015 (13) | −0.0001 (13) |
O12 | 0.0433 (16) | 0.0281 (19) | 0.066 (2) | 0.0007 (13) | −0.0051 (14) | −0.0063 (14) |
O13 | 0.0493 (16) | 0.039 (2) | 0.0428 (16) | 0.0079 (14) | −0.0027 (13) | −0.0032 (14) |
O14 | 0.0492 (15) | 0.0353 (18) | 0.0400 (15) | 0.0056 (14) | 0.0063 (12) | 0.0045 (13) |
C1 | 0.044 (2) | 0.033 (3) | 0.043 (2) | 0.0020 (19) | −0.0042 (17) | −0.0038 (18) |
C2 | 0.049 (2) | 0.036 (3) | 0.040 (2) | 0.0044 (19) | −0.0029 (17) | −0.0028 (18) |
C3 | 0.041 (2) | 0.027 (2) | 0.041 (2) | −0.0035 (17) | 0.0022 (16) | −0.0005 (16) |
C4 | 0.0380 (19) | 0.031 (2) | 0.043 (2) | −0.0024 (17) | −0.0014 (16) | 0.0003 (18) |
C5 | 0.043 (2) | 0.037 (3) | 0.036 (2) | 0.0028 (18) | 0.0024 (16) | −0.0034 (17) |
C6 | 0.055 (3) | 0.032 (3) | 0.056 (3) | 0.002 (2) | 0.005 (2) | 0.002 (2) |
C7 | 0.0351 (18) | 0.039 (3) | 0.039 (2) | −0.0013 (17) | 0.0045 (15) | 0.0006 (18) |
C8 | 0.069 (3) | 0.050 (3) | 0.046 (3) | 0.004 (2) | −0.015 (2) | 0.002 (2) |
C9 | 0.045 (2) | 0.036 (3) | 0.037 (2) | −0.0065 (18) | −0.0001 (16) | −0.0026 (17) |
C10 | 0.041 (2) | 0.037 (3) | 0.040 (2) | −0.0018 (18) | 0.0036 (16) | −0.0003 (17) |
C11 | 0.0377 (19) | 0.029 (2) | 0.039 (2) | 0.0002 (16) | 0.0020 (15) | −0.0029 (17) |
C12 | 0.039 (2) | 0.026 (2) | 0.042 (2) | −0.0024 (17) | −0.0012 (16) | 0.0026 (17) |
C13 | 0.0368 (19) | 0.031 (2) | 0.043 (2) | −0.0014 (17) | 0.0050 (17) | −0.0033 (17) |
C14 | 0.042 (2) | 0.036 (3) | 0.065 (3) | 0.000 (2) | 0.007 (2) | −0.004 (2) |
C15 | 0.0339 (17) | 0.031 (2) | 0.044 (2) | −0.0025 (17) | 0.0017 (15) | 0.0001 (17) |
C16 | 0.060 (3) | 0.048 (3) | 0.043 (2) | 0.005 (2) | 0.006 (2) | 0.008 (2) |
O1—C1 | 1.347 (5) | C2—H2B | 0.9900 |
O1—C4 | 1.442 (5) | C3—C5 | 1.526 (6) |
O2—C1 | 1.210 (5) | C3—C4 | 1.562 (6) |
O3—C3 | 1.410 (5) | C4—C7 | 1.514 (6) |
O3—H1H | 0.880 (14) | C4—H4 | 1.0000 |
O4—C5 | 1.208 (5) | C6—H6A | 0.9800 |
O5—C5 | 1.320 (5) | C6—H6B | 0.9800 |
O5—C6 | 1.446 (6) | C6—H6C | 0.9800 |
O6—C7 | 1.189 (6) | C8—H8A | 0.9800 |
O7—C7 | 1.334 (5) | C8—H8B | 0.9800 |
O7—C8 | 1.451 (6) | C8—H8C | 0.9800 |
O8—C9 | 1.355 (5) | C9—C10 | 1.501 (6) |
O8—C12 | 1.439 (5) | C10—C11 | 1.524 (6) |
O9—C9 | 1.188 (5) | C10—H10A | 0.9900 |
O10—C11 | 1.401 (5) | C10—H10B | 0.9900 |
O10—H2H | 0.876 (14) | C11—C13 | 1.522 (6) |
O11—C13 | 1.204 (5) | C11—C12 | 1.565 (5) |
O12—C13 | 1.328 (5) | C12—C15 | 1.506 (6) |
O12—C14 | 1.446 (6) | C12—H12 | 1.0000 |
O13—C15 | 1.202 (5) | C14—H14A | 0.9800 |
O14—C15 | 1.324 (5) | C14—H14B | 0.9800 |
O14—C16 | 1.452 (6) | C14—H14C | 0.9800 |
C1—C2 | 1.497 (6) | C16—H16A | 0.9800 |
C2—C3 | 1.519 (6) | C16—H16B | 0.9800 |
C2—H2A | 0.9900 | C16—H16C | 0.9800 |
C1—O1—C4 | 110.4 (3) | H8A—C8—H8B | 109.5 |
C3—O3—H1H | 108 (4) | O7—C8—H8C | 109.5 |
C5—O5—C6 | 116.8 (3) | H8A—C8—H8C | 109.5 |
C7—O7—C8 | 114.6 (4) | H8B—C8—H8C | 109.5 |
C9—O8—C12 | 110.5 (3) | O9—C9—O8 | 121.5 (4) |
C11—O10—H2H | 110 (4) | O9—C9—C10 | 128.9 (4) |
C13—O12—C14 | 119.2 (4) | O8—C9—C10 | 109.6 (4) |
C15—O14—C16 | 116.1 (4) | C9—C10—C11 | 103.9 (3) |
O2—C1—O1 | 120.7 (4) | C9—C10—H10A | 111.0 |
O2—C1—C2 | 129.0 (4) | C11—C10—H10A | 111.0 |
O1—C1—C2 | 110.3 (4) | C9—C10—H10B | 111.0 |
C1—C2—C3 | 103.7 (3) | C11—C10—H10B | 111.0 |
C1—C2—H2A | 111.0 | H10A—C10—H10B | 109.0 |
C3—C2—H2A | 111.0 | O10—C11—C13 | 111.5 (3) |
C1—C2—H2B | 111.0 | O10—C11—C10 | 107.1 (3) |
C3—C2—H2B | 111.0 | C13—C11—C10 | 115.2 (4) |
H2A—C2—H2B | 109.0 | O10—C11—C12 | 111.0 (3) |
O3—C3—C2 | 107.1 (3) | C13—C11—C12 | 111.6 (3) |
O3—C3—C5 | 111.4 (3) | C10—C11—C12 | 99.8 (3) |
C2—C3—C5 | 114.0 (4) | O8—C12—C15 | 109.2 (3) |
O3—C3—C4 | 110.6 (4) | O8—C12—C11 | 105.0 (3) |
C2—C3—C4 | 100.6 (3) | C15—C12—C11 | 113.5 (3) |
C5—C3—C4 | 112.6 (4) | O8—C12—H12 | 109.6 |
O1—C4—C7 | 108.2 (3) | C15—C12—H12 | 109.6 |
O1—C4—C3 | 104.8 (3) | C11—C12—H12 | 109.6 |
C7—C4—C3 | 112.3 (3) | O11—C13—O12 | 125.7 (4) |
O1—C4—H4 | 110.5 | O11—C13—C11 | 123.5 (4) |
C7—C4—H4 | 110.5 | O12—C13—C11 | 110.8 (3) |
C3—C4—H4 | 110.5 | O12—C14—H14A | 109.5 |
O4—C5—O5 | 125.5 (4) | O12—C14—H14B | 109.5 |
O4—C5—C3 | 123.5 (4) | H14A—C14—H14B | 109.5 |
O5—C5—C3 | 111.0 (3) | O12—C14—H14C | 109.5 |
O5—C6—H6A | 109.5 | H14A—C14—H14C | 109.5 |
O5—C6—H6B | 109.5 | H14B—C14—H14C | 109.5 |
H6A—C6—H6B | 109.5 | O13—C15—O14 | 125.9 (4) |
O5—C6—H6C | 109.5 | O13—C15—C12 | 125.4 (4) |
H6A—C6—H6C | 109.5 | O14—C15—C12 | 108.6 (4) |
H6B—C6—H6C | 109.5 | O14—C16—H16A | 109.5 |
O6—C7—O7 | 126.2 (4) | O14—C16—H16B | 109.5 |
O6—C7—C4 | 125.9 (4) | H16A—C16—H16B | 109.5 |
O7—C7—C4 | 107.9 (4) | O14—C16—H16C | 109.5 |
O7—C8—H8A | 109.5 | H16A—C16—H16C | 109.5 |
O7—C8—H8B | 109.5 | H16B—C16—H16C | 109.5 |
C4—O1—C1—O2 | 179.0 (4) | C12—O8—C9—O9 | −179.1 (4) |
C4—O1—C1—C2 | −0.5 (5) | C12—O8—C9—C10 | 0.3 (5) |
O2—C1—C2—C3 | 160.9 (5) | O9—C9—C10—C11 | 158.1 (5) |
O1—C1—C2—C3 | −19.7 (5) | O8—C9—C10—C11 | −21.2 (5) |
C1—C2—C3—O3 | −86.2 (4) | C9—C10—C11—O10 | −84.8 (4) |
C1—C2—C3—C5 | 150.1 (4) | C9—C10—C11—C13 | 150.5 (4) |
C1—C2—C3—C4 | 29.3 (5) | C9—C10—C11—C12 | 30.9 (4) |
C1—O1—C4—C7 | 139.9 (4) | C9—O8—C12—C15 | 142.4 (3) |
C1—O1—C4—C3 | 19.9 (4) | C9—O8—C12—C11 | 20.3 (4) |
O3—C3—C4—O1 | 82.7 (4) | O10—C11—C12—O8 | 81.3 (4) |
C2—C3—C4—O1 | −30.2 (4) | C13—C11—C12—O8 | −153.6 (3) |
C5—C3—C4—O1 | −152.0 (3) | C10—C11—C12—O8 | −31.4 (4) |
O3—C3—C4—C7 | −34.5 (5) | O10—C11—C12—C15 | −37.9 (5) |
C2—C3—C4—C7 | −147.5 (4) | C13—C11—C12—C15 | 87.1 (4) |
C5—C3—C4—C7 | 90.8 (4) | C10—C11—C12—C15 | −150.6 (4) |
C6—O5—C5—O4 | −5.2 (6) | C14—O12—C13—O11 | −1.2 (7) |
C6—O5—C5—C3 | 175.1 (4) | C14—O12—C13—C11 | 180.0 (4) |
O3—C3—C5—O4 | 6.5 (6) | O10—C11—C13—O11 | 8.2 (6) |
C2—C3—C5—O4 | 127.9 (5) | C10—C11—C13—O11 | 130.5 (4) |
C4—C3—C5—O4 | −118.4 (5) | C12—C11—C13—O11 | −116.6 (4) |
O3—C3—C5—O5 | −173.8 (3) | O10—C11—C13—O12 | −173.0 (3) |
C2—C3—C5—O5 | −52.4 (5) | C10—C11—C13—O12 | −50.6 (5) |
C4—C3—C5—O5 | 61.3 (5) | C12—C11—C13—O12 | 62.3 (4) |
C8—O7—C7—O6 | −1.3 (6) | C16—O14—C15—O13 | 2.1 (6) |
C8—O7—C7—C4 | 178.3 (4) | C16—O14—C15—C12 | −178.9 (4) |
O1—C4—C7—O6 | 1.0 (6) | O8—C12—C15—O13 | 3.7 (5) |
C3—C4—C7—O6 | 116.1 (5) | C11—C12—C15—O13 | 120.6 (5) |
O1—C4—C7—O7 | −178.6 (3) | O8—C12—C15—O14 | −175.2 (3) |
C3—C4—C7—O7 | −63.4 (4) | C11—C12—C15—O14 | −58.4 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1H···O4i | 0.88 (1) | 2.36 (5) | 2.951 (4) | 125 (4) |
O10—H2H···O2ii | 0.88 (1) | 2.03 (3) | 2.802 (4) | 147 (5) |
Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) x+1, y, z. |
Acknowledgements
We thank the College of Pharmacy, University of Misan, and the Ministry of Higher Education, Iraq, for funding AZ.
References
Ali, B. H., Al Wabel, N. & Blunden, G. (2005). Phytother. Res. 19, 369–375. CrossRef PubMed CAS Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Boll, P. M., Sorensen, E. & Balieu, E. (1969). Acta Chem. Scand. 23, 286–293. CrossRef CAS Google Scholar
Da-Costa-Rocha, I., Bonnlaender, B., Sievers, H., Pischel, I. & Heinrich, M. (2014). Food Chem. 165, 424–443. CAS PubMed Google Scholar
Evans, D. A., Trotter, B. W. & Barrow, J. C. (1997). Tetrahedron, 53, 8779–8794. CSD CrossRef CAS Google Scholar
Glusker, J. P., Minkin, J. A. & Soule, F. B. (1972). Acta Cryst. B28, 2499–2505. CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hansawasdi, C., Kawabata, J. & Kasai, T. (2000). Biosci. Biotechnol. Biochem. 64, 1041–1043. CrossRef PubMed CAS Google Scholar
Hansawasdi, C., Kawabata, J. & Kasai, T. (2001). Biosci. Biotechnol. Biochem. 65, 2087–2089. CrossRef PubMed CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mahapatra, S., Mallik, S. B., Rao, G. V., Reddy, G. C. & Guru Row, T. N. (2007). Acta Cryst. E63, o3869. CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.