research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of hibiscus acid and hibiscus acid di­methyl ester isolated from Hibiscus sabdariffa (Malvaceae)

CROSSMARK_Color_square_no_text.svg

aStrathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, and bWestchem, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: a.r.kennedy@strath.ac.uk

Edited by G. Smith, Queensland University of Technology, Australia (Received 30 July 2017; accepted 16 August 2017; online 21 August 2017)

The biologically active title compounds have been isolated from Hibiscus sabdariffa plants, hibiscus acid as a dimethyl sulfoxide monosolvate [systematic name: (2S,3R)-3-hy­droxy-5-oxo-2,3,4,5-tetra­hydro­furan-2,3-di­carb­oxy­lic acid dimethyl sulfoxide monosolvate], C6H6O7·C2H6OS, (I), and hibiscus acid dimethyl ester [systematic name: dimethyl (2S,3R)-3-hy­droxy-5-oxo-2,3,4,5-tetra­hydro­furan-2,3-di­carboxyl­ate], C8H10O7, (II). Compound (I) forms a layered structure with alternating layers of lactone and solvent mol­ecules, that include a two-dimensional hydrogen-bonding construct. Compound (II) has two crystallographically independent and conformationally similar mol­ecules per asymmetric unit and forms a one-dimensional hydrogen-bonding construct. The known absolute configuration for both compounds has been confirmed.

1. Chemical context

Lactone acid producing plants, including Hibiscus sabdariffa (Malvaceae), have been documented to have significant potential in the traditional treatment of various diseases. H. sabdariffa Linn is a species of hibiscus from the Malvaceae family, commonly known as `Karkade' or `red sorrel'. It is used in traditional medicine in the form of herbal teas or cold drinks for its hypotensive and diuretic effects and to lower body temperature and blood viscosity (Ali et al., 2005[Ali, B. H., Al Wabel, N. & Blunden, G. (2005). Phytother. Res. 19, 369-375.]; Da-Costa-Rocha et al., 2014[Da-Costa-Rocha, I., Bonnlaender, B., Sievers, H., Pischel, I. & Heinrich, M. (2014). Food Chem. 165, 424-443.]). Little attention has been paid to organic acids from H. sabdariffa, specifically hibiscus acid. However, studies have documented the activity of hibiscus acid and hibiscus acid methyl ester. These report an inhibitory effect against enzymes, such as α-amylase and α-glucosidase (Hansawasdi et al., 2000[Hansawasdi, C., Kawabata, J. & Kasai, T. (2000). Biosci. Biotechnol. Biochem. 64, 1041-1043.], 2001[Hansawasdi, C., Kawabata, J. & Kasai, T. (2001). Biosci. Biotechnol. Biochem. 65, 2087-2089.]). As these compounds are not available commercially and to enable a study of their biological activities, we report on the extraction of hibiscus acid and hibiscus acid dimethyl ester from H. sabdariffa (Malvaceae), and on their purification and characterization. The crystal structures of the acid, as the dimethyl sulfoxide monosolvate, (I)[link], and the diester, (II)[link], are reported herein.

2. Structural commentary

The crystal structures of the 1:1 dimethyl sulfoxide (DMSO) solvate of hibiscus acid, (I)[link], and of hibiscus acid dimethyl ester, (II)[link], are shown in Figs. 1[link] and 2[link]. The COOR (R = H or Me) groups lie in equatorial positions on their rings and the absolute configuration of both species is confirmed by the Flack parameter values (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]), for arbitrarily named atoms in (I)[link] [C2(R),C1(S), 0.00 (4)] and both arbitrarily named equivalent atoms in (II)[link] [C3(R),C4(S) and C11(R),C12(S), 0.08 (17)] (Table 1[link]). The absolute configuration found thus agrees with that originally proposed by Boll et al. (1969[Boll, P. M., Sorensen, E. & Balieu, E. (1969). Acta Chem. Scand. 23, 286-293.]) for hibiscus acid. The structure of garcinia lactone, an epimer of hibiscus acid, has been reported (Mahapatra et al., 2007[Mahapatra, S., Mallik, S. B., Rao, G. V., Reddy, G. C. & Guru Row, T. N. (2007). Acta Cryst. E63, o3869.]). The comparable mol­ecular geometries of (I)[link] and its epimer are similar. The five-membered ring of (I)[link] adopts an envelope conformation, with the OH-bearing C2 atom 0.582 (6) Å out of the plane defined by the other four atoms.

[Scheme 1]

Table 1
Experimental details

  (I) (II)
Crystal data
Chemical formula C6H6O7·C2H6OS C8H10O7
Mr 268.24 218.16
Crystal system, space group Monoclinic, P21 Monoclinic, P21
Temperature (K) 123 123
a, b, c (Å) 5.4258 (2), 8.9491 (3), 11.4365 (3) 9.3057 (6), 7.6934 (6), 13.4012 (11)
β (°) 94.092 (3) 96.243 (7)
V3) 553.90 (3) 953.74 (12)
Z 2 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 2.94 1.20
Crystal size (mm) 0.30 × 0.15 × 0.05 0.30 × 0.20 × 0.04
 
Data collection
Diffractometer Oxford Diffraction Gemini S CCD Oxford Diffraction Gemini S CCD
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.554, 1.000 0.747, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4397, 1854, 1640 8046, 3506, 2976
Rint 0.054 0.036
(sin θ/λ)max−1) 0.619 0.622
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.113, 1.05 0.044, 0.121, 1.10
No. of reflections 1854 3506
No. of parameters 169 281
No. of restraints 4 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.25 0.23, −0.22
Absolute structure Flack x determined using 698 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 1098 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.00 (4) 0.08 (17)
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], with the atom labelling and 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
The mol­ecular structures of the two independent mol­ecules comprising the asymmetric unit of (II)[link], with the atom labelling and 50% probability displacement ellipsoids.

The structure of (II)[link] contains two crystallographically independent mol­ecules (A and B) (Z′ = 2), whose mol­ecular geometries differ only by small deviations in torsion angles, for example, C3—C5—O5—C6 in A is 175.1 (4)°, whilst the equivalent angle in B (C11—C13—O12—C—14) is 180.0 (4)°. As with structure (I)[link], the five-membered rings adopt envelope conformations, with the OH-bearing C atoms lying out of the plane of the other four atoms, here by 0.505 (5) and 0.530 (5) Å for mol­ecules A and B, respectively.

3. Supra­molecular features

Despite containing two carb­oxy­lic acid functionalities, the structure of (I)[link] does not feature the classic R22(8) carb­oxy­lic acid dimer motif. Instead, each of the three potential hydrogen-bond donors of the acid mol­ecule form inter­actions with a total of three separate neighbouring mol­ecules (Fig. 3[link]). The H atom of the carb­oxy­lic acid group (O3—H) adjacent to the ether forms a bifurcated hydrogen bond that is accepted by the ROH and C=O functions (i.e. O4i and O6i) of one neighbour, whilst the other two donors, the second carb­oxy­lic acid (O5—H) and the hy­droxy group (O4—H), form hydrogen bonds with atoms O8ii and O8 of DMSO solvent mol­ecules, respectively (Table 2[link]). These inter­actions combine to give a two-dimensional hydrogen-bonded layered structure, with DMSO and acid layers alternating along the c-cell direction (Fig. 4[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1H⋯O4i 0.87 (2) 2.42 (4) 2.996 (4) 124 (3)
O3—H1H⋯O6i 0.87 (2) 1.98 (3) 2.805 (4) 158 (4)
O4—H3H⋯O8 0.87 (2) 1.87 (3) 2.714 (5) 160 (7)
O5—H2H⋯O8ii 0.89 (2) 1.73 (2) 2.603 (4) 167 (5)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+1].
[Figure 3]
Figure 3
Hydrogen-bonding contacts in (I)[link].
[Figure 4]
Figure 4
The crystal packing of compound (I)[link], viewed along the a axis.

Both independent mol­ecules in the structure of (II)[link] donate single hydrogen bonds through their OH groups, but only one mol­ecule (A) acts as a hydrogen-bond acceptor (O3—H⋯O4i and O10—H⋯O2ii; Table 3[link]). That a total of four carbonyl O atoms do not act as acceptors is probably related to the low ratio of classic hydrogen-bond donors to acceptors in this compound. In (II)[link], the hydrogen bonding combines to give a four-mol­ecule-wide one-dimensional ribbon of linked mol­ecules that propagates parallel to the a axis (Fig. 5[link]).

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1H⋯O4i 0.88 (1) 2.36 (5) 2.951 (4) 125 (4)
O10—H2H⋯O2ii 0.88 (1) 2.03 (3) 2.802 (4) 147 (5)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) x+1, y, z.
[Figure 5]
Figure 5
A section of the extended structure of (II)[link], with the hydrogen-bonded polymer extending left and right parallel to the a axis.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, searched June 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded few relevant structures. For hibiscus acid, only the structures of a Ca salt form (Glusker et al., 1972[Glusker, J. P., Minkin, J. A. & Soule, F. B. (1972). Acta Cryst. B28, 2499-2505.]) and of the diastereomer mentioned previously (Mahapatra et al., 2007[Mahapatra, S., Mallik, S. B., Rao, G. V., Reddy, G. C. & Guru Row, T. N. (2007). Acta Cryst. E63, o3869.]) have been reported. The closest relative of (II)[link] to have been structurally described is a derivative with additional OH and Me substituents on the five-membered ring (Evans et al., 1997[Evans, D. A., Trotter, B. W. & Barrow, J. C. (1997). Tetrahedron, 53, 8779-8794.]).

5. Synthesis and crystallization

Dried H. sabdariffa calyces were crushed to a powder (500 g) and extracted in a Soxhlet apparatus using 2500 ml each of hexane, ethyl acetate and methanol. The methanol extract was dried and concentrated at 313 K by rotatory evaporation, yielding about 125 g (25%) of crude extract. The methanol extract (2 g) was dissolved in about 2 ml of methanol and subjected to gel filtration chromatography (GFC) using a glass column packed with a wet slurry of 30 g of Sephadex LH20 in methanol. Vials were collected (5 ml each) after elution with 100% methanol, which led to isolation of pure hibiscus acid (0.5%). Crystals of (I)[link] were obtained by recrystallisation from DMSO. For nonsolvated material, 1H NMR [OC(CD3)2]: 5.31 (1H, s), 3.23 (1H, d, J = 17.19 Hz), 2.77 (1H, d, J = 17.18 Hz). HRMS: found 189.0000; calculated 189.0035.

Hibiscus acid dimethyl ester, (II)[link], was obtained from the methanol extract (20 g) using vacuum liquid chromatography (VLC) eluted with solvent systems in different ratios to increase the polarity. The ethyl acetate portion was evaporated and a thick paste was obtained. A pure precipitate of the compound (5%) was obtained by addition of propan-2-ol to the dried ethyl acetate fraction. 1H NMR [OC(CD3)2]: 5.35 (1H, s), 3.23 (1H, d, J = 17.28 Hz), 2.77 (1H, d, J = 17.31 Hz), 3.87 (3H, s), 3.76 (3H, s). HRMS: found 218.000; calculated 218.035.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. For all structures, C-bound H atoms were placed in their expected geometrical positions and treated as riding, with C—H = 0.95–0.99 Å and Uiso(H) = 1.5Ueq(C) for methyl C atoms and 1.2Ueq(C) for the other H atoms. The absolute configuraion was determined for the mol­ecules in both acid (I)[link] for arbitrarily named atoms [C2(R),C1(S), Flack parameter 0.00 (4)] and both arbitrarily named equivalent atoms in (II)[link] [C3(R),C4(S) (mol­ecule A) and C11(R),C12(S) (mol­ecule B), Flack parameter 0.08 (17)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(2S,3R)-3-Hydroxy-5-oxo-2,3,4,5-tetrahydrofuran-2,3-dicarboxylic acid dimethyl sulfoxide monosolvate (I) top
Crystal data top
C6H6O7·C2H6OSF(000) = 280
Mr = 268.24Dx = 1.608 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.5418 Å
a = 5.4258 (2) ÅCell parameters from 2057 reflections
b = 8.9491 (3) Åθ = 6.3–72.8°
c = 11.4365 (3) ŵ = 2.94 mm1
β = 94.092 (3)°T = 123 K
V = 553.90 (3) Å3Fragment from a square plate, colourless
Z = 20.30 × 0.15 × 0.05 mm
Data collection top
Oxford Diffraction Gemini S CCD
diffractometer
1640 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.054
ω scansθmax = 72.8°, θmin = 3.9°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 66
Tmin = 0.554, Tmax = 1.000k = 108
4397 measured reflectionsl = 1414
1854 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0678P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.44 e Å3
1854 reflectionsΔρmin = 0.25 e Å3
169 parametersAbsolute structure: Flack x determined using 698 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
4 restraintsAbsolute structure parameter: 0.00 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.90564 (19)1.26444 (16)0.85370 (9)0.0235 (3)
O10.6239 (6)0.7220 (4)0.8066 (3)0.0233 (9)
O21.0711 (6)0.6125 (5)0.7467 (3)0.0285 (9)
O30.9028 (6)0.5501 (5)0.5682 (3)0.0276 (8)
O40.8575 (6)0.9112 (5)0.6333 (3)0.0232 (8)
O50.3551 (6)0.7366 (5)0.4714 (3)0.0265 (9)
O60.6572 (6)0.8844 (5)0.4153 (3)0.0254 (8)
O70.4156 (6)0.8927 (5)0.9015 (3)0.0300 (9)
O80.8239 (7)1.1798 (5)0.7411 (3)0.0295 (9)
C10.6534 (8)0.6840 (7)0.6856 (4)0.0231 (11)
H10.51850.61490.65570.028*
C20.6288 (8)0.8370 (6)0.6206 (4)0.0219 (11)
C30.4303 (8)0.9097 (7)0.6897 (4)0.0236 (11)
H3A0.44661.01980.69010.028*
H3B0.26270.88230.65670.028*
C40.4814 (8)0.8461 (7)0.8109 (4)0.0244 (11)
C50.9026 (8)0.6125 (7)0.6737 (4)0.0221 (11)
C60.5504 (8)0.8209 (6)0.4898 (4)0.0216 (10)
C71.2345 (8)1.2784 (8)0.8549 (4)0.0273 (12)
H7A1.27881.34170.78970.041*
H7B1.30531.17860.84650.041*
H7C1.29971.32270.92920.041*
C80.8906 (10)1.1285 (8)0.9679 (4)0.0309 (13)
H8A0.98981.04110.94980.046*
H8B0.71841.09810.97390.046*
H8C0.95521.17201.04250.046*
H2H0.308 (11)0.729 (8)0.396 (3)0.032 (17)*
H1H1.043 (7)0.509 (7)0.555 (5)0.026 (15)*
H3H0.865 (17)0.987 (7)0.682 (6)0.07 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0241 (5)0.0207 (7)0.0254 (5)0.0013 (5)0.0002 (4)0.0021 (5)
O10.0228 (14)0.024 (3)0.0232 (15)0.0022 (13)0.0016 (11)0.0007 (13)
O20.0237 (16)0.030 (3)0.0320 (17)0.0050 (15)0.0000 (13)0.0007 (16)
O30.0213 (14)0.032 (3)0.0299 (16)0.0032 (15)0.0023 (12)0.0049 (16)
O40.0187 (14)0.021 (2)0.0299 (17)0.0025 (14)0.0029 (12)0.0026 (15)
O50.0248 (14)0.030 (3)0.0243 (14)0.0046 (15)0.0009 (11)0.0008 (14)
O60.0258 (15)0.024 (2)0.0267 (15)0.0024 (15)0.0046 (12)0.0010 (15)
O70.0308 (16)0.033 (3)0.0274 (17)0.0032 (16)0.0073 (13)0.0037 (17)
O80.0329 (18)0.025 (3)0.0296 (17)0.0006 (17)0.0058 (14)0.0030 (17)
C10.019 (2)0.027 (3)0.024 (2)0.000 (2)0.0022 (16)0.001 (2)
C20.0178 (19)0.018 (3)0.030 (2)0.0008 (19)0.0023 (16)0.001 (2)
C30.0184 (19)0.023 (3)0.030 (2)0.0014 (19)0.0027 (16)0.003 (2)
C40.019 (2)0.024 (3)0.030 (2)0.0040 (19)0.0025 (16)0.002 (2)
C50.023 (2)0.017 (3)0.028 (2)0.0014 (19)0.0073 (18)0.005 (2)
C60.019 (2)0.019 (3)0.027 (2)0.0031 (18)0.0028 (16)0.0004 (19)
C70.0204 (18)0.031 (4)0.030 (2)0.001 (2)0.0012 (16)0.001 (2)
C80.032 (2)0.033 (4)0.027 (2)0.004 (2)0.0027 (18)0.006 (2)
Geometric parameters (Å, º) top
S1—O81.532 (4)C1—C51.511 (6)
S1—C71.788 (5)C1—C21.559 (8)
S1—C81.791 (6)C1—H11.0000
O1—C41.356 (7)C2—C31.525 (6)
O1—C11.445 (6)C2—C61.532 (6)
O2—C51.194 (6)C3—C41.505 (7)
O3—C51.329 (6)C3—H3A0.9900
O3—H1H0.87 (3)C3—H3B0.9900
O4—C21.406 (6)C7—H7A0.9800
O4—H3H0.87 (3)C7—H7B0.9800
O5—C61.306 (6)C7—H7C0.9800
O5—H2H0.89 (3)C8—H8A0.9800
O6—C61.206 (6)C8—H8B0.9800
O7—C41.195 (6)C8—H8C0.9800
O8—S1—C7105.7 (2)C2—C3—H3B111.2
O8—S1—C8104.6 (3)H3A—C3—H3B109.1
C7—S1—C898.0 (3)O7—C4—O1121.5 (5)
C4—O1—C1109.3 (4)O7—C4—C3128.3 (5)
C5—O3—H1H113 (4)O1—C4—C3110.1 (4)
C2—O4—H3H116 (6)O2—C5—O3125.8 (5)
C6—O5—H2H112 (4)O2—C5—C1125.6 (5)
O1—C1—C5110.3 (4)O3—C5—C1108.6 (4)
O1—C1—C2103.8 (4)O6—C6—O5125.7 (4)
C5—C1—C2112.1 (4)O6—C6—C2122.1 (5)
O1—C1—H1110.2O5—C6—C2112.1 (4)
C5—C1—H1110.2S1—C7—H7A109.5
C2—C1—H1110.2S1—C7—H7B109.5
O4—C2—C3113.3 (4)H7A—C7—H7B109.5
O4—C2—C6109.0 (4)S1—C7—H7C109.5
C3—C2—C6112.9 (4)H7A—C7—H7C109.5
O4—C2—C1108.7 (4)H7B—C7—H7C109.5
C3—C2—C199.6 (4)S1—C8—H8A109.5
C6—C2—C1113.0 (5)S1—C8—H8B109.5
C4—C3—C2103.0 (4)H8A—C8—H8B109.5
C4—C3—H3A111.2S1—C8—H8C109.5
C2—C3—H3A111.2H8A—C8—H8C109.5
C4—C3—H3B111.2H8B—C8—H8C109.5
C4—O1—C1—C5148.2 (4)C2—C3—C4—O7161.1 (5)
C4—O1—C1—C227.9 (5)C2—C3—C4—O117.9 (5)
O1—C1—C2—O482.0 (4)O1—C1—C5—O213.6 (8)
C5—C1—C2—O437.1 (5)C2—C1—C5—O2101.5 (6)
O1—C1—C2—C336.8 (4)O1—C1—C5—O3166.6 (4)
C5—C1—C2—C3155.9 (4)C2—C1—C5—O378.3 (6)
O1—C1—C2—C6156.8 (3)O4—C2—C6—O610.2 (7)
C5—C1—C2—C684.1 (5)C3—C2—C6—O6116.7 (5)
O4—C2—C3—C483.0 (5)C1—C2—C6—O6131.2 (5)
C6—C2—C3—C4152.4 (5)O4—C2—C6—O5172.0 (4)
C1—C2—C3—C432.3 (5)C3—C2—C6—O561.2 (6)
C1—O1—C4—O7174.3 (5)C1—C2—C6—O550.9 (5)
C1—O1—C4—C36.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1H···O4i0.87 (2)2.42 (4)2.996 (4)124 (3)
O3—H1H···O6i0.87 (2)1.98 (3)2.805 (4)158 (4)
O4—H3H···O80.87 (2)1.87 (3)2.714 (5)160 (7)
O5—H2H···O8ii0.89 (2)1.73 (2)2.603 (4)167 (5)
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x+1, y1/2, z+1.
Dimethyl (2S,3R)-3-Hydroxy-5-oxo-2,3,4,5-tetrahydrofuran-2,3-dicarboxylate (II) top
Crystal data top
C8H10O7F(000) = 456
Mr = 218.16Dx = 1.519 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.5418 Å
a = 9.3057 (6) ÅCell parameters from 3289 reflections
b = 7.6934 (6) Åθ = 3.4–72.8°
c = 13.4012 (11) ŵ = 1.20 mm1
β = 96.243 (7)°T = 123 K
V = 953.74 (12) Å3Platey fragment, colourless
Z = 40.30 × 0.20 × 0.04 mm
Data collection top
Oxford Diffraction Gemini S CCD
diffractometer
2976 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.036
ω scansθmax = 73.4°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 1111
Tmin = 0.747, Tmax = 1.000k = 89
8046 measured reflectionsl = 1614
3506 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.1462P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.121(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.23 e Å3
3506 reflectionsΔρmin = 0.22 e Å3
281 parametersAbsolute structure: Flack x determined using 1098 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 restraintsAbsolute structure parameter: 0.08 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0127 (3)0.3894 (4)0.4143 (2)0.0393 (7)
O20.0438 (4)0.4647 (5)0.2547 (2)0.0502 (8)
O30.3364 (3)0.3776 (4)0.4119 (2)0.0399 (7)
H1H0.407 (4)0.349 (7)0.458 (3)0.048*
O40.4351 (3)0.0487 (4)0.4527 (2)0.0460 (8)
O50.2148 (3)0.0633 (4)0.4061 (2)0.0432 (7)
O60.1333 (3)0.5084 (4)0.5929 (2)0.0460 (7)
O70.2626 (3)0.2625 (4)0.6205 (2)0.0431 (7)
O80.5725 (3)0.4161 (4)0.0594 (2)0.0391 (7)
O90.6406 (3)0.5063 (5)0.2045 (2)0.0484 (8)
O100.8715 (3)0.4023 (4)0.0508 (2)0.0388 (7)
H2H0.904 (5)0.376 (7)0.1128 (16)0.047*
O110.9307 (3)0.0730 (4)0.1173 (2)0.0437 (7)
O120.7678 (3)0.0374 (4)0.0028 (3)0.0467 (8)
O130.5379 (3)0.5087 (4)0.1312 (2)0.0443 (7)
O140.6548 (3)0.2682 (4)0.1911 (2)0.0414 (7)
C10.0312 (5)0.3802 (6)0.3161 (3)0.0408 (9)
C20.1501 (5)0.2555 (7)0.3003 (3)0.0424 (10)
H2A0.21160.30120.25050.051*
H2B0.11060.14120.27710.051*
C30.2350 (4)0.2408 (6)0.4034 (3)0.0366 (9)
C40.1125 (4)0.2751 (6)0.4721 (3)0.0377 (9)
H40.06370.16380.48700.045*
C50.3083 (5)0.0651 (6)0.4238 (3)0.0389 (9)
C60.2722 (5)0.2380 (6)0.4145 (4)0.0477 (11)
H6A0.34640.25210.36850.072*
H6B0.19400.32160.39710.072*
H6C0.31510.25870.48350.072*
C70.1678 (4)0.3672 (6)0.5685 (3)0.0378 (9)
C80.3289 (6)0.3351 (8)0.7144 (4)0.0564 (13)
H8A0.39600.42790.70030.085*
H8B0.38190.24370.75380.085*
H8C0.25370.38260.75240.085*
C90.6617 (5)0.4150 (6)0.1329 (3)0.0393 (9)
C100.7821 (4)0.2878 (6)0.1067 (3)0.0396 (9)
H10A0.87500.33400.12520.048*
H10B0.76160.17550.14140.048*
C110.7864 (4)0.2667 (6)0.0067 (3)0.0352 (9)
C120.6230 (4)0.2963 (6)0.0191 (3)0.0358 (9)
H120.56940.18400.00900.043*
C130.8388 (4)0.0905 (6)0.0475 (3)0.0370 (9)
C140.8023 (5)0.2154 (7)0.0250 (4)0.0478 (11)
H14A0.87020.26230.01920.072*
H14B0.71370.28510.01820.072*
H14C0.84650.21930.09470.072*
C150.5978 (4)0.3732 (6)0.1191 (3)0.0365 (9)
C160.6380 (6)0.3211 (7)0.2932 (4)0.0504 (12)
H16A0.68570.43340.30710.076*
H16B0.68200.23380.34020.076*
H16C0.53490.33190.30120.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0391 (13)0.0337 (18)0.0436 (16)0.0050 (13)0.0023 (11)0.0018 (13)
O20.0564 (18)0.046 (2)0.0456 (17)0.0136 (15)0.0086 (14)0.0029 (14)
O30.0377 (14)0.0332 (18)0.0481 (16)0.0031 (13)0.0012 (12)0.0019 (13)
O40.0439 (16)0.040 (2)0.0519 (17)0.0044 (14)0.0055 (13)0.0016 (13)
O50.0441 (16)0.0288 (17)0.0561 (18)0.0004 (13)0.0023 (13)0.0014 (13)
O60.0513 (16)0.0371 (19)0.0477 (17)0.0081 (14)0.0031 (14)0.0090 (14)
O70.0528 (16)0.0314 (18)0.0429 (16)0.0050 (14)0.0048 (13)0.0029 (13)
O80.0386 (14)0.0344 (18)0.0431 (15)0.0009 (12)0.0014 (11)0.0040 (12)
O90.0510 (17)0.049 (2)0.0441 (17)0.0017 (15)0.0000 (14)0.0089 (14)
O100.0405 (14)0.0341 (19)0.0404 (15)0.0032 (13)0.0021 (11)0.0002 (12)
O110.0484 (16)0.0373 (18)0.0439 (16)0.0042 (14)0.0015 (13)0.0001 (13)
O120.0433 (16)0.0281 (19)0.066 (2)0.0007 (13)0.0051 (14)0.0063 (14)
O130.0493 (16)0.039 (2)0.0428 (16)0.0079 (14)0.0027 (13)0.0032 (14)
O140.0492 (15)0.0353 (18)0.0400 (15)0.0056 (14)0.0063 (12)0.0045 (13)
C10.044 (2)0.033 (3)0.043 (2)0.0020 (19)0.0042 (17)0.0038 (18)
C20.049 (2)0.036 (3)0.040 (2)0.0044 (19)0.0029 (17)0.0028 (18)
C30.041 (2)0.027 (2)0.041 (2)0.0035 (17)0.0022 (16)0.0005 (16)
C40.0380 (19)0.031 (2)0.043 (2)0.0024 (17)0.0014 (16)0.0003 (18)
C50.043 (2)0.037 (3)0.036 (2)0.0028 (18)0.0024 (16)0.0034 (17)
C60.055 (3)0.032 (3)0.056 (3)0.002 (2)0.005 (2)0.002 (2)
C70.0351 (18)0.039 (3)0.039 (2)0.0013 (17)0.0045 (15)0.0006 (18)
C80.069 (3)0.050 (3)0.046 (3)0.004 (2)0.015 (2)0.002 (2)
C90.045 (2)0.036 (3)0.037 (2)0.0065 (18)0.0001 (16)0.0026 (17)
C100.041 (2)0.037 (3)0.040 (2)0.0018 (18)0.0036 (16)0.0003 (17)
C110.0377 (19)0.029 (2)0.039 (2)0.0002 (16)0.0020 (15)0.0029 (17)
C120.039 (2)0.026 (2)0.042 (2)0.0024 (17)0.0012 (16)0.0026 (17)
C130.0368 (19)0.031 (2)0.043 (2)0.0014 (17)0.0050 (17)0.0033 (17)
C140.042 (2)0.036 (3)0.065 (3)0.000 (2)0.007 (2)0.004 (2)
C150.0339 (17)0.031 (2)0.044 (2)0.0025 (17)0.0017 (15)0.0001 (17)
C160.060 (3)0.048 (3)0.043 (2)0.005 (2)0.006 (2)0.008 (2)
Geometric parameters (Å, º) top
O1—C11.347 (5)C2—H2B0.9900
O1—C41.442 (5)C3—C51.526 (6)
O2—C11.210 (5)C3—C41.562 (6)
O3—C31.410 (5)C4—C71.514 (6)
O3—H1H0.880 (14)C4—H41.0000
O4—C51.208 (5)C6—H6A0.9800
O5—C51.320 (5)C6—H6B0.9800
O5—C61.446 (6)C6—H6C0.9800
O6—C71.189 (6)C8—H8A0.9800
O7—C71.334 (5)C8—H8B0.9800
O7—C81.451 (6)C8—H8C0.9800
O8—C91.355 (5)C9—C101.501 (6)
O8—C121.439 (5)C10—C111.524 (6)
O9—C91.188 (5)C10—H10A0.9900
O10—C111.401 (5)C10—H10B0.9900
O10—H2H0.876 (14)C11—C131.522 (6)
O11—C131.204 (5)C11—C121.565 (5)
O12—C131.328 (5)C12—C151.506 (6)
O12—C141.446 (6)C12—H121.0000
O13—C151.202 (5)C14—H14A0.9800
O14—C151.324 (5)C14—H14B0.9800
O14—C161.452 (6)C14—H14C0.9800
C1—C21.497 (6)C16—H16A0.9800
C2—C31.519 (6)C16—H16B0.9800
C2—H2A0.9900C16—H16C0.9800
C1—O1—C4110.4 (3)H8A—C8—H8B109.5
C3—O3—H1H108 (4)O7—C8—H8C109.5
C5—O5—C6116.8 (3)H8A—C8—H8C109.5
C7—O7—C8114.6 (4)H8B—C8—H8C109.5
C9—O8—C12110.5 (3)O9—C9—O8121.5 (4)
C11—O10—H2H110 (4)O9—C9—C10128.9 (4)
C13—O12—C14119.2 (4)O8—C9—C10109.6 (4)
C15—O14—C16116.1 (4)C9—C10—C11103.9 (3)
O2—C1—O1120.7 (4)C9—C10—H10A111.0
O2—C1—C2129.0 (4)C11—C10—H10A111.0
O1—C1—C2110.3 (4)C9—C10—H10B111.0
C1—C2—C3103.7 (3)C11—C10—H10B111.0
C1—C2—H2A111.0H10A—C10—H10B109.0
C3—C2—H2A111.0O10—C11—C13111.5 (3)
C1—C2—H2B111.0O10—C11—C10107.1 (3)
C3—C2—H2B111.0C13—C11—C10115.2 (4)
H2A—C2—H2B109.0O10—C11—C12111.0 (3)
O3—C3—C2107.1 (3)C13—C11—C12111.6 (3)
O3—C3—C5111.4 (3)C10—C11—C1299.8 (3)
C2—C3—C5114.0 (4)O8—C12—C15109.2 (3)
O3—C3—C4110.6 (4)O8—C12—C11105.0 (3)
C2—C3—C4100.6 (3)C15—C12—C11113.5 (3)
C5—C3—C4112.6 (4)O8—C12—H12109.6
O1—C4—C7108.2 (3)C15—C12—H12109.6
O1—C4—C3104.8 (3)C11—C12—H12109.6
C7—C4—C3112.3 (3)O11—C13—O12125.7 (4)
O1—C4—H4110.5O11—C13—C11123.5 (4)
C7—C4—H4110.5O12—C13—C11110.8 (3)
C3—C4—H4110.5O12—C14—H14A109.5
O4—C5—O5125.5 (4)O12—C14—H14B109.5
O4—C5—C3123.5 (4)H14A—C14—H14B109.5
O5—C5—C3111.0 (3)O12—C14—H14C109.5
O5—C6—H6A109.5H14A—C14—H14C109.5
O5—C6—H6B109.5H14B—C14—H14C109.5
H6A—C6—H6B109.5O13—C15—O14125.9 (4)
O5—C6—H6C109.5O13—C15—C12125.4 (4)
H6A—C6—H6C109.5O14—C15—C12108.6 (4)
H6B—C6—H6C109.5O14—C16—H16A109.5
O6—C7—O7126.2 (4)O14—C16—H16B109.5
O6—C7—C4125.9 (4)H16A—C16—H16B109.5
O7—C7—C4107.9 (4)O14—C16—H16C109.5
O7—C8—H8A109.5H16A—C16—H16C109.5
O7—C8—H8B109.5H16B—C16—H16C109.5
C4—O1—C1—O2179.0 (4)C12—O8—C9—O9179.1 (4)
C4—O1—C1—C20.5 (5)C12—O8—C9—C100.3 (5)
O2—C1—C2—C3160.9 (5)O9—C9—C10—C11158.1 (5)
O1—C1—C2—C319.7 (5)O8—C9—C10—C1121.2 (5)
C1—C2—C3—O386.2 (4)C9—C10—C11—O1084.8 (4)
C1—C2—C3—C5150.1 (4)C9—C10—C11—C13150.5 (4)
C1—C2—C3—C429.3 (5)C9—C10—C11—C1230.9 (4)
C1—O1—C4—C7139.9 (4)C9—O8—C12—C15142.4 (3)
C1—O1—C4—C319.9 (4)C9—O8—C12—C1120.3 (4)
O3—C3—C4—O182.7 (4)O10—C11—C12—O881.3 (4)
C2—C3—C4—O130.2 (4)C13—C11—C12—O8153.6 (3)
C5—C3—C4—O1152.0 (3)C10—C11—C12—O831.4 (4)
O3—C3—C4—C734.5 (5)O10—C11—C12—C1537.9 (5)
C2—C3—C4—C7147.5 (4)C13—C11—C12—C1587.1 (4)
C5—C3—C4—C790.8 (4)C10—C11—C12—C15150.6 (4)
C6—O5—C5—O45.2 (6)C14—O12—C13—O111.2 (7)
C6—O5—C5—C3175.1 (4)C14—O12—C13—C11180.0 (4)
O3—C3—C5—O46.5 (6)O10—C11—C13—O118.2 (6)
C2—C3—C5—O4127.9 (5)C10—C11—C13—O11130.5 (4)
C4—C3—C5—O4118.4 (5)C12—C11—C13—O11116.6 (4)
O3—C3—C5—O5173.8 (3)O10—C11—C13—O12173.0 (3)
C2—C3—C5—O552.4 (5)C10—C11—C13—O1250.6 (5)
C4—C3—C5—O561.3 (5)C12—C11—C13—O1262.3 (4)
C8—O7—C7—O61.3 (6)C16—O14—C15—O132.1 (6)
C8—O7—C7—C4178.3 (4)C16—O14—C15—C12178.9 (4)
O1—C4—C7—O61.0 (6)O8—C12—C15—O133.7 (5)
C3—C4—C7—O6116.1 (5)C11—C12—C15—O13120.6 (5)
O1—C4—C7—O7178.6 (3)O8—C12—C15—O14175.2 (3)
C3—C4—C7—O763.4 (4)C11—C12—C15—O1458.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1H···O4i0.88 (1)2.36 (5)2.951 (4)125 (4)
O10—H2H···O2ii0.88 (1)2.03 (3)2.802 (4)147 (5)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y, z.
 

Acknowledgements

We thank the College of Pharmacy, University of Misan, and the Ministry of Higher Education, Iraq, for funding AZ.

References

First citationAli, B. H., Al Wabel, N. & Blunden, G. (2005). Phytother. Res. 19, 369–375.  CrossRef PubMed CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBoll, P. M., Sorensen, E. & Balieu, E. (1969). Acta Chem. Scand. 23, 286–293.  CrossRef CAS Google Scholar
First citationDa-Costa-Rocha, I., Bonnlaender, B., Sievers, H., Pischel, I. & Heinrich, M. (2014). Food Chem. 165, 424–443.  CAS PubMed Google Scholar
First citationEvans, D. A., Trotter, B. W. & Barrow, J. C. (1997). Tetrahedron, 53, 8779–8794.  CSD CrossRef CAS Google Scholar
First citationGlusker, J. P., Minkin, J. A. & Soule, F. B. (1972). Acta Cryst. B28, 2499–2505.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHansawasdi, C., Kawabata, J. & Kasai, T. (2000). Biosci. Biotechnol. Biochem. 64, 1041–1043.  CrossRef PubMed CAS Google Scholar
First citationHansawasdi, C., Kawabata, J. & Kasai, T. (2001). Biosci. Biotechnol. Biochem. 65, 2087–2089.  CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMahapatra, S., Mallik, S. B., Rao, G. V., Reddy, G. C. & Guru Row, T. N. (2007). Acta Cryst. E63, o3869.  CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds