research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of {μ2-N,N′-bis­­[(pyridin-3-yl)meth­yl]ethanedi­amide}tetra­kis­(di­methyl­carbamodi­thio­ato)dizinc(II) di­methyl­formamide disolvate and {μ2-N,N′-bis­­[(pyridin-3-yl)meth­yl]ethanedi­amide}tetra­kis­(di-n-propyl­carbamodi­thio­ato)dizinc(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, bChemical Abstracts Service, 2540 Olentangy River Rd, Columbus, Ohio, 43202, USA, and cResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 9 September 2017; accepted 11 September 2017; online 19 September 2017)

The title structures, [Zn2(C3H6NS2)4(C14H14N4O2)]·2C3H7NO (I) and [Zn2(C7H14NS2)4(C14H14N4O2)] (II), each feature a bidentate, bridging bipyridyl-type ligand encompassing a di-amide group. In (I), the binuclear compound is disposed about a centre of inversion, leading to an open conformation, while in (II), the complete mol­ecule is completed by the application of a twofold axis of symmetry so that the bridging ligand has a U-shape. In each of (I) and (II), the di­thio­carbamate ligands are chelating with varying degrees of symmetry, so the zinc atom is within an NS4 set approximating a square-pyramid for (I) and a trigonal-bipyramid for (II). The solvent di­methyl­formaide (DMF) mol­ecules in (I) connect to the bridging ligand via amide-N—H⋯O(DMF) and various amide-, DMF-C—H⋯O(amide, DMF) inter­actions. The resultant three-mol­ecule aggregates assemble into a three-dimensional architecture via C—H⋯π(pyridyl, chelate ring) inter­actions. In (II), undulating tapes sustained by amide-N—H⋯O(amide) hydrogen bonding lead to linear supra­molecular chains with alternating mol­ecules lying to either side of the tape; no further directional inter­actions are noted in the crystal.

1. Chemical context

The potential of self-association between amide functionalities via amide-N—H⋯O(amide) hydrogen-bonding has long been recognized (MacDonald & Whitesides, 1994[MacDonald, J. C. & Whitesides, G. M. (1994). Chem. Rev. 94, 2383-2420.]). In this way, eight-membered {⋯HNCO}2 synthons can be formed. Alternatively, extended aggregation patterns based on a single point of contact repeat associations leading to supra­molecular chains or double-connections (edge-shared) leading to tapes. In this connection, isomeric di-amide structures of the general formula (n-NC5H4)CH2N(H)C(=O)—C(=O)N(H)CH2(C5H4N-n), for n = 2, 3 and 4, hereafter abbreviated as nLH2, have long attracted inter­est for their potential to form supra­molecular tapes. For example, as realized in the two-dimensional structure formed in the 1:1 co-crystal of 4LH2 and the conformer, bi-functional 1,4-di-iodo­buta-1,3-diyne (Goroff et al., 2005[Goroff, N. S., Curtis, S. M., Webb, J. A., Fowler, F. W. & Lauher, J. W. (2005). Org. Lett. 7, 1891-1893.]). Here, the amide tapes are orthogonal to the N⋯I halogen bonding. In the realm of metal-containing species, a three-dimensional architecture can be assembled in the crystal of {[Ag(3LH2)2]BF4}n by a combination of Ag←N bonds for the tetra­hedral silver(I) atom, provided by bidentate bridging ligands, where the latter are also connected via concatenated {⋯HNC2O}2 synthons (Schauer et al., 1997[Schauer, C. L., Matwey, E., Fowler, F. W. & Lauher, J. W. (1997). J. Am. Chem. Soc. 119, 10245-10246.]).

[Scheme 1]

A similar coordination/hydrogen-bonding arrangement is found in the three-dimensional assembly in crystals of {[Cu(3LH2)2Br]·Br·H2O}n (Zeng et al., 2008[Zeng, Q., Li, M., Wu, D., Lei, S., Liu, C., Piao, L., Yang, Y. A. S., An, S. & Wang, C. (2008). Cryst. Growth Des. 8, 869-876.]). Motivated by these results, investigations were commenced exploring the coordination ability of nLH2 with zinc(II) di­thio­carbamates functionalized with hydrogen-bonding potential, i.e. Zn[S2CN(R)CH2CH2OH]2, for R = alkyl, CH2CH2OH. As discussed in more detail in the Database survey, none of these crystals exhibited self-association of the amide residues. For example, in the crystal of binuclear {Zn[S2CN(Me)CH2CH2OH]2}2(3LH2), supra­molecular chains are constructed as a result of hy­droxy-O—H⋯O(hy­droxy) hydrogen bonding that leads to the formation of sterically unencumbered 28-membered {⋯HOC2NCSZnSCNC2O}2 synthons. Two chains inter-weave through these rings and are held in place by hy­droxy-O—H⋯O(amide) hydrogen bonding (Poplaukhin & Tiekink, 2010[Poplaukhin, P. & Tiekink, E. R. T. (2010). CrystEngComm, 12, 1302-1306.]). In a continuation of these studies, attention was directed towards the inter­action of nLH2 with all-alkyl zinc(II) di­thio­carbamates with the view of `turning-off' putative hy­droxy-O—H⋯O(amide) hydrogen bonding. Herein, the crystal and mol­ecular structures of [Zn(S2CNMe2)]2(3LH2)·2DMF [(I); DMF = di­methyl­formamide] and {Zn[S2CN(n-Pr)2]2}2(3LH2), (II)[link], are described where amide-N—H⋯O(DMF) hydrogen bonding precludes supra­molecular association via amide⋯amide hydrogen bonding in (I)[link], but not in (II)[link], where supra­molecular amide tapes are observed.

2. Structural commentary

The mol­ecular structure of the centrosymmetric, binuclear zinc(II) compound in (I)[link] is shown in Fig. 1[link]a and selected geometric parameters are collected in Table 1[link]. The zinc centre is coordinated by two chelating di­thio­carbamate ligands and the coordination geometry is completed by a pyridyl-N atom. The di­thio­carbamate ligands coordinate differently, with the S1-ligand coordinating almost symmetrically with Δ(Zn—S) = (Zn—Slong − Zn—Sshort) = 0.10 A. By contrast, the S3-ligand coordinates slightly more asymmetrically with Δ(Zn—S) = 0.18 Å. These differences are not reflected in the associated C—S bond lengths, which span an experimentally equivalent range of 1.720 (2) to 1.732 (2) Å. The resulting NS4 donor set defines a distorted square-pyramidal geometry as judged by the value of τ = 0.18 which compares to τ = 0.0 for an ideal square-pyramid and 1.0 for an ideal trigonal-bipyramidal geometry (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). In this description, the zinc atom lies 0.5011 (3) Å above the plane defined by the four sulfur atoms [r.m.s. deviation = 0.0976 Å with the range of deviations being −0.0990 (3) Å for the S3 atom to 0.0987 (3) Å for S2]. The widest angles are defined by the sulfur atoms forming the shorter of the Zn—S bonds of each di­thio­carbamate ligand and by those forming the longer Zn—S bonds. The dihedral angle between the best plane through the four sulfur atoms and that through the pyridyl ring is 87.13 (4)°, indicating a near perpendicular relationship. The dihedral angle between the two chelate rings is 27.46 (6)°.

Table 1
Geometric data (Å, °) for (I)[link] and (II)

Parameter (I); n = 4; m = 13a (II); n = 8; m = 21b
Zn—S1 2.3770 (5) 2.3289 (5)
Zn—S2 2.4784 (5) 2.5917 (6)
Zn—S3 2.3807 (5) 2.3484 (5)
Zn—S4 2.5565 (6) 2.5731 (5)
Zn—N3 2.0959 (16) 2.0595 (15)
C1—S1 1.732 (2) 1.7391 (19)
C1—S2 1.720 (2) 1.715 (2)
Cn—S3 1.7310 (19) 1.7435 (19)
Cn—S4 1.7224 (19) 1.7114 (19)
Cm—O1 1.229 (2) 1.237 (2)
Cm—N4 1.334 (2) 1.334 (2)
Cm—Cmi 1.550 (4) 1.538 (4)
S1—Zn—S3 150.85 (2) 125.23 (2)
S2—Zn—S4 161.48 (2) 170.88 (2)
Notes: (a) symmetry code: (i) −x, 2 − y, 1 − z; (b) symmetry code: (i) −x, y, [{1\over 2}] − z.
[Figure 1]
Figure 1
The mol­ecular structures of (a) (I)[link] (solvent DMF mol­ecules are omitted) and (b) (II)[link] showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

The mol­ecular structure of the binuclear zinc(II) compound, (II)[link], is shown in Fig. 1[link]b and again selected geometric parameters are collected in Table 1[link]. The first and most obvious distinction between the binuclear compounds in (I)[link] and (II)[link] relates to the symmetry within the mol­ecules, i.e. the bridging ligand is disposed about a centre of inversion in (I)[link], leading to an extended conformation, but is disposed about a twofold axis in (II)[link], leading to a curved conformation. While to a first approximation the coordination geometry in (II)[link] matches that in (I)[link], some differences are apparent. Each di­thio­carbamate ligand coordinates asymmetrically with Δ(Zn—S) = 0.26 and 0.22 Å, respectively, and these differences are reflected in the associated C—S bond lengths with those associated with the weakly coordinating sulfur atoms being significantly shorter than those associated with the more tightly bound sulfur atoms, Table 1[link]. There is also a significant difference in the coordination geometry defined by the NS4 donor set with τ = 0.76. This difference arises from a reduction, by approximately 25°, of the angle subtended at the zinc atom by the more tightly bound sulfur atoms, Table 1[link]. The change in coordination geometry is reflected in the relatively wide dihedral angle between the chelate rings of 59.41 (3)°.

The common feature of (I)[link] and (II)[link] is the relatively long central sp2-C—C(sp2) bond, Table 1[link]. This feature for these ligands is well established and is reflected by comparable bond lengths determined by experiment and theory for the two polymorphs known for the uncoordinated ligand, 3LH2 (Jotani, Zukerman-Schpector et al., 2016[Jotani, M. M., Zukerman-Schpector, J., Sousa Madureira, L., Poplaukhin, P., Arman, H. D., Miller, T. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 415-425.]). Inter­estingly, in one of the polymorphs, both independent mol­ecules are disposed about a centre of inversion and adopt an anti-periplanar form, as in (I)[link], while in the second polymorph, the mol­ecule is twofold symmetric with a U-shaped conformation, i.e. is syn-periplanar, as in (II)[link]. Computational chemistry indicated no significant energy difference between the two conformations, a result consistent with the literature expectation for the majority of conformational polymorphs (Cruz-Cabeza et al., 2015[Cruz-Cabeza, A. J., Reutzel-Edens, S. M. & Bernstein, J. (2015). Chem. Soc. Rev. 44, 8619-8635.]).

3. Supra­molecular features

The presence of solvent DMF mol­ecules in the crystal of (I)[link] precludes supra­molecular self-association between the amide functionality. Instead, three-mol­ecule aggregates are generated via amide-N—H⋯O(DMF) hydrogen bonds, Fig. 2[link]a and Table 2[link]. These aggregates are further linked via DMF-C—H⋯O(amide) and pyridyl-C—H⋯O(DMF) inter­actions, leading to eight-membered {⋯OC2NH⋯OCH} and seven-membered {⋯O⋯HNC3H} synthons, respectively. Connections between these aggregates are of the type methyl-C—H⋯π, where the π-systems are either the pyridyl ring or one of the chelate rings. Referring to the latter, such C—H⋯π(chelate) ring inter­actions are more and more being observed in the structural chemistry of metal di­thio­carbamates owing, no doubt, to the effective chelating ability of di­thio­carbamate ligands, which leads to significant π-electron density within the chelate rings they form (Tiekink & Zukerman-Schpector, 2011[Tiekink, E. R. T. & Zukerman-Schpector, J. (2011). Chem. Commun. 47, 6623-6625.]; Tiekink, 2017[Tiekink, E. R. T. (2017). Coord. Chem. Rev. 345, 209-228.]). The net result of the foregoing is a three-dimensional architecture, Fig. 2[link]b. From the view down the b axis, Fig. 2[link]c, there are obvious areas with little or no directional inter­actions between the residues.

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1–Cg3 are the centroids of the Zn/S1/S2/C1, Zn/S3/S4/C4 and N3/C7–C11 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯O2 0.87 (2) 1.99 (2) 2.779 (2) 151 (2)
C7—H7⋯O2 0.95 2.44 3.290 (3) 149
C14—H14⋯O1i 0.95 2.49 3.245 (2) 137
C15—H15B⋯O1ii 0.98 2.47 3.310 (3) 144
C3—H3BCg2iii 0.98 2.93 3.884 (3) 165
C5—H5BCg1iv 0.98 2.97 3.924 (2) 164
C16—H16CCg3v 0.98 2.72 3.562 (3) 144
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x+1, y-1, z; (iii) -x+1, -y+1, -z; (iv) x, y-1, z; (v) x+1, y, z.
[Figure 2]
Figure 2
Mol­ecular packing in (I)[link]: (a) supra­molecular three-mol­ecule aggregate sustained by amide-N—H⋯O(DMF) hydrogen bonding, (b) a view of the unit-cell contents in projection down the a axis and (c) a view of the unit-cell contents in projection down the b axis. The N—H⋯O, C—H⋯O and C—H⋯π inter­actions are shown as orange, blue and purple dashed lines, respectively.

By contrast to the myriad of supra­molecular associations identified in the crystal of (I)[link], only conventional amide-N—H⋯O(amide) hydrogen bonding is found in the crystal of (II)[link], Table 3[link], with no other specific inter­actions identified based on the distance criteria in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). The hydrogen bonding leads to linear supra­molecular chains along the c axis, Fig. 3[link]a, with alternate binuclear mol­ecules lying above and below the plane defined by the supra­molecular tape shown in Fig. 3[link]b. A view of the unit-cell contents, with one chain highlighted in space-filling mode, is shown in Fig. 3[link]c.

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯O1i 0.87 (2) 2.16 (2) 2.959 (2) 153 (2)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{3\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Mol­ecular packing in (II)[link]: (a) linear supra­molecular chain aligned along the c axis and sustained by amide-N—H⋯O(amide) hydrogen bonding (orange dashed lines), with non-participating hydrogen atoms omitted (b) detail of the amide-N—H⋯O(amide) hydrogen-bonded tape and (c) a view of the unit-cell contents in projection down the c axis, with one chain highlighted in space-filling mode.

4. Database survey

The investigation of zinc(II) di­thio­carbamates, Zn(S2CNRR′)2, with at least one of R/R′ being CH2CH2OH, has lead to an inter­esting array of structures owing to hydrogen bonding. Thus, hy­droxy-O—H⋯O(hy­droxy) hydrogen bonding links otherwise mol­ecular species into supra­molecular chains in the cases of Zn[S2CN(R)CH2CH2OH]2(pyridine)·pyridine for R = Me and Et (Poplaukhin & Tiekink, 2017[Poplaukhin, P. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1246-1251.]) and Zn[S2CN(Me)CH2CH2OH]2(3-hy­droxy­pyridine) (Jotani, Arman et al., 2016[Jotani, M. M., Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1700-1709.]) and supra­molecular layers via hy­droxy-O—H⋯S(di­thio­carbamate) hydrogen bonds in Zn[S2CN(i-Pr)CH2CH2OH]2(2,2′-bi­pyridine) (Safbri et al., 2016[Safbri, S. A. M., Halim, S. N. A. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 203-208.]); the propensity for the hy­droxy group in di­thio­carbamate ligands with R = CH2CH2OH to form O—H⋯S rather than O—H⋯O hydrogen bonds has been summarized recently (Jamaludin et al., 2016[Jamaludin, N. S., Halim, S. N. A., Khoo, C.-H., Chen, B.-J., See, T.-H., Sim, J.-H., Cheah, Y.-K., Seng, H.-L. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 341-349.]). With potentially bridging ligands, mixed results have been observed in recent studies: in terms of potentially tetra-coordinate urotropine (hexa­methyl­ene­tetra­amine, hmta), monodentate coordination has been found in each of the four independent mol­ecules comprising the asymmetric unit of Zn[S2CN(i-Pr)CH2CH2OH]2(hmta) (Câmpian et al., 2016[Câmpian, M. V., Azizuddin, A. D., Haiduc, I. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 737-747.]). Supra­molecular layers are sustained by hy­droxy-O—H⋯O(hy­droxy) and hy­droxy-O—H⋯S(di­thio­carbamate) hydrogen bonding, as per above, augmented by hy­droxy-O—H⋯N(hmta) hydrogen bonding. Bidentate bridging has been found in 2:1 adducts of Zn[S2CN(CH2CH2OH)2]2}2 with pyrazine (Jotani et al., 2017[Jotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2017). Z. Kristallogr. 232, 287-298.]) and 4,4′-bipyridyl (Benson et al., 2007[Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930-941.]) in which three-dimensional architectures are sustained by hy­droxy-O—H⋯O(hy­droxy) hydrogen bonding. Apart from the inter­woven polymers discussed in the Chemical context, the most closely related compounds to the title compounds are thio­amide analogues of 3LH2, i.e. 3LSH2. Some inter­esting crystal chemistry occurs when {Zn[S2CN(Me)CH2CH2OH]2}2(3LSH2) is recrystallized from aceto­nitrile (Poplaukhin et al., 2012[Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2012). Z. Kristallogr. 227, 363-368.]). Upon prolonged standing, a one molar ratio of S8, a decomposition product, is incorporated in the co-crystal with hy­droxy-O—H⋯O(hy­droxy) hydrogen bonding leading to a two-dimensional array. When DMF is diffused into an aceto­nitrile solution of the same compound, one hy­droxy group hydrogen bonds to the DMF-O while the other hydroxyl group self-associates to form a supra­molecular chain. In the present study, when additional hydrogen-bonding functionality is not present, the amide groups are able to self-assemble as shown in Fig. 3[link]. With the foregoing in mind, i.e. variable coordination geometries, flexible conformations of the bridging ligands and different hydrogen-bonding potential, more systematic studies in this area are warranted.

5. Synthesis and crystallization

Crystals of (I)[link] were grown from liquid diffusion of ether into a 1:1 molar ratio of Zn(S2CNMe2)2 and 3LH2 in DMF; m.p. 479–481 K. Crystals of (II)[link] were grown from the slow evaporation of a 2:1 molar ratio of Zn[S2CN(n-Pr)2]2 and 3LH2 in a MeOH/EtOH solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. For each of (I)[link] and (II)[link], carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The N-bound H atoms were located in difference-Fourier maps but were refined with a distance restraint of N—H = 0.88±0.01 Å, and with Uiso(H) set to 1.2Ueq(N). Owing to poor agreement, two reflections, i.e. (3[\overline{5}]6) and (014), were omitted from the final cycles of refinement of (I)[link].

Table 4
Experimental details

  (I) (II)
Crystal data
Chemical formula [Zn2(C3H6NS2)4(C14H14N4O2)]·2C3H7NO [Zn2(C7H14NS2)4(C14H14N4O2)]
Mr 1028.05 1106.28
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, C2/c
Temperature (K) 98 98
a, b, c (Å) 9.0998 (8), 9.3544 (10), 15.508 (2) 31.048 (4), 16.923 (2), 10.3453 (14)
α, β, γ (°) 84.176 (1), 75.540 (8), 61.067 (6) 90, 100.361 (2), 90
V3) 1118.5 (2) 5347.1 (12)
Z 1 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.49 1.25
Crystal size (mm) 0.22 × 0.16 × 0.07 0.35 × 0.27 × 0.19
 
Data collection
Diffractometer Rigaku AFC12K/SATURN724 Rigaku AFC12K/SATURN724
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.823, 1.000 0.642, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9634, 5062, 4874 17361, 6129, 5700
Rint 0.026 0.031
(sin θ/λ)max−1) 0.650 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.084, 1.05 0.033, 0.077, 1.09
No. of reflections 5062 6129
No. of parameters 262 287
No. of restraints 1 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.51 0.31, −0.39
Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

2-N,N'-bis[(pyridin-3-yl)methyl]ethanediamide}tetrakis(dimethylcarbamodithioato)dizinc(II) dimethylformamide disolvate (I) top
Crystal data top
[Zn2(C3H6NS2)4(C14H14N4O2)]·2C3H7NOZ = 1
Mr = 1028.05F(000) = 534
Triclinic, P1Dx = 1.526 Mg m3
a = 9.0998 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3544 (10) ÅCell parameters from 4952 reflections
c = 15.508 (2) Åθ = 2.6–40.2°
α = 84.176 (1)°µ = 1.49 mm1
β = 75.540 (8)°T = 98 K
γ = 61.067 (6)°Prism, colourless
V = 1118.5 (2) Å30.22 × 0.16 × 0.07 mm
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
5062 independent reflections
Radiation source: fine-focus sealed tube4874 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1110
Tmin = 0.823, Tmax = 1.000k = 1211
9634 measured reflectionsl = 2020
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.5471P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.41 e Å3
5062 reflectionsΔρmin = 0.51 e Å3
262 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.18051 (3)0.47082 (2)0.16514 (2)0.01527 (7)
S10.41361 (6)0.51174 (6)0.17595 (3)0.02024 (11)
S20.19922 (6)0.65950 (6)0.04378 (3)0.01958 (11)
S30.06877 (6)0.33365 (6)0.10167 (3)0.01858 (11)
S40.23877 (6)0.20909 (6)0.25237 (3)0.02033 (11)
O10.22504 (17)1.09018 (16)0.51306 (10)0.0212 (3)
O20.28455 (17)0.53249 (17)0.44844 (10)0.0228 (3)
N10.4385 (2)0.7345 (2)0.06102 (11)0.0194 (3)
N20.0654 (2)0.08356 (19)0.19845 (11)0.0183 (3)
N30.03266 (19)0.63692 (18)0.25797 (10)0.0149 (3)
N40.0222 (2)0.82110 (19)0.49761 (11)0.0158 (3)
H4N0.0877 (14)0.752 (2)0.4880 (16)0.019*
N50.5648 (2)0.40804 (18)0.37075 (11)0.0169 (3)
C10.3596 (2)0.6454 (2)0.08945 (12)0.0170 (3)
C20.5708 (3)0.7264 (3)0.10280 (15)0.0269 (4)
H2A0.52250.75100.16680.040*
H2B0.60800.80640.07560.040*
H2C0.67010.61640.09380.040*
C30.4000 (3)0.8489 (3)0.01199 (14)0.0243 (4)
H3A0.33140.82880.04410.036*
H3B0.50810.83330.05290.036*
H3C0.33470.96110.01210.036*
C40.1196 (2)0.1949 (2)0.18628 (12)0.0159 (3)
C50.1033 (3)0.0373 (2)0.26815 (14)0.0255 (4)
H5A0.18100.02860.29860.038*
H5B0.15870.14710.24150.038*
H5C0.00420.01740.31110.038*
C60.0452 (3)0.0813 (3)0.14425 (14)0.0247 (4)
H6A0.14400.19060.14520.037*
H6B0.08660.00310.16870.037*
H6C0.02130.04880.08280.037*
C70.0245 (2)0.6452 (2)0.34223 (12)0.0145 (3)
H70.08160.57610.35880.017*
C80.1647 (2)0.7508 (2)0.40681 (12)0.0153 (3)
C90.3197 (2)0.8473 (2)0.38194 (14)0.0209 (4)
H90.41940.91700.42470.025*
C100.3289 (3)0.8416 (2)0.29438 (15)0.0235 (4)
H100.43360.90880.27610.028*
C110.1820 (2)0.7357 (2)0.23420 (13)0.0191 (4)
H110.18730.73300.17400.023*
C120.1430 (2)0.7598 (2)0.49952 (12)0.0169 (4)
H12A0.25640.83280.53800.020*
H12B0.10020.64970.52540.020*
C130.0750 (2)0.9808 (2)0.50327 (12)0.0154 (3)
C140.4233 (2)0.5333 (2)0.41560 (13)0.0189 (4)
H140.42890.63000.42300.023*
C150.5633 (3)0.2589 (2)0.35369 (14)0.0220 (4)
H15A0.44700.27180.37750.033*
H15B0.64500.16760.38270.033*
H15C0.59680.23670.28940.033*
C160.7237 (3)0.4164 (3)0.33479 (15)0.0246 (4)
H16A0.74710.41600.26960.037*
H16B0.81920.32180.35410.037*
H16C0.71210.51710.35640.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.01537 (12)0.01651 (12)0.01506 (12)0.00876 (9)0.00181 (8)0.00223 (8)
S10.0178 (2)0.0245 (2)0.0207 (2)0.01150 (19)0.00697 (18)0.00486 (18)
S20.0239 (2)0.0256 (2)0.0169 (2)0.0171 (2)0.00714 (18)0.00306 (17)
S30.0260 (2)0.0194 (2)0.0159 (2)0.01463 (19)0.00632 (18)0.00188 (16)
S40.0212 (2)0.0184 (2)0.0229 (2)0.00868 (18)0.00950 (19)0.00188 (17)
O10.0164 (6)0.0168 (6)0.0288 (8)0.0050 (5)0.0074 (6)0.0032 (5)
O20.0145 (6)0.0239 (7)0.0270 (7)0.0068 (6)0.0030 (6)0.0040 (6)
N10.0218 (8)0.0220 (8)0.0189 (8)0.0138 (7)0.0051 (6)0.0002 (6)
N20.0227 (8)0.0163 (7)0.0169 (8)0.0111 (6)0.0023 (6)0.0001 (6)
N30.0143 (7)0.0159 (7)0.0164 (7)0.0086 (6)0.0030 (6)0.0016 (6)
N40.0147 (7)0.0153 (7)0.0174 (7)0.0065 (6)0.0037 (6)0.0024 (6)
N50.0145 (7)0.0152 (7)0.0202 (8)0.0065 (6)0.0035 (6)0.0008 (6)
C10.0172 (8)0.0175 (8)0.0149 (8)0.0079 (7)0.0005 (7)0.0043 (6)
C20.0259 (10)0.0379 (12)0.0271 (11)0.0219 (10)0.0081 (9)0.0004 (9)
C30.0289 (10)0.0269 (10)0.0215 (10)0.0188 (9)0.0025 (8)0.0035 (8)
C40.0151 (8)0.0127 (8)0.0165 (8)0.0049 (7)0.0005 (7)0.0031 (6)
C50.0348 (11)0.0178 (9)0.0222 (10)0.0130 (8)0.0038 (9)0.0033 (7)
C60.0321 (11)0.0264 (10)0.0240 (10)0.0204 (9)0.0048 (9)0.0030 (8)
C70.0144 (8)0.0148 (8)0.0160 (8)0.0081 (7)0.0032 (7)0.0001 (6)
C80.0155 (8)0.0141 (8)0.0191 (9)0.0094 (7)0.0026 (7)0.0016 (6)
C90.0155 (9)0.0170 (8)0.0267 (10)0.0047 (7)0.0027 (8)0.0061 (7)
C100.0181 (9)0.0189 (9)0.0306 (11)0.0034 (8)0.0108 (8)0.0036 (8)
C110.0199 (9)0.0194 (8)0.0205 (9)0.0095 (7)0.0081 (7)0.0011 (7)
C120.0183 (8)0.0168 (8)0.0170 (9)0.0100 (7)0.0009 (7)0.0043 (6)
C130.0176 (9)0.0164 (8)0.0125 (8)0.0073 (7)0.0047 (7)0.0022 (6)
C140.0175 (9)0.0171 (8)0.0195 (9)0.0055 (7)0.0058 (7)0.0001 (7)
C150.0220 (9)0.0174 (9)0.0261 (10)0.0087 (8)0.0048 (8)0.0032 (7)
C160.0199 (9)0.0260 (10)0.0274 (10)0.0126 (8)0.0006 (8)0.0039 (8)
Geometric parameters (Å, º) top
Zn—N32.0959 (16)C3—H3A0.9800
Zn—S12.3770 (5)C3—H3B0.9800
Zn—S32.3807 (5)C3—H3C0.9800
Zn—S22.4784 (5)C5—H5A0.9800
Zn—S42.5565 (6)C5—H5B0.9800
S1—C11.732 (2)C5—H5C0.9800
S2—C11.720 (2)C6—H6A0.9800
S3—C41.7310 (19)C6—H6B0.9800
S4—C41.7224 (19)C6—H6C0.9800
O1—C131.229 (2)C7—C81.396 (2)
O2—C141.241 (2)C7—H70.9500
N1—C11.324 (2)C8—C91.387 (3)
N1—C31.462 (3)C8—C121.515 (3)
N1—C21.472 (3)C9—C101.389 (3)
N2—C41.332 (2)C9—H90.9500
N2—C51.458 (2)C10—C111.386 (3)
N2—C61.472 (3)C10—H100.9500
N3—C71.339 (2)C11—H110.9500
N3—C111.343 (2)C12—H12A0.9900
N4—C131.334 (2)C12—H12B0.9900
N4—C121.460 (2)C13—C13i1.550 (4)
N4—H4N0.872 (9)C14—H140.9500
N5—C141.331 (2)C15—H15A0.9800
N5—C151.453 (2)C15—H15B0.9800
N5—C161.451 (2)C15—H15C0.9800
C2—H2A0.9800C16—H16A0.9800
C2—H2B0.9800C16—H16B0.9800
C2—H2C0.9800C16—H16C0.9800
N3—Zn—S1104.88 (4)H5A—C5—H5B109.5
N3—Zn—S3104.27 (4)N2—C5—H5C109.5
S1—Zn—S3150.85 (2)H5A—C5—H5C109.5
N3—Zn—S299.88 (5)H5B—C5—H5C109.5
S1—Zn—S274.936 (18)N2—C6—H6A109.5
S3—Zn—S2100.297 (19)N2—C6—H6B109.5
N3—Zn—S498.56 (4)H6A—C6—H6B109.5
S1—Zn—S4101.877 (19)N2—C6—H6C109.5
S3—Zn—S473.378 (18)H6A—C6—H6C109.5
S2—Zn—S4161.475 (19)H6B—C6—H6C109.5
C1—S1—Zn85.00 (7)N3—C7—C8123.02 (17)
C1—S2—Zn82.11 (7)N3—C7—H7118.5
C4—S3—Zn86.76 (6)C8—C7—H7118.5
C4—S4—Zn81.49 (6)C9—C8—C7117.60 (17)
C1—N1—C3123.25 (17)C9—C8—C12122.39 (17)
C1—N1—C2121.46 (17)C7—C8—C12120.00 (16)
C3—N1—C2115.28 (16)C8—C9—C10119.81 (18)
C4—N2—C5122.90 (17)C8—C9—H9120.1
C4—N2—C6121.21 (16)C10—C9—H9120.1
C5—N2—C6115.82 (16)C11—C10—C9118.61 (18)
C7—N3—C11118.55 (16)C11—C10—H10120.7
C7—N3—Zn121.14 (12)C9—C10—H10120.7
C11—N3—Zn120.29 (13)N3—C11—C10122.33 (18)
C13—N4—C12121.39 (16)N3—C11—H11118.8
C13—N4—H4N119.8 (15)C10—C11—H11118.8
C12—N4—H4N118.6 (15)N4—C12—C8111.17 (15)
C14—N5—C15120.66 (16)N4—C12—H12A109.4
C14—N5—C16121.79 (16)C8—C12—H12A109.4
C15—N5—C16117.52 (16)N4—C12—H12B109.4
N1—C1—S2121.84 (15)C8—C12—H12B109.4
N1—C1—S1120.43 (15)H12A—C12—H12B108.0
S2—C1—S1117.73 (11)O1—C13—N4125.76 (17)
N1—C2—H2A109.5O1—C13—C13i121.4 (2)
N1—C2—H2B109.5N4—C13—C13i112.88 (19)
H2A—C2—H2B109.5O2—C14—N5124.57 (18)
N1—C2—H2C109.5O2—C14—H14117.7
H2A—C2—H2C109.5N5—C14—H14117.7
H2B—C2—H2C109.5N5—C15—H15A109.5
N1—C3—H3A109.5N5—C15—H15B109.5
N1—C3—H3B109.5H15A—C15—H15B109.5
H3A—C3—H3B109.5N5—C15—H15C109.5
N1—C3—H3C109.5H15A—C15—H15C109.5
H3A—C3—H3C109.5H15B—C15—H15C109.5
H3B—C3—H3C109.5N5—C16—H16A109.5
N2—C4—S4122.67 (15)N5—C16—H16B109.5
N2—C4—S3119.78 (15)H16A—C16—H16B109.5
S4—C4—S3117.56 (10)N5—C16—H16C109.5
N2—C5—H5A109.5H16A—C16—H16C109.5
N2—C5—H5B109.5H16B—C16—H16C109.5
C3—N1—C1—S21.3 (3)Zn—N3—C7—C8178.18 (13)
C2—N1—C1—S2177.58 (15)N3—C7—C8—C91.8 (3)
C3—N1—C1—S1179.60 (14)N3—C7—C8—C12176.74 (16)
C2—N1—C1—S11.5 (3)C7—C8—C9—C102.8 (3)
Zn—S2—C1—N1174.64 (16)C12—C8—C9—C10175.73 (18)
Zn—S2—C1—S14.45 (9)C8—C9—C10—C111.4 (3)
Zn—S1—C1—N1174.49 (16)C7—N3—C11—C102.2 (3)
Zn—S1—C1—S24.61 (10)Zn—N3—C11—C10176.66 (15)
C5—N2—C4—S40.6 (3)C9—C10—C11—N31.2 (3)
C6—N2—C4—S4176.20 (14)C13—N4—C12—C888.2 (2)
C5—N2—C4—S3179.90 (14)C9—C8—C12—N4114.59 (19)
C6—N2—C4—S33.3 (2)C7—C8—C12—N463.9 (2)
Zn—S4—C4—N2171.25 (16)C12—N4—C13—O12.3 (3)
Zn—S4—C4—S38.27 (9)C12—N4—C13—C13i178.06 (18)
Zn—S3—C4—N2170.73 (15)C15—N5—C14—O22.6 (3)
Zn—S3—C4—S48.80 (10)C16—N5—C14—O2179.34 (19)
C11—N3—C7—C80.6 (3)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1–Cg3 are the centroids of the Zn/S1/S2/C1, Zn/S3/S4/C4 and N3/C7–C11 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N4—H4N···O20.87 (2)1.99 (2)2.779 (2)151 (2)
C7—H7···O20.952.443.290 (3)149
C14—H14···O1i0.952.493.245 (2)137
C15—H15B···O1ii0.982.473.310 (3)144
C3—H3B···Cg2iii0.982.933.884 (3)165
C5—H5B···Cg1iv0.982.973.924 (2)164
C16—H16C···Cg3v0.982.723.562 (3)144
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y1, z; (iii) x+1, y+1, z; (iv) x, y1, z; (v) x+1, y, z.
2-N,N'-Bis[(pyridin-3-yl)methyl]ethanediamide}tetrakis(di-n-propylcarbamodithioato)dizinc(II) (II) top
Crystal data top
[Zn2(C7H14NS2)4(C14H14N4O2)]F(000) = 2328
Mr = 1106.28Dx = 1.374 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 31.048 (4) ÅCell parameters from 12374 reflections
b = 16.923 (2) Åθ = 2.3–40.8°
c = 10.3453 (14) ŵ = 1.25 mm1
β = 100.361 (2)°T = 98 K
V = 5347.1 (12) Å3Prism, colourless
Z = 40.35 × 0.27 × 0.19 mm
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
6129 independent reflections
Radiation source: fine-focus sealed tube5700 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 4030
Tmin = 0.642, Tmax = 1.000k = 2121
17361 measured reflectionsl = 1313
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0308P)2 + 4.5145P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.31 e Å3
6129 reflectionsΔρmin = 0.39 e Å3
287 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.13541 (2)0.24490 (2)0.60218 (2)0.01873 (7)
S10.08181 (2)0.25161 (3)0.73301 (4)0.01949 (10)
S20.17501 (2)0.28982 (3)0.83257 (4)0.01932 (10)
S30.17753 (2)0.13268 (2)0.57617 (4)0.01802 (10)
S40.09814 (2)0.17783 (3)0.38786 (4)0.01878 (10)
O10.03808 (5)0.50349 (8)0.14247 (13)0.0254 (3)
N10.11727 (5)0.25613 (8)0.98790 (15)0.0180 (3)
N20.14225 (5)0.04388 (9)0.36979 (14)0.0178 (3)
N30.14982 (5)0.34572 (9)0.50690 (14)0.0181 (3)
N40.04959 (5)0.51477 (9)0.36629 (15)0.0196 (3)
H4N0.0375 (7)0.5160 (12)0.4359 (15)0.024*
C10.12447 (6)0.26513 (10)0.86517 (17)0.0178 (3)
C20.15269 (6)0.26758 (11)1.10193 (17)0.0199 (4)
H2A0.13970.27981.18040.024*
H2B0.17080.31331.08520.024*
C30.18182 (7)0.19481 (11)1.12973 (17)0.0215 (4)
H3A0.16360.14901.14580.026*
H3B0.19490.18281.05140.026*
C40.21819 (7)0.20604 (12)1.24757 (18)0.0243 (4)
H4A0.23380.25541.23780.036*
H4B0.23870.16161.25320.036*
H4C0.20560.20831.32780.036*
C50.07487 (6)0.22987 (11)1.01677 (18)0.0211 (4)
H5A0.08000.19751.09780.025*
H5B0.06030.19590.94400.025*
C60.04457 (7)0.29765 (13)1.0347 (2)0.0285 (4)
H6A0.03840.32950.95320.034*
H6B0.05890.33231.10680.034*
C70.00182 (8)0.26606 (17)1.0668 (2)0.0407 (6)
H7A0.01300.23380.99350.061*
H7B0.01710.31041.08130.061*
H7C0.00800.23361.14650.061*
C80.13929 (6)0.11097 (10)0.43552 (16)0.0169 (3)
C90.17538 (6)0.01696 (10)0.41526 (17)0.0192 (4)
H9A0.16330.06940.38550.023*
H9B0.18160.01720.51250.023*
C100.21794 (6)0.00422 (11)0.36546 (17)0.0205 (4)
H10A0.23130.04640.40000.025*
H10B0.21190.00110.26830.025*
C110.24983 (7)0.07212 (12)0.4094 (2)0.0274 (4)
H11A0.25470.07660.50530.041*
H11B0.27770.06160.38090.041*
H11C0.23740.12160.36990.041*
C120.11177 (6)0.02471 (10)0.24797 (17)0.0193 (4)
H12A0.12760.00550.18930.023*
H12B0.10130.07450.20260.023*
C130.07247 (7)0.02322 (12)0.27126 (18)0.0242 (4)
H13A0.05610.00680.32890.029*
H13B0.08260.07330.31600.029*
C140.04240 (7)0.04110 (13)0.1408 (2)0.0309 (5)
H14A0.03130.00850.09870.046*
H14B0.01780.07360.15680.046*
H14C0.05880.06970.08310.046*
C150.12006 (6)0.40358 (10)0.47673 (17)0.0192 (4)
H150.09280.39910.50590.023*
C160.12765 (6)0.46989 (10)0.40430 (17)0.0180 (3)
C170.16739 (7)0.47512 (11)0.36094 (18)0.0220 (4)
H170.17340.51910.30990.026*
C180.19815 (7)0.41597 (11)0.39255 (18)0.0232 (4)
H180.22550.41880.36400.028*
C190.18838 (6)0.35269 (11)0.46629 (18)0.0211 (4)
H190.20970.31250.48920.025*
C200.09527 (6)0.53720 (11)0.38052 (19)0.0218 (4)
H20A0.10210.57480.45460.026*
H20B0.09950.56540.29990.026*
C210.02463 (6)0.50634 (10)0.24787 (18)0.0195 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.02188 (13)0.01688 (11)0.01907 (11)0.00339 (8)0.00807 (9)0.00169 (7)
S10.0158 (2)0.0254 (2)0.0174 (2)0.00087 (17)0.00319 (17)0.00181 (16)
S20.0158 (2)0.0231 (2)0.0198 (2)0.00156 (17)0.00530 (17)0.00061 (16)
S30.0171 (2)0.0186 (2)0.01796 (19)0.00329 (16)0.00209 (16)0.00007 (15)
S40.0176 (2)0.0201 (2)0.0186 (2)0.00508 (17)0.00326 (17)0.00033 (16)
O10.0185 (7)0.0347 (7)0.0239 (6)0.0012 (6)0.0066 (6)0.0023 (6)
N10.0154 (8)0.0209 (7)0.0178 (7)0.0012 (6)0.0038 (6)0.0018 (5)
N20.0154 (8)0.0185 (7)0.0193 (7)0.0030 (6)0.0026 (6)0.0001 (6)
N30.0170 (8)0.0176 (7)0.0201 (7)0.0010 (6)0.0039 (6)0.0007 (6)
N40.0142 (8)0.0216 (7)0.0227 (7)0.0008 (6)0.0021 (6)0.0011 (6)
C10.0183 (9)0.0166 (8)0.0191 (8)0.0009 (7)0.0048 (7)0.0009 (6)
C20.0201 (10)0.0221 (8)0.0175 (8)0.0009 (7)0.0037 (7)0.0032 (7)
C30.0218 (10)0.0227 (9)0.0208 (8)0.0008 (7)0.0059 (7)0.0006 (7)
C40.0210 (10)0.0285 (10)0.0234 (9)0.0005 (8)0.0039 (8)0.0043 (7)
C50.0190 (10)0.0250 (9)0.0200 (8)0.0034 (7)0.0054 (7)0.0014 (7)
C60.0201 (11)0.0343 (11)0.0333 (10)0.0011 (8)0.0105 (9)0.0002 (8)
C70.0202 (12)0.0690 (16)0.0351 (12)0.0017 (11)0.0112 (9)0.0086 (11)
C80.0159 (9)0.0190 (8)0.0172 (8)0.0003 (7)0.0063 (7)0.0022 (6)
C90.0196 (10)0.0161 (8)0.0219 (8)0.0051 (7)0.0039 (7)0.0013 (6)
C100.0199 (10)0.0213 (8)0.0201 (8)0.0028 (7)0.0034 (7)0.0008 (7)
C110.0243 (11)0.0255 (10)0.0325 (10)0.0068 (8)0.0052 (8)0.0031 (8)
C120.0201 (10)0.0202 (8)0.0181 (8)0.0016 (7)0.0048 (7)0.0014 (6)
C130.0210 (10)0.0279 (10)0.0239 (9)0.0040 (8)0.0048 (8)0.0038 (7)
C140.0237 (11)0.0393 (11)0.0287 (10)0.0025 (9)0.0027 (9)0.0070 (9)
C150.0160 (9)0.0200 (8)0.0222 (8)0.0008 (7)0.0045 (7)0.0009 (7)
C160.0148 (9)0.0173 (8)0.0207 (8)0.0004 (7)0.0000 (7)0.0004 (6)
C170.0191 (10)0.0222 (9)0.0246 (9)0.0029 (7)0.0034 (7)0.0038 (7)
C180.0158 (10)0.0282 (9)0.0268 (9)0.0002 (8)0.0071 (8)0.0001 (7)
C190.0179 (10)0.0219 (9)0.0234 (9)0.0037 (7)0.0036 (7)0.0005 (7)
C200.0146 (9)0.0187 (8)0.0312 (9)0.0013 (7)0.0013 (7)0.0029 (7)
C210.0170 (10)0.0170 (8)0.0245 (9)0.0008 (7)0.0035 (7)0.0002 (6)
Geometric parameters (Å, º) top
Zn—N32.0595 (15)C6—H6B0.9900
Zn—S12.3289 (5)C7—H7A0.9800
Zn—S32.3484 (5)C7—H7B0.9800
Zn—S42.5731 (5)C7—H7C0.9800
Zn—S22.5917 (6)C9—C101.518 (3)
S1—C11.7391 (19)C9—H9A0.9900
S2—C11.715 (2)C9—H9B0.9900
S3—C81.7435 (19)C10—C111.531 (3)
S4—C81.7114 (19)C10—H10A0.9900
O1—C211.237 (2)C10—H10B0.9900
N1—C11.337 (2)C11—H11A0.9800
N1—C51.470 (2)C11—H11B0.9800
N1—C21.474 (2)C11—H11C0.9800
N2—C81.335 (2)C12—C131.520 (3)
N2—C121.470 (2)C12—H12A0.9900
N2—C91.472 (2)C12—H12B0.9900
N3—C191.343 (2)C13—C141.527 (3)
N3—C151.344 (2)C13—H13A0.9900
N4—C211.334 (2)C13—H13B0.9900
N4—C201.450 (2)C14—H14A0.9800
N4—H4N0.870 (9)C14—H14B0.9800
C2—C31.524 (3)C14—H14C0.9800
C2—H2A0.9900C15—C161.393 (2)
C2—H2B0.9900C15—H150.9500
C3—C41.517 (3)C16—C171.389 (3)
C3—H3A0.9900C16—C201.510 (3)
C3—H3B0.9900C17—C181.382 (3)
C4—H4A0.9800C17—H170.9500
C4—H4B0.9800C18—C191.380 (3)
C4—H4C0.9800C18—H180.9500
C5—C61.516 (3)C19—H190.9500
C5—H5A0.9900C20—H20A0.9900
C5—H5B0.9900C20—H20B0.9900
C6—C71.522 (3)C21—C21i1.538 (4)
C6—H6A0.9900
N3—Zn—S1118.51 (4)H7B—C7—H7C109.5
N3—Zn—S3116.21 (5)N2—C8—S4122.11 (14)
S1—Zn—S3125.225 (18)N2—C8—S3120.36 (14)
N3—Zn—S493.20 (4)S4—C8—S3117.52 (10)
S1—Zn—S4105.351 (19)N2—C9—C10113.16 (14)
S3—Zn—S473.615 (17)N2—C9—H9A108.9
N3—Zn—S295.11 (4)C10—C9—H9A108.9
S1—Zn—S273.841 (18)N2—C9—H9B108.9
S3—Zn—S299.247 (17)C10—C9—H9B108.9
S4—Zn—S2170.877 (16)H9A—C9—H9B107.8
C1—S1—Zn86.60 (6)C9—C10—C11110.41 (15)
C1—S2—Zn79.03 (6)C9—C10—H10A109.6
C8—S3—Zn87.51 (6)C11—C10—H10A109.6
C8—S4—Zn81.18 (6)C9—C10—H10B109.6
C1—N1—C5122.43 (16)C11—C10—H10B109.6
C1—N1—C2121.12 (16)H10A—C10—H10B108.1
C5—N1—C2116.34 (14)C10—C11—H11A109.5
C8—N2—C12122.13 (15)C10—C11—H11B109.5
C8—N2—C9122.71 (15)H11A—C11—H11B109.5
C12—N2—C9115.15 (14)C10—C11—H11C109.5
C19—N3—C15118.52 (16)H11A—C11—H11C109.5
C19—N3—Zn120.34 (12)H11B—C11—H11C109.5
C15—N3—Zn121.01 (12)N2—C12—C13113.16 (14)
C21—N4—C20121.14 (16)N2—C12—H12A108.9
C21—N4—H4N119.8 (16)C13—C12—H12A108.9
C20—N4—H4N118.0 (15)N2—C12—H12B108.9
N1—C1—S2121.99 (15)C13—C12—H12B108.9
N1—C1—S1119.86 (15)H12A—C12—H12B107.8
S2—C1—S1118.16 (10)C12—C13—C14110.26 (16)
N1—C2—C3112.14 (14)C12—C13—H13A109.6
N1—C2—H2A109.2C14—C13—H13A109.6
C3—C2—H2A109.2C12—C13—H13B109.6
N1—C2—H2B109.2C14—C13—H13B109.6
C3—C2—H2B109.2H13A—C13—H13B108.1
H2A—C2—H2B107.9C13—C14—H14A109.5
C4—C3—C2112.39 (15)C13—C14—H14B109.5
C4—C3—H3A109.1H14A—C14—H14B109.5
C2—C3—H3A109.1C13—C14—H14C109.5
C4—C3—H3B109.1H14A—C14—H14C109.5
C2—C3—H3B109.1H14B—C14—H14C109.5
H3A—C3—H3B107.9N3—C15—C16122.43 (17)
C3—C4—H4A109.5N3—C15—H15118.8
C3—C4—H4B109.5C16—C15—H15118.8
H4A—C4—H4B109.5C17—C16—C15118.11 (17)
C3—C4—H4C109.5C17—C16—C20120.22 (16)
H4A—C4—H4C109.5C15—C16—C20121.55 (17)
H4B—C4—H4C109.5C18—C17—C16119.57 (17)
N1—C5—C6113.23 (16)C18—C17—H17120.2
N1—C5—H5A108.9C16—C17—H17120.2
C6—C5—H5A108.9C19—C18—C17118.81 (18)
N1—C5—H5B108.9C19—C18—H18120.6
C6—C5—H5B108.9C17—C18—H18120.6
H5A—C5—H5B107.7N3—C19—C18122.55 (17)
C5—C6—C7110.23 (18)N3—C19—H19118.7
C5—C6—H6A109.6C18—C19—H19118.7
C7—C6—H6A109.6N4—C20—C16115.44 (15)
C5—C6—H6B109.6N4—C20—H20A108.4
C7—C6—H6B109.6C16—C20—H20A108.4
H6A—C6—H6B108.1N4—C20—H20B108.4
C6—C7—H7A109.5C16—C20—H20B108.4
C6—C7—H7B109.5H20A—C20—H20B107.5
H7A—C7—H7B109.5O1—C21—N4125.54 (18)
C6—C7—H7C109.5O1—C21—C21i121.4 (2)
H7A—C7—H7C109.5N4—C21—C21i112.96 (19)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O1ii0.87 (2)2.16 (2)2.959 (2)153 (2)
Symmetry code: (ii) x+1/2, y+3/2, z+1/2.
Geometric data (Å, °) for (I) and (II) top
Parameter(I); n = 4; m = 13a(II); n = 8; m = 21b
Zn—S12.3770 (5)2.3289 (5)
Zn—S22.4784 (5)2.5917 (6)
Zn—S32.3807 (5)2.3484 (5)
Zn—S42.5565 (6)2.5731 (5)
Zn—N32.0959 (16)2.0595 (15)
C1—S11.732 (2)1.7391 (19)
C1—S21.720 (2)1.715 (2)
Cn—S31.7310 (19)1.7435 (19)
Cn—S41.7224 (19)1.7114 (19)
Cm—O11.229 (2)1.237 (2)
Cm—N41.334 (2)1.334 (2)
Cm—Cmi1.550 (4)1.538 (4)
S1—Zn—S3150.85 (2)125.225 (18)
S2—Zn—S4161.475 (19)170.877 (16)
Notes: (a) symmetry code: (i) -x, 2 - y, 1 - z; (b) symmetry code: (i) -x, y, 1/2 - z.
 

Acknowledgements

Sunway University is thanked for support of biological and crystal engineering studies of metal di­thio­carbamates.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science
First citationBenson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–941.  Web of Science CSD CrossRef CAS
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationCâmpian, M. V., Azizuddin, A. D., Haiduc, I. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 737–747.
First citationCruz-Cabeza, A. J., Reutzel-Edens, S. M. & Bernstein, J. (2015). Chem. Soc. Rev. 44, 8619–8635.  Web of Science CAS PubMed
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationGoroff, N. S., Curtis, S. M., Webb, J. A., Fowler, F. W. & Lauher, J. W. (2005). Org. Lett. 7, 1891–1893.  Web of Science CSD CrossRef PubMed CAS
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
First citationJamaludin, N. S., Halim, S. N. A., Khoo, C.-H., Chen, B.-J., See, T.-H., Sim, J.-H., Cheah, Y.-K., Seng, H.-L. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 341–349.  CAS
First citationJotani, M. M., Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1700–1709.  Web of Science CSD CrossRef IUCr Journals
First citationJotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2017). Z. Kristallogr. 232, 287–298.  CAS
First citationJotani, M. M., Zukerman-Schpector, J., Sousa Madureira, L., Poplaukhin, P., Arman, H. D., Miller, T. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 415–425.  CAS
First citationMacDonald, J. C. & Whitesides, G. M. (1994). Chem. Rev. 94, 2383–2420.  CrossRef CAS Web of Science
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
First citationPoplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2012). Z. Kristallogr. 227, 363–368.  Web of Science CSD CrossRef CAS
First citationPoplaukhin, P. & Tiekink, E. R. T. (2010). CrystEngComm, 12, 1302–1306.  Web of Science CSD CrossRef
First citationPoplaukhin, P. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1246–1251.  CSD CrossRef IUCr Journals
First citationSafbri, S. A. M., Halim, S. N. A. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 203–208.  Web of Science CSD CrossRef IUCr Journals
First citationSchauer, C. L., Matwey, E., Fowler, F. W. & Lauher, J. W. (1997). J. Am. Chem. Soc. 119, 10245–10246.  CSD CrossRef CAS Web of Science
First citation[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationTiekink, E. R. T. (2017). Coord. Chem. Rev. 345, 209–228.  Web of Science CrossRef CAS
First citationTiekink, E. R. T. & Zukerman-Schpector, J. (2011). Chem. Commun. 47, 6623–6625.  Web of Science CrossRef CAS
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationZeng, Q., Li, M., Wu, D., Lei, S., Liu, C., Piao, L., Yang, Y. A. S., An, S. & Wang, C. (2008). Cryst. Growth Des. 8, 869–876.  CSD CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds