research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and DFT study of (E)-2,6-di-tert-butyl-4-{[2-(pyridin-2-yl)hydrazin-1-yl­­idene)meth­yl}phenol

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36 Al-Khod 123, Muscat, Sultanate of , Oman, bSpraying Systems Company Turkey, Esentepe Mah. Kore Şehitleri Cad. Kaya Aldoğan Sok., Serhan apt. No:3 Daire:3 Şişli / İstanbul, Turkey, cOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, Atakum 55139 Samsun, Turkey, and dDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: maria_malysheva@mail.univ.kiev.ua

Edited by P. C. Healy, Griffith University, Australia (Received 23 July 2017; accepted 9 August 2017; online 12 September 2017)

The title compound, C20H27N3O, was synthesized by condensation reaction of 3,5-di-tert-butyl-4-hy­droxy­benzaldehyde and 2-hydrazinyl­pyridine, and crystallizes in the centrosymmetric monoclinic space group C2/c. The conformation about the C=N bond is E. The dihedral angle between the rings is 18.1 (3)°. An inter­molecular N—H⋯N hydrogen bond generates an R22(8) ring motif. In the crystal, N—H⋯N hydrogen bonds connect pairs of mol­ecules, forming dimers. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state.

1. Chemical context

Sterically hindered phenol anti-oxidants are widely used in polymers and lubricants. They can protect polymers by increasing both their process stability and their long-term stability against oxidative degradation (Yamazaki & Seguchi, 1997[Yamazaki, T. & Seguchi, T. (1997). J. Polym. Sci. A Polym. Chem. 35, 2431-2439.]; Silin et al., 1999[Silin, M. A., Kelaren, V. I., Abu-Ammar, V., Putkaradze, D. Kh. & Golubeva, I. A. (1999). Pet. Chem. 40, 209-214.]). Hydrazones and Schiff bases have attracted much attention for their excellent biological properties, especially for their potential pharmacological and anti­tumor properties (Küçükgüzel et al., 2006[Küçükgüzel, G., Kocatepe, A., De Clercq, E., Şahin, F. & Güllüce, M. (2006). Eur. J. Med. Chem. 41, 353-359.]; Khattab, 2005[Khattab, S. N. (2005). Molecules, 10, 1218-1228.]; Karthikeyan et al., 2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Subrahmanya Bhat, K., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]; Okabe et al., 1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]). Furthermore, 3,5-di-tert-butyl-2-hy­droxy­benzaldehyde-derived Schiff bases shows proton tautomerization, which plays an important role in many fields of chemistry and biochemistry. The tautomerization in salicylideneanilines has been the subject of particular inter­est because it is closely related to thermochromism and photochromism. While salicylideneanilines are widely used as precursor compounds for the design of various type new metal complexes, they are also convenient model compounds for studying theoretical aspects of coordination chemistry and photochemistry, as well as for designing mol­ecular architectures by means of mol­ecular motifs capable of hydrogen-bond formation. The present work is a part of an ongoing structural study of Schiff bases and their utilization in the synthesis of quinoxaline derivatives (Faizi et al., 2016a[Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016a). Acta Cryst. E72, 1366-1369.]), fluorescence sensors (Faizi et al., 2016b[Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016b). Sens. Actuators B Chem. 222, 15-20.]) and azo­imine compounds (Faizi et al., 2015[Faizi, M. S. H. & Prisyazhnaya, E. V. (2015). Acta Cryst. E71, m175-m176.], 2017[Faizi, M. S. H., Dege, N., Haque, A., Kalibabchuk, V. A. & Cemberci, M. (2017). Acta Cryst. E73, 96-98.]). We report herein on the synthesis and crystal structure and DFT computational calculation of the new title Schiff base compound with a sterically hindered phenol, (I)[link]. The results of calculations by density functional theory (DFT) on (I)[link] carried out at the B3LYP/6-311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link], shown in Fig. 1[link], is not planar, with the dihedral angle between the pyridyl and tert-butyl substituted benzene rings being 18.19 (3)°. The N—N and N—C bond lengths are of 1.396 (7) and 1.253 (7) Å, respectively, indicate single- and double-bond character for these bonds. The C1—O1 bond length of 1.370 (6) Å indicates single-bond character. The conformation about the C15=N1 bond is E with an N2—N1—C15—C4 torsion angle of 177.9 (5)°. Bond distances for (I)[link] are comparable to those found in closely related structures (Fun et al., 2013[Fun, H.-K., Chantrapromma, S., Nilwanna, B., Kobkeatthawin, T. & Boonnak, N. (2013). Acta Cryst. E69, o1203-o1204.]). It appears that the hy­droxy group is prevented from forming a hydrogen bond because of steric hindrance by the tert-butyl groups.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are connected by pairs of N—H⋯N hydrogen bonds (Fig. 2[link], Table 1[link]), forming dimers with graph set R22 (8). In addition, weak C—H⋯O hydrogen bonds and C—H⋯π interactions connect the dimers, forming chains along [100] (Fig. 3[link]). There are no other significant inter­molecular contacts present.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N3i 0.86 2.23 3.062 (8) 162
Symmetry code: (i) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
Mol­ecules of the title compound forming a dimer through N—H⋯N hydrogen bonds, generating an R22(8) ring motif.
[Figure 3]
Figure 3
Part of the structure exhibiting weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions (shown as dashed lines) along a axis.

4. DFT study

The DFT quantum-chemical calculations were performed at the B3LYP/6-311 G(d,p) level (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN09 (Frisch et al., 2009[Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). DFT structure optimization of (I)[link] was performed starting from the X-ray geometry and the values compared with experimental values (see Table 2[link]). From these results we can conclude that basis set 6-311 G(d,p) is well suited in its approach to the experimental data.

Table 2
Comparison of selected observed (X-ray data) and calculated (DFT) geometric parameters (Å, °)

Parameter X-ray B3LYP/6–311G(d,p)
O1—C1 1.370 (6) 1.370
C15—N1 1.253 (7) 1.252
N3—C20 1.386 (8) 1.386
N1—N2 1.396 (7) 1.395
N3—C16 1.292 (8) 1.292
C16—N2—N1 122.6 (6) 122.7
C15—N1—N2 118.8 (6) 118.9
N1—C15—C4 121.9 (6) 121.9
N2—N1—C15—C4 177.9 (5) 177.8

The DFT study of (I)[link] shows that the HOMO and LUMO are localized in the plane extending from the whole pyridine ring to the phenol ring. The electron distribution of the HOMO-1, HOMO, LUMO and the LUMO+1 energy levels are shown in Fig. 4[link]. The HOMO mol­ecular orbital exhibits both σ and π character, whereas HOMO-1 is dominated by π-orbital density. The LUMO is mainly composed of σ-density while LUMO+1 has both σ and π electronic density. The HOMO–LUMO gap was found to be 0.1562 a.u. and the frontier mol­ecular orbital energies, EHOMO and ELUMO are −0.201 and −0.045 a.u., respectively.

[Figure 4]
Figure 4
Electron distribution of the HOMO-1, HOMO, LUMO and LUMO+1 energy levels for the title compound.

5. Database survey

There are very few examples of similar compounds in the literature. To the best of our knowledge, the similar compound synthesized by (Cuadro et al., 1998[Cuadro, A. M., Valenciano, J., Vaquero, J. J., Alvarez-Builla, J., Sunkel, C., de Casa-Juana, M. F. & Ortega, M. P. (1998). Bioorg. Med. Chem. 6, 173-180.]) for biological evaluation of 5-lipoxygenase inhibitors has not been structurally characterized. Two very similar compounds have been reported, one synthesized from 2-hydrazinyl­pyridine and 4-tert-butyl-2,6-di­formyl­phenol (Li et al., 2013[Li, K., Wang, X. & Tong, A. (2013). Anal. Chim. Acta, 776, 69-73.]) as a fluorescent chemosensor for ZnII and applications in live cell imaging. The other compound is the Schiff base 2,4-di-tert-butyl-6-{[2-(pyridin-2-yl)hydrazono]meth­yl}phenol used for stabilization of oxidovanadium(IV) (Kundu et al., 2013[Kundu, S., Maity, S., Maity, A. N., Ke, S.-C. & Ghosh, P. (2013). Dalton Trans. 42, 4586-4601.]).A search of the Cambridge Structural Database (CSD, Version 5.37, update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) shows that these compounds have not been characterized by X-ray diffraction.

6. Synthesis and crystallization

A mixture of 3,5-di-tert-butyl-4-hy­droxy­benzaldehyde 0.100 g (0.427 mmol) and 2-hydrazinyl­pyridine 0.046 g (0.427 mmol) in methanol was refluxed for 3 h in the presence of a catalytic amount of glacial acetic acid. After cooling, the red-coloured precipitate was washed with hot methanol several times, and then dried, giving a red-coloured shiny crystalline compound in 86% yield (0.120 g). Red block-like crystals of the title compound were obtained by slow evaporation of a solution in di­chloro­methane and ethanol (5:1 v/v).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All C-bound hydrogen atoms were included in calculated positions with C—H = 0.93 (aromatic) or 0.96 Å (methyl­ene) and allowed to ride, with Uiso(H) = 1.2Ueq(C). The N-bound H atom was located in a difference-Fourier map but was also allowed to ride in the refinement with N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N).

Table 3
Experimental details

Crystal data
Chemical formula C20H27N3O
Mr 325.44
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 29.5091 (15), 6.2270 (4), 20.2703 (10)
β (°) 91.130 (4)
V3) 3724.0 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.33 × 0.24 × 0.08
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.978, 0.994
No. of measured, independent and observed [I > 2σ(I)] reflections 17357, 3468, 1430
Rint 0.097
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.101, 0.321, 0.96
No. of reflections 3468
No. of parameters 222
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.95, −0.34
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT (Sheldrick 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

(E)-2,6-Di-tert-butyl-4-{[2-(pyridin-2-yl)hydrazin-1-ylidene)methyl}phenol top
Crystal data top
C20H27N3OF(000) = 1408
Mr = 325.44Dx = 1.161 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 29.5091 (15) ÅCell parameters from 10906 reflections
b = 6.2270 (4) Åθ = 1.4–26.8°
c = 20.2703 (10) ŵ = 0.07 mm1
β = 91.130 (4)°T = 296 K
V = 3724.0 (4) Å3Stick, red
Z = 80.33 × 0.24 × 0.08 mm
Data collection top
Stoe IPDS 2
diffractometer
3468 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1430 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.097
Detector resolution: 6.67 pixels mm-1θmax = 25.5°, θmin = 1.4°
rotation method scansh = 3535
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 77
Tmin = 0.978, Tmax = 0.994l = 2424
17357 measured reflections
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.101H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.321 w = 1/[σ2(Fo2) + (0.1794P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
3468 reflectionsΔρmax = 0.95 e Å3
222 parametersΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44818 (13)0.9043 (6)0.53805 (18)0.0870 (13)
C60.40894 (16)0.6560 (8)0.4671 (2)0.0602 (12)
C10.41473 (17)0.7532 (8)0.5303 (2)0.0643 (13)
N30.25835 (18)0.3445 (11)0.4118 (3)0.0956 (15)
C50.37623 (17)0.4983 (8)0.4620 (2)0.0653 (13)
H50.3716690.4306880.4215320.078*
C20.38832 (17)0.6977 (7)0.5845 (2)0.0616 (13)
C70.43754 (17)0.7232 (8)0.4082 (2)0.0652 (13)
C40.34989 (16)0.4362 (8)0.5145 (2)0.0630 (13)
C30.35632 (17)0.5396 (8)0.5744 (2)0.0682 (13)
H30.3381800.5004520.6094050.082*
C110.39633 (18)0.8015 (8)0.6539 (2)0.0692 (14)
C160.2803 (2)0.1665 (11)0.4050 (3)0.0854 (18)
C150.31797 (19)0.2599 (9)0.5093 (3)0.0753 (15)
H150.2996040.2295780.5449030.090*
N10.31443 (18)0.1472 (10)0.4583 (3)0.1040 (17)
C90.48786 (17)0.6685 (9)0.4218 (3)0.0788 (15)
H9A0.4982400.7417620.4609850.118*
H9B0.4910830.5163770.4279340.118*
H9C0.5055620.7134630.3850900.118*
C140.3634 (2)0.7150 (10)0.7038 (3)0.0892 (18)
H14A0.3671400.5623440.7076710.134*
H14B0.3693990.7810380.7459070.134*
H14C0.3329750.7468990.6895370.134*
C80.4238 (2)0.6008 (10)0.3455 (2)0.0842 (17)
H8A0.4423610.6468290.3097540.126*
H8B0.4279520.4496080.3525920.126*
H8C0.3925680.6292830.3347770.126*
C100.4322 (2)0.9641 (8)0.3928 (3)0.0794 (15)
H10A0.4405391.0466800.4311290.119*
H10B0.4515191.0020480.3570280.119*
H10C0.4012510.9938700.3805230.119*
N20.2841 (2)0.0247 (10)0.4575 (3)0.1095 (18)
H20.2670220.0433310.4909690.131*
C130.3886 (2)1.0443 (9)0.6502 (3)0.0920 (19)
H13A0.4088891.1060440.6189800.138*
H13B0.3578761.0725810.6365570.138*
H13C0.3943001.1067190.6929270.138*
C200.2570 (2)0.4838 (11)0.3587 (4)0.0966 (19)
H200.2416370.6132490.3627030.116*
C170.3004 (2)0.1115 (11)0.3471 (4)0.0971 (19)
H170.3148850.0203920.3433050.117*
C120.4451 (2)0.7483 (11)0.6794 (3)0.0922 (18)
H12A0.4503370.8163450.7213700.138*
H12B0.4667070.7999960.6484340.138*
H12C0.4482680.5956310.6842310.138*
C190.2775 (2)0.4384 (12)0.3005 (3)0.0912 (18)
H190.2765200.5350370.2655450.109*
C180.2992 (2)0.2481 (13)0.2956 (3)0.098 (2)
H180.3132820.2114890.2565420.117*
H10.4585 (7)0.975 (3)0.5674 (9)0.22 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.101 (3)0.082 (3)0.078 (2)0.042 (2)0.008 (2)0.013 (2)
C60.065 (3)0.054 (3)0.061 (3)0.006 (2)0.005 (2)0.002 (2)
C10.074 (3)0.056 (3)0.063 (3)0.012 (3)0.006 (2)0.005 (2)
N30.086 (3)0.110 (4)0.091 (3)0.011 (3)0.016 (3)0.009 (3)
C50.080 (3)0.057 (3)0.058 (3)0.008 (3)0.001 (2)0.002 (2)
C20.073 (3)0.049 (3)0.063 (3)0.001 (2)0.003 (2)0.002 (2)
C70.074 (3)0.061 (3)0.061 (3)0.009 (2)0.011 (2)0.001 (2)
C40.066 (3)0.054 (3)0.069 (3)0.006 (2)0.004 (2)0.003 (2)
C30.069 (3)0.064 (3)0.072 (3)0.008 (3)0.009 (2)0.007 (3)
C110.083 (3)0.064 (3)0.062 (3)0.002 (3)0.006 (3)0.002 (2)
C160.094 (4)0.074 (4)0.087 (4)0.003 (4)0.014 (4)0.012 (4)
C150.084 (4)0.070 (3)0.071 (3)0.014 (3)0.003 (3)0.014 (3)
N10.096 (4)0.099 (4)0.116 (4)0.026 (3)0.007 (3)0.020 (3)
C90.075 (3)0.079 (4)0.082 (3)0.002 (3)0.013 (3)0.002 (3)
C140.109 (4)0.096 (4)0.064 (3)0.011 (4)0.025 (3)0.004 (3)
C80.101 (4)0.089 (4)0.062 (3)0.016 (3)0.000 (3)0.006 (3)
C100.089 (4)0.066 (3)0.083 (3)0.006 (3)0.010 (3)0.015 (3)
N20.115 (4)0.109 (4)0.105 (4)0.034 (4)0.020 (3)0.002 (3)
C130.130 (5)0.062 (4)0.084 (4)0.003 (3)0.015 (4)0.011 (3)
C200.087 (4)0.089 (5)0.114 (5)0.017 (4)0.009 (4)0.006 (4)
C170.096 (5)0.089 (5)0.106 (5)0.009 (4)0.003 (4)0.010 (4)
C120.094 (4)0.111 (5)0.071 (3)0.007 (4)0.005 (3)0.006 (3)
C190.083 (4)0.106 (5)0.085 (4)0.014 (4)0.013 (3)0.022 (4)
C180.087 (4)0.127 (6)0.081 (4)0.013 (4)0.007 (3)0.002 (4)
Geometric parameters (Å, º) top
O1—C11.370 (6)C9—H9A0.9600
O1—H10.794 (15)C9—H9B0.9600
C6—C51.379 (6)C9—H9C0.9600
C6—C11.423 (6)C14—H14A0.9600
C6—C71.534 (7)C14—H14B0.9600
C1—C21.403 (7)C14—H14C0.9600
N3—C161.292 (8)C8—H8A0.9600
N3—C201.383 (8)C8—H8B0.9600
C5—C41.385 (7)C8—H8C0.9600
C5—H50.9300C10—H10A0.9600
C2—C31.377 (7)C10—H10B0.9600
C2—C111.561 (7)C10—H10C0.9600
C7—C81.530 (7)N2—H20.8600
C7—C101.540 (7)C13—H13A0.9600
C7—C91.543 (7)C13—H13B0.9600
C4—C31.384 (7)C13—H13C0.9600
C4—C151.449 (7)C20—C191.364 (9)
C3—H30.9300C20—H200.9300
C11—C141.515 (7)C17—C181.347 (9)
C11—C131.531 (7)C17—H170.9300
C11—C121.555 (7)C12—H12A0.9600
C16—C171.369 (9)C12—H12B0.9600
C16—N21.386 (8)C12—H12C0.9600
C15—N11.253 (7)C19—C181.351 (9)
C15—H150.9300C19—H190.9300
N1—N21.396 (7)C18—H180.9300
C1—O1—H1136.7 (16)C11—C14—H14A109.5
C5—C6—C1116.2 (4)C11—C14—H14B109.5
C5—C6—C7122.0 (4)H14A—C14—H14B109.5
C1—C6—C7121.7 (4)C11—C14—H14C109.5
O1—C1—C2119.3 (4)H14A—C14—H14C109.5
O1—C1—C6117.9 (4)H14B—C14—H14C109.5
C2—C1—C6122.8 (4)C7—C8—H8A109.5
C16—N3—C20117.4 (5)C7—C8—H8B109.5
C6—C5—C4122.9 (4)H8A—C8—H8B109.5
C6—C5—H5118.5C7—C8—H8C109.5
C4—C5—H5118.5H8A—C8—H8C109.5
C3—C2—C1116.7 (4)H8B—C8—H8C109.5
C3—C2—C11121.5 (5)C7—C10—H10A109.5
C1—C2—C11121.8 (4)C7—C10—H10B109.5
C8—C7—C6111.8 (4)H10A—C10—H10B109.5
C8—C7—C10107.0 (4)C7—C10—H10C109.5
C6—C7—C10111.6 (4)H10A—C10—H10C109.5
C8—C7—C9106.1 (4)H10B—C10—H10C109.5
C6—C7—C9110.0 (4)C16—N2—N1122.6 (6)
C10—C7—C9110.2 (4)C16—N2—H2118.7
C3—C4—C5118.3 (4)N1—N2—H2118.7
C3—C4—C15119.6 (5)C11—C13—H13A109.5
C5—C4—C15122.0 (5)C11—C13—H13B109.5
C2—C3—C4123.1 (5)H13A—C13—H13B109.5
C2—C3—H3118.5C11—C13—H13C109.5
C4—C3—H3118.5H13A—C13—H13C109.5
C14—C11—C13106.7 (5)H13B—C13—H13C109.5
C14—C11—C12107.6 (4)C19—C20—N3122.5 (6)
C13—C11—C12111.2 (5)C19—C20—H20118.7
C14—C11—C2111.5 (4)N3—C20—H20118.7
C13—C11—C2110.3 (4)C18—C17—C16120.1 (7)
C12—C11—C2109.5 (4)C18—C17—H17120.0
N3—C16—C17122.2 (6)C16—C17—H17120.0
N3—C16—N2119.8 (7)C11—C12—H12A109.5
C17—C16—N2118.0 (6)C11—C12—H12B109.5
N1—C15—C4121.9 (6)H12A—C12—H12B109.5
N1—C15—H15119.1C11—C12—H12C109.5
C4—C15—H15119.1H12A—C12—H12C109.5
C15—N1—N2118.8 (6)H12B—C12—H12C109.5
C7—C9—H9A109.5C18—C19—C20117.6 (6)
C7—C9—H9B109.5C18—C19—H19121.2
H9A—C9—H9B109.5C20—C19—H19121.2
C7—C9—H9C109.5C17—C18—C19120.1 (6)
H9A—C9—H9C109.5C17—C18—H18119.9
H9B—C9—H9C109.5C19—C18—H18119.9
C5—C6—C1—O1177.4 (4)C15—C4—C3—C2175.1 (5)
C7—C6—C1—O12.6 (7)C3—C2—C11—C143.1 (7)
C5—C6—C1—C21.4 (7)C1—C2—C11—C14179.9 (5)
C7—C6—C1—C2178.6 (5)C3—C2—C11—C13121.5 (5)
C1—C6—C5—C40.4 (7)C1—C2—C11—C1361.6 (6)
C7—C6—C5—C4179.6 (5)C3—C2—C11—C12115.8 (6)
O1—C1—C2—C3177.8 (4)C1—C2—C11—C1261.1 (6)
C6—C1—C2—C31.0 (7)C20—N3—C16—C172.1 (9)
O1—C1—C2—C110.7 (7)C20—N3—C16—N2177.6 (6)
C6—C1—C2—C11178.1 (4)C3—C4—C15—N1172.4 (6)
C5—C6—C7—C81.9 (7)C5—C4—C15—N14.0 (8)
C1—C6—C7—C8178.1 (5)C4—C15—N1—N2177.9 (5)
C5—C6—C7—C10121.7 (5)N3—C16—N2—N1166.7 (6)
C1—C6—C7—C1058.3 (6)C17—C16—N2—N113.1 (9)
C5—C6—C7—C9115.6 (5)C15—N1—N2—C16175.4 (6)
C1—C6—C7—C964.4 (6)C16—N3—C20—C190.5 (9)
C6—C5—C4—C31.0 (7)N3—C16—C17—C182.5 (10)
C6—C5—C4—C15175.5 (5)N2—C16—C17—C18177.3 (6)
C1—C2—C3—C40.5 (7)N3—C20—C19—C180.8 (10)
C11—C2—C3—C4176.6 (5)C16—C17—C18—C191.1 (10)
C5—C4—C3—C21.5 (8)C20—C19—C18—C170.5 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N3i0.862.233.062 (8)162
Symmetry code: (i) x+1/2, y1/2, z+1.
Comparison of selected observed (X-ray data) and calculated (DFT) geometric parameters (Å, °) top
ParameterX-rayB3LYP/6-311G(d,p)
O1—C11.370 (6)1.370
C15—N11.253 (7)1.252
N3—C201.386 (8)1.386
N1—N21.396 (7)1.395
N3—C161.292 (8)1.292
C16—N2—N1122.6 (6)122.67
C15—N1—N2118.8 (6)118.85
N1—C15—C4121.9 (6)121.88
 

Acknowledgements

The authors are grateful to the National Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine, for financial support, and to Dr Musheer Ahmad and Dr Graham Smith for helpful discussions.

References

First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science
First citationCuadro, A. M., Valenciano, J., Vaquero, J. J., Alvarez-Builla, J., Sunkel, C., de Casa-Juana, M. F. & Ortega, M. P. (1998). Bioorg. Med. Chem. 6, 173–180.  Web of Science CrossRef CAS PubMed
First citationFaizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016a). Acta Cryst. E72, 1366–1369.  Web of Science CSD CrossRef IUCr Journals
First citationFaizi, M. S. H., Dege, N., Haque, A., Kalibabchuk, V. A. & Cemberci, M. (2017). Acta Cryst. E73, 96–98.  Web of Science CSD CrossRef IUCr Journals
First citationFaizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016b). Sens. Actuators B Chem. 222, 15–20.  Web of Science CrossRef CAS
First citationFaizi, M. S. H. & Prisyazhnaya, E. V. (2015). Acta Cryst. E71, m175–m176.  Web of Science CSD CrossRef IUCr Journals
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationFrisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.
First citationFun, H.-K., Chantrapromma, S., Nilwanna, B., Kobkeatthawin, T. & Boonnak, N. (2013). Acta Cryst. E69, o1203–o1204.  CSD CrossRef CAS IUCr Journals
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Subrahmanya Bhat, K., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS
First citationKhattab, S. N. (2005). Molecules, 10, 1218–1228.  Web of Science CrossRef PubMed CAS
First citationKüçükgüzel, G., Kocatepe, A., De Clercq, E., Şahin, F. & Güllüce, M. (2006). Eur. J. Med. Chem. 41, 353–359.  Web of Science PubMed
First citationKundu, S., Maity, S., Maity, A. N., Ke, S.-C. & Ghosh, P. (2013). Dalton Trans. 42, 4586–4601.  Web of Science CSD CrossRef CAS PubMed
First citationLi, K., Wang, X. & Tong, A. (2013). Anal. Chim. Acta, 776, 69–73.  Web of Science CrossRef CAS PubMed
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSilin, M. A., Kelaren, V. I., Abu-Ammar, V., Putkaradze, D. Kh. & Golubeva, I. A. (1999). Pet. Chem. 40, 209–214.
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
First citationYamazaki, T. & Seguchi, T. (1997). J. Polym. Sci. A Polym. Chem. 35, 2431–2439.  CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds