research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of pulcherrin J

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Physical Sciences, University of Benin, Benin City, Nigeria, bH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, cDepartment of Chemistry, School of Sciences, The Federal University of Technology, Akure, Nigeria, and dDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Benin, Benin City, Nigeria
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 21 June 2017; accepted 30 July 2017; online 29 September 2017)

The title compound, C29H36O4 [systematic name (4aR,5R,6aS,7R,11aS,11bR)-4a-hydroxy-4,4,7,11b-tetramethyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodecahydrophen­anthro[3,2-b]furan-5-yl cinnamate], a natural diterpene known as pulcherrin J, was isolated from stem barks of medicinally important Caesalpinia pulcherrima (L.). The crystal structure of pulcherrin J shows it to be composed of a central core of three trans-fused cyclo­hexane rings and a near planar five-membered furan ring, along with an axially oriented cinnamate moiety and an ­hydroxy substituent attached at positions 4a and 5 of the steroid ring system, respectively. The absolute structure was established with the use of Cu Kα radiation. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds to generate [100] C(8) chains. Hirshfeld surface analysis indicates that the most significant contacts in packing are H⋯H (67.5%), followed by C⋯H (19.6%) and H⋯O (12.9%).

1. Chemical context

Caesalpinia pulcherrima (L.) is one of the widely cultivated species of the genus Caesalpinia. It is an ornamental plant with attractive inflorescence in yellow, red, and orange, generally blooming in winter. Its small size and tolerability towards pruning allows it to be grown in groups to form a windbreak. It can also be used to create a center of attention for humming birds (Frisch et al., 2005[Frisch, J. D. & Frisch, C. D. (2005). Aves Brassileiras e Plantas que as atream, p. 398. São Paulo: Dalgas Ecoltec.]). In addition to the ornamental value, C. pulcherrima has been known to exhibit cytotoxic (Promsawan et al., 2003[Promsawan, N., Kittakoop, P., Boonphong, S. & Nongkunsarn, P. (2003). Planta Med. 69, 776-777.]; McPherson et al., 1986[McPherson, D. D. C. T., Che, Cordell, G. A., Soejarto, D. D., Pezzuto, J. M. & Fong, H. H. S. (1986). Phytochemistry, 25, 167-170.]), anti­tubercular (Promsawan et al., 2003[Promsawan, N., Kittakoop, P., Boonphong, S. & Nongkunsarn, P. (2003). Planta Med. 69, 776-777.]), anti­bacterial, anti­fungal (Ragasa et al., 2002[Ragasa, C. Y., Hofileña, J. G. & Rideout, J. A. (2002). J. Nat. Prod. 65, 1107-1110.]), and leishmanicidal (Erharuyi et al., 2016[Erharuyi, O., Adhikari, A., Falodun, A., Imad, R. & Choudhary, M. I. (2016). Tetrahedron Lett. 57, 2201-2206.]) activities. The compounds isolated from C. pulcherrima are also reported to be active against DNA repair-deficient yeast mutant (Patil et al., 1997[Patil, D., Freyer, A. J., Webb, R. L., Zuber, G., Reichwein, R., Bean, M. F., Faucette, L. & Johnson, R. K. (1997). Tetrahedron, 53, 1583-1592.]). The plants of genus Caesalpinia, including C. pulcherrima, are known to be a rich source of cassane-type diterpenoids. The literature reports the isolation of a number of cassane-type diterpenoids from the stems, and root barks, such as pulcherrimins A–F, and pulcherrins A–R (Erharuyi et al., 2017[Erharuyi, O., Adhikari, A., Falodun, A., Jabeen, A., Imad, R., Ammad, M., Choudhary, M. & Gören, N. (2017). Planta Med. 83, 104-110.]; Yodsaoue et al., 2011[Yodsaoue, O., Karalai, C., Ponglimanont, C., Tewtrakul, S. & Chantrapromma, S. (2011). Tetrahedron, 67, 6838-6846.]; Pranithanchai et al., 2009[Pranithanchai, W., Karalai, C., Ponglimanont, C., Subhadhirasakul, S. & Chantrapromma, K. (2009). Phytochemistry, 70, 300-304.]; Roach et al., 2003[Roach, J. S., McLean, S., Reynolds, W. F. & Tinto, W. F. (2003). J. Nat. Prod. 66, 1378-1381.]). In continuation of our work on the phytochemical investigation of medicinally important plants, we have isolated the crystalline pulcherrin J, a cassane-type diterpenoid, previously reported by Erharuyi and co-workers (Erharuyi et al., 2017[Erharuyi, O., Adhikari, A., Falodun, A., Jabeen, A., Imad, R., Ammad, M., Choudhary, M. & Gören, N. (2017). Planta Med. 83, 104-110.]). To the best of our knowledge, this is the first report of the the crystal structure and the Hirshfeld surface analysis of pulcherrin J.

[Scheme 1]

2. Structural commentary

The title compound (Fig. 1[link]) is a cassane-type diterpenoid comprising of three cyclo­hexane rings A (C1–C3/C5–C7), B (C6–C11) and C (C9–10/C12–C15) and an almost planar five-membered furan ring (O1/C2–C3/C20–C21) fused to ring A along the C2—C3 bond. Cyclo­hexane rings A, B, and C are trans fused to each other along the C6—C11 and C8—C9 bonds and attain half-chair, chair and chair conformations, respectively, as observed in related structures (Gómez-Hurtado et al., 2013[Gómez-Hurtado, M. A., Álvarez-Esquivel, F. E., Rodríguez-García, G., Martínez-Pacheco, M. M., Espinoza-Madrigal, R. M., Pamatz-Bolaños, T., Salvador-Hernández, J. L., García-Gutiérrez, H. A., Cerda-García-Rojas, C. M., Joseph-Nathan, P. & del Río, R. E. (2013). Phytochemistry, 96, 397-403.]; Fun et al., 2010a,[Fun, H.-K., Yodsaoue, O., Chantrapromma, S. & Karalai, C. (2010a). Acta Cryst. E66, o2166-o2167.]b[Fun, H.-K., Yodsaoue, O., Karalai, C. & Chantrapromma, S. (2010b). Acta Cryst. E66, o2059-o2060.]; Matsuno et al., 2008[Matsuno, Y., Deguchi, J., Hirasawa, Y., Ohyama, K., Toyoda, H., Hirobe, C., Ekasari, W., Widyawaruyanti, A., Zaini, N. C. & Morita, H. (2008). Bio. Med. Chem. Lett. 18, 37774-3777.]; Ruggiero et al., 1997[Ruggiero, S. G., Rodrigues, B. L., Fernandes, N. G., Stefani, G. M. & Veloso, D. P. (1997). Acta Cryst. C53, 982-984.]). The axially oriented cinnamate group (O3/O4/C22–C30) and hydroxy moieties at C8 and C9 of ring B, respectively, are trans to each other [O2—C9—C8—O3 = −171.41 (13)°]. The dihedral angle between the furan and phenyl ring of the cinnamate moiety is 83.77 (16)°. The absolute configurations of the stereogenic centres are C5 R, C6 R, C8 R, C9 R, C10 R and C11 S. The conformation of the mol­ecule is consolidated by a C18—H18A⋯O3 intra­molecular inter­action, forming an S(6) graph-set ring motif.

[Figure 1]
Figure 1
The mol­ecular structure, with displacement ellipsoids drawn at the 30% probability level.

3. Hydrogen bonding and Hirshfeld surface analysis

In the crystal, the mol­ecules are connected by O2—H2A⋯O1i inter­actions to generate C(8) chains propagating in the [100] direction. (Table 1[link], Fig. 2[link]). The Hirshfeld surface analysis (Spackman et al., 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) indicates that the percentage contribution of H⋯H inter­actions to the packing is 67.5% (Fig. 3[link]). Other important inter­actions based upon the percentages are C⋯H (19.6%) and H⋯O (12.9%), as shown in the fingerprint plots, in which cyan dots indicate the percentage of the inter­action over the total Hirshfeld surface (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.82 (3) 2.28 (3) 3.067 (2) 160 (2)
C18—H18A⋯O3 0.98 2.23 3.039 (2) 139
Symmetry code: (i) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
The crystal packing. H atoms involved in hydrogen bonding are shown.
[Figure 3]
Figure 3
dnorm mapped on the Hirshfeld surface for visualizing the contacts of the title compound. Dotted lines indicate hydrogen bonds.
[Figure 4]
Figure 4
(a) Fingerprint plot of the title compound, (bd) H⋯H, C⋯H and O⋯H contacts. The outline of the full fingerprint plots is shown in grey. di is the closet inter­nal distance from a given point on the Hirshfeld surface and de is the closest external contact.

4. Comparison with reported literature

Structurally the title compound is similar to the reported isovouacapenol C (Fun et al., 2010b[Fun, H.-K., Yodsaoue, O., Karalai, C. & Chantrapromma, S. (2010b). Acta Cryst. E66, o2059-o2060.]) with the difference that no hy­droxy substituent occurs on ring B, while the benzoate moiety is replaced by a cinnamate moiety. The O—H⋯O hydrogen bond is the most important contributor to the crystal packing of pulcherrin J, and other related structures such as isovouacapenol C and vouacapen-5a-ol (Fun et al., 2010a,[Fun, H.-K., Yodsaoue, O., Chantrapromma, S. & Karalai, C. (2010a). Acta Cryst. E66, o2166-o2167.]b[Fun, H.-K., Yodsaoue, O., Karalai, C. & Chantrapromma, S. (2010b). Acta Cryst. E66, o2059-o2060.]), all of which lead to chains in the crystal.

5. Isolation and crystallization

2.5 kg of ground C. pulcherrima (L.) Swartz stem bark was soaked in methanol (7.5 l) at ambient temperature: 220 g of crude extract was obtained after filtration and concentration, by using a rotary evaporator at 318 K. 200 g of the crude extract was fractionated by using silica gel chromatography, first with hexane (9.4 l) followed by increasing polarities with n-hexa­ne:ethyl­acetate (1:1) (12.5 l), ethyl acetate (8.2 l), ethyl acetate:methanol (1:1) (13 l) and methanol (7 l). Concentration of the different fractions in vacuo gave five different fractions of 0.45 g (0.23%), 38.81 g (19.41%), 25.75 g (12.75%), 127.73 g (63.87%) and 4.18 g (2.09%) obtained on elution with n-hexane, n-hexa­ne:ethyl­acetate (1:1), ethyl acetate, ethyl acetate:methanol (1:1) and methanol, respectively. The fraction obtained on elution with n-hexa­ne:ethyl acetate­(1:1) was re-chromatographed over silica gel (SiO2, 6.5 × 135 cm column) by using increasing proportions of n-hexane with ethyl acetate [100:0 (7.5 l), 95:5 (10 l), 90:10 (24.5 l), 85:15 (7.5 l), 80:20 (6 l), and 0:100 (4.5 l)]. Each obtained fraction (250 ml of each) was monitored carefully on TLC and combined into 12 main fractions named as CP4–9, CP10–17, CP18–33, CP34–48, CP49–61, CP63–76, CP77–92, CP93–123,CP124–135, CP136–139, CP140–145 and CP153–162. The fraction obtained on elution with n-hexa­ne:ethyl acetate 95:5 gave crystalline precipitates, which were suspended in n-hexane, filtered and dried to obtain purified crystalline pulcherrin J (130.4 mg).

1H NMR (400MHz C3D6O): 8.08 (bd, J = 7.2 H31,71), 7.64 (bt, J = 7.6, H51), 7.53 (bt, J = 7.2, Hz H41,61), 7.27 (d, J = 1.6Hz, H16), 6.20 (d, J = 2, H15), 5.6 (t, J = 3.0, H6), 2.62–2.51 (m, H9), 2.58 (m, H14), 2.46 (m, H11), 2.41–2.33 (m, H7b); 1.59–1.52 (m H7a), 2.13–2.07 (m, H8), 1.56 (s, H20), 1.21 (s, H19), 1.03 (s, H18), 0.98 (d, J = 6.8 Hz, H17), 1.98–1.89 (m, H3b); 1.05 (m, H3a), 1.79–1.77 (m, H2b); 1.49–1.47 (m, H2a), 1.76–1.74 (m, H1b); 1.45–1.43 (m, H1a) ppm. 13C NMR (400 MHz C3D6O) 165.8, 133.1, 129.7, 128.6, 149.5, 140.4, 122.4, 109.5, 76.4, 72.8, 41.3, 39.0, 38.1, 38.0, 34.9, 31.6, 31.2, 30.7, 27.8, 26.0, 21.9, 18.3, 17.6, 17.2 ppm. IR (CH3OH, cm−1): 3593.0, 2929.6, 2869.1, 1705.9, 1635.8, 1505.4, 1458.4, 1392.3, 1316.2, 1283.0, 1176.9, 1007.6, 929.7, 733.0.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were located in a difference-Fourier map, positioned with idealized geometry and refined with Uiso(H) = 1.5Ueq, C—H = 0.97 Å for CH3, 1.2Ueq, C—H = 0.97 Å for CH2 and C—H = 0.93 Å for olefinic and aromatic CH. The hydrogen atom on the oxygen [O—H= 0.82 (3) Å] was located in difference-Fourier map and refined isotropically.

Table 2
Experimental details

Crystal data
Chemical formula C29H36O4
Mr 448.58
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 6.6663 (3), 10.6256 (5), 33.3005 (17)
V3) 2358.8 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.65
Crystal size (mm) 0.13 × 0.12 × 0.08
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.920, 0.950
No. of measured, independent and observed [I > 2σ(I)] reflections 18537, 4124, 3499
Rint 0.074
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.082, 1.05
No. of reflections 4124
No. of parameters 306
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.15, −0.27
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])
Absolute structure parameter −0.18 (19)
Computer programs: SMART and SAINT (Bruker, 2009[Bruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(4aR,5S,6aR,11aR,11bR)-4a-Hydroxy-4,4,11b-trimethyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodecahydrophenanthro[3,2-b]furan-5-yl cinnamate top
Crystal data top
C29H36O4Dx = 1.263 Mg m3
Mr = 448.58Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 6933 reflections
a = 6.6663 (3) Åθ = 2.7–66.5°
b = 10.6256 (5) ŵ = 0.65 mm1
c = 33.3005 (17) ÅT = 100 K
V = 2358.8 (2) Å3Plate, colourless
Z = 40.13 × 0.12 × 0.08 mm
F(000) = 968
Data collection top
Bruker SMART APEX CCD
diffractometer
4124 independent reflections
Radiation source: fine-focus sealed tube3499 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ω scansθmax = 66.8°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 74
Tmin = 0.920, Tmax = 0.950k = 1112
18537 measured reflectionsl = 3939
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0398P)2 + 0.0469P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4124 reflectionsΔρmax = 0.15 e Å3
306 parametersΔρmin = 0.27 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.18 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37182 (19)0.05535 (13)0.57637 (4)0.0171 (3)
O20.0950 (2)0.16046 (14)0.40894 (4)0.0144 (3)
O30.12570 (19)0.13663 (12)0.38017 (4)0.0154 (3)
O40.1179 (2)0.21242 (13)0.33934 (4)0.0201 (3)
C10.2954 (3)0.11384 (19)0.50647 (5)0.0154 (4)
H1A0.26790.20230.51400.018*
H1B0.43670.10820.49740.018*
C20.2654 (3)0.03178 (19)0.54176 (6)0.0138 (4)
C30.1496 (3)0.07066 (18)0.54590 (6)0.0140 (4)
C50.0101 (3)0.1140 (2)0.51340 (5)0.0146 (4)
H50.01400.20810.51280.017*
C60.0901 (3)0.06556 (18)0.47230 (6)0.0124 (4)
H60.21060.11700.46520.015*
C70.0671 (3)0.08691 (18)0.43950 (6)0.0142 (4)
H7A0.19160.04270.44750.017*
H7B0.09800.17800.43850.017*
C80.0108 (3)0.04400 (18)0.39731 (6)0.0131 (4)
H80.13560.04300.38070.016*
C90.0806 (3)0.08998 (18)0.39668 (5)0.0130 (4)
C100.2459 (3)0.10865 (19)0.42973 (6)0.0134 (4)
C110.1536 (3)0.07380 (18)0.47164 (5)0.0118 (4)
H110.02820.12460.47460.014*
C120.3090 (3)0.24846 (18)0.43029 (6)0.0155 (4)
H12A0.42320.25860.44900.019*
H12B0.19600.29930.44080.019*
C130.3700 (3)0.3000 (2)0.38903 (6)0.0198 (5)
H13A0.49470.25790.38010.024*
H13B0.39750.39120.39130.024*
C140.2051 (3)0.27836 (19)0.35786 (6)0.0188 (5)
H14A0.08630.32910.36540.023*
H14B0.25300.30900.33150.023*
C150.1407 (3)0.13918 (19)0.35356 (6)0.0167 (5)
C160.3124 (3)0.0690 (2)0.33183 (6)0.0242 (5)
H16A0.27140.01790.32640.036*
H16B0.34250.11150.30640.036*
H16C0.43230.06900.34890.036*
C170.0416 (3)0.1347 (2)0.32547 (6)0.0231 (5)
H17A0.15330.18080.33770.035*
H17B0.00680.17340.29970.035*
H17C0.08120.04690.32110.035*
C180.4348 (3)0.02606 (19)0.42266 (6)0.0161 (4)
H18A0.39710.04970.40770.024*
H18B0.53410.07400.40720.024*
H18C0.49250.00180.44860.024*
C190.2055 (3)0.0740 (2)0.52362 (6)0.0175 (4)
H19A0.21740.01760.52130.026*
H19B0.29900.11440.50490.026*
H19C0.23750.09980.55110.026*
C200.1840 (3)0.11595 (19)0.58590 (6)0.0172 (4)
H200.12340.18730.59810.021*
C210.3183 (3)0.03823 (19)0.60280 (6)0.0187 (5)
H210.36930.04670.62930.022*
C220.0525 (3)0.21390 (18)0.35149 (6)0.0152 (4)
C230.2113 (3)0.29919 (19)0.33754 (6)0.0169 (4)
H230.33810.29810.35060.020*
C240.1815 (3)0.37822 (18)0.30697 (6)0.0167 (4)
H240.05260.37620.29480.020*
C250.3260 (3)0.46782 (18)0.29013 (5)0.0161 (5)
C260.2651 (3)0.5491 (2)0.25947 (6)0.0215 (5)
H260.13340.54210.24880.026*
C270.3945 (4)0.6398 (2)0.24439 (6)0.0266 (5)
H270.35170.69400.22340.032*
C280.5861 (4)0.6511 (2)0.26003 (6)0.0280 (5)
H280.67420.71450.25030.034*
C290.6485 (3)0.5695 (2)0.29001 (6)0.0251 (5)
H290.78070.57650.30040.030*
C300.5218 (3)0.4784 (2)0.30487 (6)0.0216 (5)
H300.56750.42250.32520.026*
H2A0.075 (4)0.237 (3)0.4105 (7)0.036 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0206 (7)0.0181 (8)0.0127 (7)0.0011 (6)0.0039 (6)0.0009 (6)
O20.0138 (7)0.0121 (8)0.0174 (7)0.0050 (6)0.0006 (5)0.0018 (6)
O30.0167 (7)0.0145 (8)0.0151 (7)0.0016 (6)0.0021 (6)0.0062 (6)
O40.0215 (8)0.0202 (8)0.0187 (7)0.0006 (6)0.0053 (6)0.0057 (6)
C10.0169 (10)0.0159 (11)0.0134 (10)0.0030 (9)0.0012 (8)0.0008 (8)
C20.0160 (11)0.0154 (12)0.0101 (9)0.0050 (9)0.0021 (8)0.0034 (8)
C30.0175 (11)0.0116 (11)0.0128 (9)0.0043 (8)0.0022 (8)0.0029 (8)
C50.0167 (10)0.0119 (11)0.0151 (10)0.0000 (8)0.0017 (8)0.0017 (9)
C60.0124 (10)0.0103 (10)0.0145 (9)0.0023 (9)0.0015 (8)0.0042 (8)
C70.0151 (11)0.0104 (11)0.0171 (10)0.0006 (9)0.0006 (8)0.0034 (8)
C80.0129 (10)0.0130 (11)0.0134 (10)0.0041 (8)0.0018 (8)0.0040 (9)
C90.0132 (10)0.0133 (11)0.0123 (10)0.0017 (8)0.0007 (8)0.0027 (8)
C100.0115 (10)0.0143 (12)0.0143 (10)0.0000 (8)0.0003 (8)0.0014 (8)
C110.0101 (9)0.0129 (10)0.0125 (9)0.0023 (8)0.0008 (7)0.0020 (8)
C120.0130 (10)0.0180 (12)0.0154 (10)0.0038 (9)0.0021 (8)0.0020 (9)
C130.0239 (12)0.0191 (12)0.0164 (10)0.0053 (9)0.0028 (8)0.0009 (9)
C140.0251 (11)0.0189 (12)0.0124 (10)0.0011 (10)0.0033 (9)0.0027 (9)
C150.0234 (12)0.0167 (12)0.0101 (9)0.0004 (9)0.0001 (8)0.0004 (9)
C160.0350 (13)0.0240 (13)0.0135 (10)0.0009 (11)0.0067 (9)0.0002 (9)
C170.0342 (13)0.0211 (13)0.0140 (10)0.0024 (10)0.0052 (9)0.0005 (10)
C180.0118 (10)0.0200 (12)0.0166 (10)0.0004 (8)0.0002 (8)0.0011 (9)
C190.0179 (10)0.0187 (12)0.0159 (10)0.0020 (9)0.0034 (9)0.0011 (9)
C200.0214 (11)0.0167 (11)0.0134 (9)0.0028 (9)0.0035 (8)0.0005 (8)
C210.0252 (12)0.0211 (12)0.0097 (9)0.0069 (10)0.0004 (9)0.0026 (9)
C220.0240 (12)0.0118 (11)0.0097 (9)0.0041 (9)0.0005 (8)0.0006 (8)
C230.0213 (11)0.0158 (11)0.0136 (9)0.0021 (9)0.0010 (8)0.0017 (9)
C240.0235 (11)0.0153 (11)0.0113 (9)0.0006 (9)0.0008 (9)0.0038 (8)
C250.0294 (12)0.0101 (11)0.0086 (9)0.0003 (9)0.0020 (9)0.0012 (8)
C260.0337 (13)0.0183 (13)0.0126 (10)0.0008 (10)0.0040 (9)0.0009 (9)
C270.0472 (15)0.0196 (12)0.0132 (10)0.0034 (12)0.0014 (10)0.0054 (9)
C280.0395 (14)0.0236 (13)0.0208 (11)0.0101 (11)0.0070 (10)0.0051 (10)
C290.0314 (13)0.0258 (13)0.0181 (11)0.0052 (10)0.0017 (9)0.0025 (10)
C300.0296 (13)0.0190 (12)0.0163 (10)0.0002 (9)0.0000 (10)0.0037 (9)
Geometric parameters (Å, º) top
O1—C211.375 (2)C14—C151.547 (3)
O1—C21.376 (2)C14—H14A0.9900
O2—C91.448 (2)C14—H14B0.9900
O2—H2A0.82 (3)C15—C171.534 (3)
O3—C221.351 (2)C15—C161.546 (3)
O3—C81.457 (2)C16—H16A0.9800
O4—C221.206 (2)C16—H16B0.9800
C1—C21.477 (3)C16—H16C0.9800
C1—C111.556 (3)C17—H17A0.9800
C1—H1A0.9900C17—H17B0.9800
C1—H1B0.9900C17—H17C0.9800
C2—C31.342 (3)C18—H18A0.9800
C3—C201.435 (3)C18—H18B0.9800
C3—C51.499 (3)C18—H18C0.9800
C5—C191.537 (3)C19—H19A0.9800
C5—C61.556 (3)C19—H19B0.9800
C5—H51.0000C19—H19C0.9800
C6—C71.530 (3)C20—C211.342 (3)
C6—C111.540 (3)C20—H200.9500
C6—H61.0000C21—H210.9500
C7—C81.524 (3)C22—C231.469 (3)
C7—H7A0.9900C23—C241.335 (3)
C7—H7B0.9900C23—H230.9500
C8—C91.549 (3)C24—C251.466 (3)
C8—H81.0000C24—H240.9500
C9—C101.570 (3)C25—C261.397 (3)
C9—C151.580 (3)C25—C301.399 (3)
C10—C121.544 (3)C26—C271.388 (3)
C10—C181.553 (3)C26—H260.9500
C10—C111.570 (3)C27—C281.385 (3)
C11—H111.0000C27—H270.9500
C12—C131.534 (3)C28—C291.387 (3)
C12—H12A0.9900C28—H280.9500
C12—H12B0.9900C29—C301.377 (3)
C13—C141.529 (3)C29—H290.9500
C13—H13A0.9900C30—H300.9500
C13—H13B0.9900
C21—O1—C2105.71 (15)C13—C14—C15113.94 (16)
C9—O2—H2A113.2 (18)C13—C14—H14A108.8
C22—O3—C8117.51 (15)C15—C14—H14A108.8
C2—C1—C11110.44 (16)C13—C14—H14B108.8
C2—C1—H1A109.6C15—C14—H14B108.8
C11—C1—H1A109.6H14A—C14—H14B107.7
C2—C1—H1B109.6C17—C15—C16106.63 (16)
C11—C1—H1B109.6C17—C15—C14107.83 (16)
H1A—C1—H1B108.1C16—C15—C14107.38 (16)
C3—C2—O1111.00 (17)C17—C15—C9110.07 (16)
C3—C2—C1129.70 (18)C16—C15—C9116.97 (17)
O1—C2—C1119.26 (17)C14—C15—C9107.63 (15)
C2—C3—C20105.98 (17)C15—C16—H16A109.5
C2—C3—C5122.13 (17)C15—C16—H16B109.5
C20—C3—C5131.80 (18)H16A—C16—H16B109.5
C3—C5—C19109.58 (15)C15—C16—H16C109.5
C3—C5—C6108.72 (15)H16A—C16—H16C109.5
C19—C5—C6115.06 (16)H16B—C16—H16C109.5
C3—C5—H5107.7C15—C17—H17A109.5
C19—C5—H5107.7C15—C17—H17B109.5
C6—C5—H5107.7H17A—C17—H17B109.5
C7—C6—C11108.71 (15)C15—C17—H17C109.5
C7—C6—C5110.13 (15)H17A—C17—H17C109.5
C11—C6—C5115.12 (15)H17B—C17—H17C109.5
C7—C6—H6107.5C10—C18—H18A109.5
C11—C6—H6107.5C10—C18—H18B109.5
C5—C6—H6107.5H18A—C18—H18B109.5
C8—C7—C6116.43 (16)C10—C18—H18C109.5
C8—C7—H7A108.2H18A—C18—H18C109.5
C6—C7—H7A108.2H18B—C18—H18C109.5
C8—C7—H7B108.2C5—C19—H19A109.5
C6—C7—H7B108.2C5—C19—H19B109.5
H7A—C7—H7B107.3H19A—C19—H19B109.5
O3—C8—C7108.23 (15)C5—C19—H19C109.5
O3—C8—C9111.69 (15)H19A—C19—H19C109.5
C7—C8—C9112.61 (15)H19B—C19—H19C109.5
O3—C8—H8108.1C21—C20—C3106.84 (18)
C7—C8—H8108.1C21—C20—H20126.6
C9—C8—H8108.1C3—C20—H20126.6
O2—C9—C898.81 (14)C20—C21—O1110.47 (16)
O2—C9—C10107.73 (14)C20—C21—H21124.8
C8—C9—C10112.52 (15)O1—C21—H21124.8
O2—C9—C15106.84 (15)O4—C22—O3124.71 (18)
C8—C9—C15114.60 (15)O4—C22—C23125.53 (18)
C10—C9—C15114.68 (15)O3—C22—C23109.76 (16)
C12—C10—C18108.96 (15)C24—C23—C22121.45 (18)
C12—C10—C11108.84 (15)C24—C23—H23119.3
C18—C10—C11108.63 (15)C22—C23—H23119.3
C12—C10—C9108.74 (15)C23—C24—C25127.04 (19)
C18—C10—C9113.04 (15)C23—C24—H24116.5
C11—C10—C9108.56 (14)C25—C24—H24116.5
C6—C11—C1114.81 (15)C26—C25—C30118.55 (19)
C6—C11—C10110.32 (15)C26—C25—C24119.32 (19)
C1—C11—C10111.11 (15)C30—C25—C24122.08 (18)
C6—C11—H11106.7C27—C26—C25120.8 (2)
C1—C11—H11106.7C27—C26—H26119.6
C10—C11—H11106.7C25—C26—H26119.6
C13—C12—C10113.86 (16)C28—C27—C26119.9 (2)
C13—C12—H12A108.8C28—C27—H27120.1
C10—C12—H12A108.8C26—C27—H27120.1
C13—C12—H12B108.8C27—C28—C29119.5 (2)
C10—C12—H12B108.8C27—C28—H28120.2
H12A—C12—H12B107.7C29—C28—H28120.2
C14—C13—C12111.37 (16)C30—C29—C28121.0 (2)
C14—C13—H13A109.4C30—C29—H29119.5
C12—C13—H13A109.4C28—C29—H29119.5
C14—C13—H13B109.4C29—C30—C25120.2 (2)
C12—C13—H13B109.4C29—C30—H30119.9
H13A—C13—H13B108.0C25—C30—H30119.9
C21—O1—C2—C30.3 (2)C12—C10—C11—C6179.64 (15)
C21—O1—C2—C1177.67 (17)C18—C10—C11—C661.13 (18)
C11—C1—C2—C35.0 (3)C9—C10—C11—C662.16 (18)
C11—C1—C2—O1177.44 (16)C12—C10—C11—C151.1 (2)
O1—C2—C3—C200.0 (2)C18—C10—C11—C167.37 (19)
C1—C2—C3—C20177.72 (19)C9—C10—C11—C1169.34 (15)
O1—C2—C3—C5176.94 (16)C18—C10—C12—C1371.1 (2)
C1—C2—C3—C55.3 (3)C11—C10—C12—C13170.62 (16)
C2—C3—C5—C19101.4 (2)C9—C10—C12—C1352.5 (2)
C20—C3—C5—C1974.6 (3)C10—C12—C13—C1454.4 (2)
C2—C3—C5—C625.1 (2)C12—C13—C14—C1555.7 (2)
C20—C3—C5—C6158.87 (19)C13—C14—C15—C17173.02 (17)
C3—C5—C6—C7169.67 (16)C13—C14—C15—C1672.4 (2)
C19—C5—C6—C746.4 (2)C13—C14—C15—C954.3 (2)
C3—C5—C6—C1146.4 (2)O2—C9—C15—C1752.1 (2)
C19—C5—C6—C1177.0 (2)C8—C9—C15—C1756.2 (2)
C11—C6—C7—C852.9 (2)C10—C9—C15—C17171.43 (16)
C5—C6—C7—C8179.92 (16)O2—C9—C15—C16174.00 (16)
C22—O3—C8—C7106.31 (17)C8—C9—C15—C1665.7 (2)
C22—O3—C8—C9129.17 (16)C10—C9—C15—C1666.7 (2)
C6—C7—C8—O377.3 (2)O2—C9—C15—C1465.12 (18)
C6—C7—C8—C946.7 (2)C8—C9—C15—C14173.46 (15)
O3—C8—C9—O2171.41 (13)C10—C9—C15—C1454.2 (2)
C7—C8—C9—O266.56 (18)C2—C3—C20—C210.3 (2)
O3—C8—C9—C1075.14 (18)C5—C3—C20—C21176.85 (19)
C7—C8—C9—C1046.9 (2)C3—C20—C21—O10.5 (2)
O3—C8—C9—C1558.2 (2)C2—O1—C21—C200.5 (2)
C7—C8—C9—C15179.73 (16)C8—O3—C22—O40.7 (3)
O2—C9—C10—C1265.18 (19)C8—O3—C22—C23179.31 (15)
C8—C9—C10—C12173.04 (15)O4—C22—C23—C245.4 (3)
C15—C9—C10—C1253.6 (2)O3—C22—C23—C24174.62 (18)
O2—C9—C10—C18173.68 (15)C22—C23—C24—C25179.95 (18)
C8—C9—C10—C1865.8 (2)C23—C24—C25—C26176.2 (2)
C15—C9—C10—C1867.5 (2)C23—C24—C25—C301.2 (3)
O2—C9—C10—C1153.09 (19)C30—C25—C26—C271.1 (3)
C8—C9—C10—C1154.77 (19)C24—C25—C26—C27176.37 (18)
C15—C9—C10—C11171.88 (16)C25—C26—C27—C280.6 (3)
C7—C6—C11—C1173.43 (15)C26—C27—C28—C291.6 (3)
C5—C6—C11—C149.4 (2)C27—C28—C29—C300.9 (3)
C7—C6—C11—C1060.11 (19)C28—C29—C30—C250.8 (3)
C5—C6—C11—C10175.83 (15)C26—C25—C30—C291.8 (3)
C2—C1—C11—C626.3 (2)C24—C25—C30—C29175.65 (19)
C2—C1—C11—C10152.33 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.82 (3)2.28 (3)3.067 (2)160 (2)
C18—H18A···O30.982.233.039 (2)139
Symmetry code: (i) x1/2, y1/2, z+1.
 

Funding information

KOO is grateful to The University of Benin for a URPC 2016 grant, The World Academy of Sciences (TWAS) and the H. E. J. Research Institute of Chemistry, Inter­national Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Pakistan, for their financial and technical support through the ICCBS–TWAS Postdoctoral Fellowship program (reference No. 3240287190).

References

First citationBruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationErharuyi, O., Adhikari, A., Falodun, A., Imad, R. & Choudhary, M. I. (2016). Tetrahedron Lett. 57, 2201–2206.  CrossRef CAS
First citationErharuyi, O., Adhikari, A., Falodun, A., Jabeen, A., Imad, R., Ammad, M., Choudhary, M. & Gören, N. (2017). Planta Med. 83, 104–110.  CAS PubMed
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationFrisch, J. D. & Frisch, C. D. (2005). Aves Brassileiras e Plantas que as atream, p. 398. São Paulo: Dalgas Ecoltec.
First citationFun, H.-K., Yodsaoue, O., Chantrapromma, S. & Karalai, C. (2010a). Acta Cryst. E66, o2166–o2167.  CrossRef IUCr Journals
First citationFun, H.-K., Yodsaoue, O., Karalai, C. & Chantrapromma, S. (2010b). Acta Cryst. E66, o2059–o2060.  CrossRef IUCr Journals
First citationGómez-Hurtado, M. A., Álvarez-Esquivel, F. E., Rodríguez-García, G., Martínez-Pacheco, M. M., Espinoza-Madrigal, R. M., Pamatz-Bolaños, T., Salvador-Hernández, J. L., García-Gutiérrez, H. A., Cerda-García-Rojas, C. M., Joseph-Nathan, P. & del Río, R. E. (2013). Phytochemistry, 96, 397–403.  PubMed
First citationMatsuno, Y., Deguchi, J., Hirasawa, Y., Ohyama, K., Toyoda, H., Hirobe, C., Ekasari, W., Widyawaruyanti, A., Zaini, N. C. & Morita, H. (2008). Bio. Med. Chem. Lett. 18, 37774–3777.  CrossRef
First citationMcPherson, D. D. C. T., Che, Cordell, G. A., Soejarto, D. D., Pezzuto, J. M. & Fong, H. H. S. (1986). Phytochemistry, 25, 167–170.  CrossRef CAS
First citationPatil, D., Freyer, A. J., Webb, R. L., Zuber, G., Reichwein, R., Bean, M. F., Faucette, L. & Johnson, R. K. (1997). Tetrahedron, 53, 1583–1592.  CrossRef CAS
First citationPranithanchai, W., Karalai, C., Ponglimanont, C., Subhadhirasakul, S. & Chantrapromma, K. (2009). Phytochemistry, 70, 300–304.  CrossRef PubMed CAS
First citationPromsawan, N., Kittakoop, P., Boonphong, S. & Nongkunsarn, P. (2003). Planta Med. 69, 776–777.  Web of Science PubMed CAS
First citationRagasa, C. Y., Hofileña, J. G. & Rideout, J. A. (2002). J. Nat. Prod. 65, 1107–1110.  CrossRef PubMed CAS
First citationRoach, J. S., McLean, S., Reynolds, W. F. & Tinto, W. F. (2003). J. Nat. Prod. 66, 1378–1381.  CrossRef PubMed CAS
First citationRuggiero, S. G., Rodrigues, B. L., Fernandes, N. G., Stefani, G. M. & Veloso, D. P. (1997). Acta Cryst. C53, 982–984.  CSD CrossRef CAS Web of Science IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationYodsaoue, O., Karalai, C., Ponglimanont, C., Tewtrakul, S. & Chantrapromma, S. (2011). Tetrahedron, 67, 6838–6846.  Web of Science CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds