research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of sodium di­hydrogen arsenate

CROSSMARK_Color_square_no_text.svg

aTU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria, bInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria, and cX-Ray Centre, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria
*Correspondence e-mail: matthias.weil@tuwien.ac.at

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 September 2017; accepted 20 September 2017; online 25 September 2017)

Single crystals of the title compound, Na(H2AsO4), were obtained by partial neutralization of arsenic acid with sodium hydroxide in aqueous solution. The crystal structure of Na(H2AsO4) is isotypic with the phosphate analogue and the asymmetric unit consists of two sodium cations and two tetra­hedral H2AsO4 anions. Each of the sodium cations is surrounded by six O atoms of five H2AsO4 groups, defining distorted octa­hedral coordination spheres. In the extended structure, the sodium cations and di­hydrogen arsenate anions are arranged in the form of layers lying parallel to (010). Strong hydrogen bonds [range of O⋯O distances 2.500 (3)–2.643 (3) Å] between adjacent H2AsO4 anions are observed within and perpendicular to the layers. The isotypic structure of Na(H2PO4) is comparatively discussed.

1. Chemical context

Arsenic acid is triprotic and thus can form various salts, depending on the degree of deprotonation (H2AsO4, HAsO42−, AsO43−), the condensation grade of the anion (mono-, di-, tri-, polyarsenate, etc) and the amount of water incorporated in the crystal. With respect to sodium arsenates, numerous crystal structures have been determined so far, including arsenic in tetra­hedral and/or in octa­hedral coordination by oxygen atoms. Arsenate structures with arsenic exclusively in tetra­hedral coordination resemble those of the related phosphates and in some cases show isotypism with them (marked by an asterisk): Na3.25(AsO4)(OH)0.25(H2O)12* (Tillmanns & Baur, 1971[Tillmanns, E. & Baur, W. H. (1971). Acta Cryst. B27, 2124-2132.]), Na4(AsO4)OH (zur Loye et al., 2015[Loye, K. D. zur, Latshaw, A. M., Smith, M. D., Chance, W. M. & zur Loye, H. C. (2015). J. Chem. Crystallogr. 45, 20-25.]), Na2(HAsO4)(H2O)7* (Baur & Khan, 1970[Baur, W. H. & Khan, A. A. (1970). Acta Cryst. B26, 1584-1596.]; Ferraris et al., 1971[Ferraris, G., Jones, D. W. & Yerkess, J. (1971). Acta Cryst. B27, 354-359.]), Na(H2AsO4)(H2O) (Ferraris et al., 1974[Ferraris, G., Jones, D. W. & Sowden, J. M. (1974). Atti R. Accad. Sci. Torino, Cl. Sci. Fis., Mat. Nat. 108, 507-527.]), Na3(H2As3O10) (Driss & Jouini, 1990[Driss, A. & Jouini, T. (1990). Acta Cryst. C46, 1185-1188.]), Na4As2O7 (Leung & Calvo, 1973[Leung, K. Y. & Calvo, C. (1973). Can. J. Chem. 51, 2082-2088.]), Na(AsO3) (Liebau, 1956[Liebau, F. (1956). Acta Cryst. 9, 811-817.]) and Na5(AsO5) (Haas & Jansen, 2001[Haas, H. & Jansen, M. (2001). Z. Anorg. Allg. Chem. 627, 1013-1016.]). Arsenate structures with arsenic in (complete or partial) octa­hedral coordination include Na(H2As3O9) (Driss, Jouini, Durif et al., 1988[Driss, A., Jouini, T., Durif, A. & Averbuch-Pouchot, M.-T. (1988). Acta Cryst. C44, 1507-1510.]), Na3(H5As4O14) (Driss & Jouini, 1989[Driss, A. & Jouini, T. (1989). J. Solid State Chem. 78, 130-135.]), Na(HAs2O6) (Dung & Tahar, 1978[Dung, N.-H. & Tahar, J. (1978). Acta Cryst. B34, 3727-3729.]), Na2As4O11 (Driss, Jouini & Omezzine, 1988[Driss, A., Jouini, T. & Omezzine, M. (1988). Acta Cryst. C44, 788-791.]) and Na7As11O31 (Guesmi et al., 2006[Guesmi, A., Nespolo, M. & Driss, A. (2006). J. Solid State Chem. 179, 2466-2471.]). A detailed discussion of the structural principles and crystal chemical characteristics of arsenates with arsenic in octa­hedral coordination was given some time ago by Schwendtner & Kolitsch (2007[Schwendtner, K. & Kolitsch, U. (2007). Acta Cryst. B63, 205-215.]).

Besides the Na:As 1:1 phase Na(H2AsO4)(H2O) another 1:1 phase, Na(H2AsO4), has been reported but without an additional water mol­ecule (Fehér & Morgenstern, 1937[Fehér, F. & Morgenstern, G. (1937). Z. Anorg. Allg. Chem. 232, 169-178.]). To our surprise, a detailed structural investigation of this salt has not yet been reported. Therefore, we started crystal growth experiments and determined its structure and report here on the results.

2. Structural commentary

The crystal structure of Na(H2AsO4) is isotypic with that of Na(H2PO4) (Catti & Ferraris, 1974[Catti, M. & Ferraris, G. (1974). Acta Cryst. B30, 1-6.]). The asymmetric unit of Na(H2AsO4) comprises two Na+ cations and two tetra­hedral AsO2(OH)2 groups. The Na1+ cation shows a narrow Na—O bond-length distribution in the range 2.337 (2) to 2.498 (2) Å with a distorted octa­hedron as the corresponding coordination polyhedron. The bond-valence sum (Brown, 2002[Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.]) for the Na1+ cation amounts to 1.15 valence units. The surrounding of the Na2+ cation is much more distorted, with a bond-length range from 2.338 (2) to 2.769 (3) Å under consideration of a sixfold coordination (bond-valence sum 0.92 valence units). There is an additional remote oxygen atom at a distance of 3.000 (3) Å from Na2+. Its contribution of 0.04 valence units to the bond-valence sum might be considered as too low for a significant inter­action, and therefore the first coordination sphere of Na2+ is discussed as that of a considerably distorted octa­hedron. The two di­hydrogen arsenate groups show the usual differences (Weil, 2000[Weil, M. (2000). Z. Naturforsch. Teil B, 55, 699-706.], 2016[Weil, M. (2016). Cryst. Growth Des. 16, 908-921.]) between As—O and As—(OH) bonds, with two significantly shorter As—O bonds [mean 1.659 (8) Å] and two longer As—(OH) bonds [1.723 (12) Å].

In the crystal structure of Na(H2AsO4) the AsO2(OH)2 tetra­hedra are arranged in layers lying parallel to (010) with the Na+ cations approximately on the same level (Fig. 1[link]). Strong, asymmetric hydrogen bonds [O⋯O distances between 2.500 (3) and 2.643 (3) Å, Table 1[link]] between each of the OH groups of the two di­hydrogen arsenate tetra­hedra and O atoms of adjacent tetra­hedra significantly contribute to the crystal packing. These hydrogen bonds are both within a layer and towards adjacent layers (Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1⋯O8i 0.85 (2) 1.75 (2) 2.595 (3) 175 (5)
O4—H2⋯O8 0.83 (2) 1.82 (2) 2.643 (3) 178 (4)
O5—H3⋯O1ii 0.85 (2) 1.73 (2) 2.566 (3) 171 (5)
O7—H4⋯O6iii 0.85 (2) 1.66 (2) 2.500 (3) 169 (4)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) -x+2, -y+1, -z+1.
[Figure 1]
Figure 1
The crystal structure of Na(H2AsO4) in a projection along [100]. All atoms are depicted with displacement ellipsoids at the 97% probability level. Di­hydrogen arsenate tetra­hedra are given in polyhedral representation, Na+ cations as single ellipsoids without bonds to surrounding O atoms. H⋯O hydrogen bonds are illustrated with green lines.

The differences between the isotypic arsenate and phosphate structures can mainly be seen in the X—O bond lengths of the anions (X = As, mean of 1.69 Å; X = P, mean of 1.55 Å), with Δmax(X—O) of 0.15 Å between arsenate and phosphate tetra­hedra. The difference with respect to the Na—O distances in the two structures is less pronounced, with Δmax(Na—O) = 0.10 Å. Relevant bond lengths of the isotypic crystal structures of Na(H2AsO4) and Na(H2PO4) (Catti & Ferraris, 1974[Catti, M. & Ferraris, G. (1974). Acta Cryst. B30, 1-6.]) are compiled in Table 2[link]. A more qu­anti­tative comparison of the two crystal structures with the help of the COMPSTRU routine (de la Flor et al., 2016[Flor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653-664.]) revealed the following values: The degree of lattice distortion (S), i.e. the spontaneous strain (sum of the squared eigenvalues of the strain tensor divided by 3), is 0.0159; the maximum distance (dmax.), i.e. the maximal displacement between the atomic positions of paired atoms, is 0.1920 Å for atom pair O1; the arithmetic mean (dav) of the distances of all atom pairs is 0.1108 Å; the measure of similarity (Δ) (Bergerhoff et al., 1999[Bergerhoff, G., Berndt, M., Brandenburg, K. & Degen, T. (1999). Acta Cryst. B55, 147-156.]) is a function of the differences in atomic positions (weighted by the multiplicities of the sites) and the ratios of the corresponding lattice parameters of the structures and amounts to 0.049.

Table 2
Comparison of bond lengths (Å) in the title compound and the isotypic phosphate analogue (Catti & Ferraris, 1974[Catti, M. & Ferraris, G. (1974). Acta Cryst. B30, 1-6.])

Bond Na(H2AsO4) Na(H2PO4)
Na1—O3i 2.337 (2) 2.355 (1)
Na1—O5ii 2.376 (2) 2.406 (1)
Na1—O3iii 2.382 (2) 2.371 (1)
Na1—O7 2.456 (2) 2.501 (1)
Na1—O2iv 2.459 (2) 2.436 (1)
Na1—O6iv 2.498 (2) 2.564 (1)
Na2—O8 2.338 (2) 2.334 (1)
Na2—O3iv 2.371 (2) 2.369 (1)
Na2—O1ii 2.419 (2) 2.433 (1)
Na2—O6i 2.586 (2) 2.601 (1)
Na2—O2iv 2.703 (3) 2.600 (1)
Na2—O4i 2.769 (3) 2.730 (1)
Na2—O7v 3.000 (3) 2.930 (1)
As/P1—O3 1.6484 (19) 1.499 (1)
As/P1—O1 1.657 (2) 1.508 (1)
As/P1—O4 1.730 (2) 1.592 (1)
As/P1—O2 1.736 (2) 1.597 (1)
As/P2—O6 1.663 (2) 1.523 (1)
As/P2—O8 1.668 (2) 1.519 (1)
As/P2—O7 1.711 (2) 1.562 (1)
As/P2—O5 1.713 (2) 1.572 (1)
Symmetry codes (i) −x + 1, −y + 1, −z + 1; (ii) x, −y + [{1\over 2}], z − [{1\over 2}]; (iii) x + 1, y, z − 1; (iv) x, y, z − 1; (v) x − 1, y, z.

3. Synthesis and crystallization

The title compound was prepared following a procedure by Fehér & Morgenstern (1937[Fehér, F. & Morgenstern, G. (1937). Z. Anorg. Allg. Chem. 232, 169-178.]). An arsenic acid solution (ca 65%wt) was partly neutralized with diluted NaOH solution using methyl red as indicator. The resulting solution was concentrated by heating. Standing of the solution overnight on a warm plate (ca 313 K) afforded colourless crystals with a lath-like form and maximal edge lengths of 0.5 mm.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Starting coordinates and labelling of atoms were taken from the isotypic Na(H2PO4) structure (Catti & Ferraris, 1974[Catti, M. & Ferraris, G. (1974). Acta Cryst. B30, 1-6.]). Hydrogen atoms were clearly discernible from difference maps and were refined with distance restraints d(O—H) = 0.85 (1) Å.

Table 3
Experimental details

Crystal data
Chemical formula Na(H2AsO4)
Mr 163.93
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 7.0528 (14), 13.798 (3), 7.4792 (15)
β (°) 93.02 (3)
V3) 726.8 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 9.32
Crystal size (mm) 0.12 × 0.08 × 0.01
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.534, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 11092, 2651, 1890
Rint 0.052
(sin θ/λ)max−1) 0.758
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.059, 1.04
No. of reflections 2651
No. of parameters 125
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.87, −0.86
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ATOMS (Dowty, 2006[Dowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: coordinates taken from isotypic structure; program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Sodium dihydrogen arsenate top
Crystal data top
Na(H2AsO4)F(000) = 624
Mr = 163.93Dx = 2.996 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.0528 (14) ÅCell parameters from 2433 reflections
b = 13.798 (3) Åθ = 3.1–31.8°
c = 7.4792 (15) ŵ = 9.32 mm1
β = 93.02 (3)°T = 100 K
V = 726.8 (3) Å3Lath, colourless
Z = 80.12 × 0.08 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
1890 reflections with I > 2σ(I)
ω and φ scansRint = 0.052
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 32.6°, θmin = 2.9°
Tmin = 0.534, Tmax = 0.746h = 1010
11092 measured reflectionsk = 2020
2651 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: isomorphous structure methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.020P)2 + 0.0156P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2651 reflectionsΔρmax = 0.87 e Å3
125 parametersΔρmin = 0.86 e Å3
4 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As10.32467 (4)0.36827 (2)0.84669 (4)0.00611 (7)
As20.82170 (4)0.37010 (2)0.50756 (4)0.00595 (7)
Na10.85834 (16)0.40338 (8)0.00598 (15)0.0091 (2)
Na20.34819 (17)0.39825 (9)0.26282 (16)0.0134 (3)
O10.2417 (3)0.26833 (14)0.7478 (3)0.0108 (4)
O20.5315 (3)0.34069 (15)0.9726 (3)0.0099 (4)
O30.1910 (3)0.42983 (14)0.9809 (3)0.0078 (4)
O40.4015 (3)0.44833 (15)0.6878 (3)0.0124 (4)
O50.9202 (3)0.26110 (14)0.5709 (3)0.0113 (4)
O60.8540 (3)0.45079 (14)0.6715 (3)0.0098 (4)
O70.9303 (3)0.40531 (15)0.3188 (3)0.0093 (4)
O80.5931 (3)0.34459 (14)0.4613 (3)0.0082 (4)
H10.545 (7)0.2797 (14)0.970 (6)0.055 (15)*
H20.462 (5)0.415 (3)0.619 (5)0.038 (13)*
H31.026 (4)0.270 (3)0.627 (6)0.071 (18)*
H40.995 (5)0.457 (2)0.332 (6)0.045 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.00551 (13)0.00631 (14)0.00645 (13)0.00067 (11)0.00029 (10)0.00017 (11)
As20.00609 (13)0.00599 (14)0.00564 (13)0.00119 (11)0.00081 (10)0.00025 (11)
Na10.0087 (6)0.0086 (5)0.0099 (6)0.0004 (4)0.0002 (4)0.0003 (4)
Na20.0161 (6)0.0132 (6)0.0106 (6)0.0027 (5)0.0038 (5)0.0001 (5)
O10.0101 (10)0.0078 (10)0.0141 (11)0.0005 (8)0.0031 (8)0.0037 (8)
O20.0077 (10)0.0068 (9)0.0147 (11)0.0005 (8)0.0044 (8)0.0006 (8)
O30.0062 (10)0.0094 (9)0.0078 (10)0.0016 (7)0.0007 (7)0.0011 (7)
O40.0150 (11)0.0112 (10)0.0114 (11)0.0040 (9)0.0059 (9)0.0033 (8)
O50.0105 (10)0.0064 (10)0.0163 (11)0.0006 (8)0.0054 (9)0.0012 (8)
O60.0101 (10)0.0110 (10)0.0083 (10)0.0033 (8)0.0012 (8)0.0034 (8)
O70.0122 (10)0.0091 (9)0.0070 (9)0.0034 (9)0.0038 (7)0.0008 (8)
O80.0058 (9)0.0078 (9)0.0108 (10)0.0011 (7)0.0013 (7)0.0011 (8)
Geometric parameters (Å, º) top
As1—O31.6484 (19)Na1—O6iv2.498 (2)
As1—O11.657 (2)Na2—O82.338 (2)
As1—O41.730 (2)Na2—O3iv2.371 (2)
As1—O21.736 (2)Na2—O1ii2.419 (2)
As2—O61.663 (2)Na2—O6i2.586 (2)
As2—O81.668 (2)Na2—O2iv2.703 (3)
As2—O71.711 (2)Na2—O4i2.769 (3)
As2—O51.713 (2)Na2—O7v3.000 (3)
Na1—O3i2.337 (2)O2—H10.847 (19)
Na1—O5ii2.376 (2)O4—H20.828 (18)
Na1—O3iii2.382 (2)O5—H30.847 (19)
Na1—O72.456 (2)O7—H40.849 (19)
Na1—O2iv2.459 (2)
O3—As1—O1120.05 (10)O1ii—Na2—O4i157.97 (8)
O3—As1—O4107.40 (10)O6i—Na2—O4i73.32 (7)
O1—As1—O4109.92 (11)O2iv—Na2—O4i90.18 (7)
O3—As1—O2105.89 (10)O8—Na2—O7v128.32 (8)
O1—As1—O2109.06 (10)O3iv—Na2—O7v72.63 (7)
O4—As1—O2103.17 (10)O1ii—Na2—O7v74.48 (7)
O6—As2—O8112.80 (10)O6i—Na2—O7v52.53 (6)
O6—As2—O7111.60 (10)O2iv—Na2—O7v129.53 (8)
O8—As2—O7111.00 (10)O4i—Na2—O7v125.50 (7)
O6—As2—O5110.24 (10)As1—O1—Na2vi131.96 (12)
O8—As2—O5104.21 (10)As1—O2—Na1vii135.72 (11)
O7—As2—O5106.56 (10)As1—O2—Na2vii86.99 (8)
O3i—Na1—O5ii161.36 (9)Na1vii—O2—Na2vii109.31 (9)
O3i—Na1—O3iii90.20 (7)As1—O2—H1107 (3)
O5ii—Na1—O3iii89.30 (8)Na1vii—O2—H1104 (3)
O3i—Na1—O786.19 (8)Na2vii—O2—H1111 (3)
O5ii—Na1—O775.23 (8)As1—O3—Na1i130.46 (11)
O3iii—Na1—O783.49 (8)As1—O3—Na2vii101.02 (9)
O3i—Na1—O2iv102.04 (8)Na1i—O3—Na2vii100.03 (8)
O5ii—Na1—O2iv80.75 (8)As1—O3—Na1viii122.85 (11)
O3iii—Na1—O2iv166.71 (9)Na1i—O3—Na1viii89.80 (7)
O7—Na1—O2iv102.26 (9)Na2vii—O3—Na1viii110.53 (9)
O3i—Na1—O6iv79.94 (8)As1—O4—Na2i128.10 (12)
O5ii—Na1—O6iv118.47 (8)As1—O4—H2105 (3)
O3iii—Na1—O6iv83.21 (8)Na2i—O4—H299 (3)
O7—Na1—O6iv160.71 (8)As2—O5—Na1vi134.83 (12)
O2iv—Na1—O6iv93.76 (8)As2—O5—H3111 (3)
O8—Na2—O3iv156.69 (9)Na1vi—O5—H3113 (3)
O8—Na2—O1ii86.89 (8)As2—O6—Na1vii122.07 (11)
O3iv—Na2—O1ii90.22 (8)As2—O6—Na2i128.58 (11)
O8—Na2—O6i122.07 (8)Na1vii—O6—Na2i90.36 (7)
O3iv—Na2—O6i77.53 (7)As2—O7—Na1137.29 (12)
O1ii—Na2—O6i126.96 (8)As2—O7—Na2ix126.26 (11)
O8—Na2—O2iv92.76 (8)Na1—O7—Na2ix90.85 (7)
O3iv—Na2—O2iv63.95 (7)As2—O7—H4114 (3)
O1ii—Na2—O2iv81.03 (8)Na1—O7—H4102 (3)
O6i—Na2—O2iv132.91 (8)Na2ix—O7—H461 (3)
O8—Na2—O4i73.31 (7)As2—O8—Na2137.60 (11)
O3iv—Na2—O4i104.07 (8)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2; (iii) x+1, y, z1; (iv) x, y, z1; (v) x1, y, z; (vi) x, y+1/2, z+1/2; (vii) x, y, z+1; (viii) x1, y, z+1; (ix) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O8vi0.85 (2)1.75 (2)2.595 (3)175 (5)
O4—H2···O80.83 (2)1.82 (2)2.643 (3)178 (4)
O5—H3···O1ix0.85 (2)1.73 (2)2.566 (3)171 (5)
O7—H4···O6x0.85 (2)1.66 (2)2.500 (3)169 (4)
Symmetry codes: (vi) x, y+1/2, z+1/2; (ix) x+1, y, z; (x) x+2, y+1, z+1.
Comparison of bond lengths (Å) in the title compound and the isotypic phosphate analogue (Catti & Ferraris, 1974) top
BondNa(H2AsO4)Na(H2PO4)
Na1—O3i2.337 (2)2.355 (1)
Na1—O5ii2.376 (2)2.406 (1)
Na1—O3iii2.382 (2)2.371 (1)
Na1—O72.456 (2)2.501 (1)
Na1—O2iv2.459 (2)2.436 (1)
Na1—O6iv2.498 (2)2.564 (1)
Na2—O82.338 (2)2.334 (1)
Na2—O3iv2.371 (2)2.369 (1)
Na2—O1ii2.419 (2)2.433 (1)
Na2—O6i2.586 (2)2.601 (1)
Na2—O2iv2.703 (3)2.600 (1)
Na2—O4i2.769 (3)2.730 (1)
Na2—O7v3.000 (3)2.930 (1)
As/P1—O31.6484 (19)1.499 (1)
As/P1—O11.657 (2)1.508 (1)
As/P1—O41.730 (2)1.592 (1)
As/P1—O21.736 (2)1.597 (1)
As/P2—O61.663 (2)1.523 (1)
As/P2—O81.668 (2)1.519 (1)
As/P2—O71.711 (2)1.562 (1)
As/P2—O51.713 (2)1.572 (1)
Symmetry codes (i) -x+1, -y+1, -z+1; (ii) x, -y+1/2, z-1/2; (iii) x+1, y, z-1; (iv) x, y, z-1; (v) x-1, y, z.
 

Acknowledgements

The X-ray centre of TU Wien is acknowledged for financial support of this study.

References

First citationBaur, W. H. & Khan, A. A. (1970). Acta Cryst. B26, 1584–1596.  CrossRef CAS IUCr Journals Web of Science
First citationBergerhoff, G., Berndt, M., Brandenburg, K. & Degen, T. (1999). Acta Cryst. B55, 147–156.  Web of Science CrossRef CAS IUCr Journals
First citationBrown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCatti, M. & Ferraris, G. (1974). Acta Cryst. B30, 1–6.  CrossRef CAS IUCr Journals Web of Science
First citationDowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.
First citationDriss, A. & Jouini, T. (1989). J. Solid State Chem. 78, 130–135.  CrossRef CAS
First citationDriss, A. & Jouini, T. (1990). Acta Cryst. C46, 1185–1188.  CrossRef CAS IUCr Journals
First citationDriss, A., Jouini, T., Durif, A. & Averbuch-Pouchot, M.-T. (1988). Acta Cryst. C44, 1507–1510.  CrossRef CAS IUCr Journals
First citationDriss, A., Jouini, T. & Omezzine, M. (1988). Acta Cryst. C44, 788–791.  CrossRef CAS Web of Science IUCr Journals
First citationDung, N.-H. & Tahar, J. (1978). Acta Cryst. B34, 3727–3729.  CrossRef IUCr Journals
First citationFehér, F. & Morgenstern, G. (1937). Z. Anorg. Allg. Chem. 232, 169–178.
First citationFerraris, G., Jones, D. W. & Sowden, J. M. (1974). Atti R. Accad. Sci. Torino, Cl. Sci. Fis., Mat. Nat. 108, 507–527.
First citationFerraris, G., Jones, D. W. & Yerkess, J. (1971). Acta Cryst. B27, 354–359.  CrossRef IUCr Journals
First citationFlor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653–664.  Web of Science CrossRef IUCr Journals
First citationGuesmi, A., Nespolo, M. & Driss, A. (2006). J. Solid State Chem. 179, 2466–2471.  Web of Science CrossRef CAS
First citationHaas, H. & Jansen, M. (2001). Z. Anorg. Allg. Chem. 627, 1013–1016.  CrossRef CAS
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals
First citationLeung, K. Y. & Calvo, C. (1973). Can. J. Chem. 51, 2082–2088.  CrossRef CAS Web of Science
First citationLiebau, F. (1956). Acta Cryst. 9, 811–817.  CrossRef IUCr Journals Web of Science
First citationLoye, K. D. zur, Latshaw, A. M., Smith, M. D., Chance, W. M. & zur Loye, H. C. (2015). J. Chem. Crystallogr. 45, 20–25.
First citationSchwendtner, K. & Kolitsch, U. (2007). Acta Cryst. B63, 205–215.  CrossRef IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationTillmanns, E. & Baur, W. H. (1971). Acta Cryst. B27, 2124–2132.  CrossRef IUCr Journals
First citationWeil, M. (2000). Z. Naturforsch. Teil B, 55, 699–706.  CAS
First citationWeil, M. (2016). Cryst. Growth Des. 16, 908–921.  CSD CrossRef CAS
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds