research communications
E)-2,6-di-tert-butyl-4-{[2-(pyridin-2-yl)hydrazin-1-ylidene)methyl}phenol
and DFT study of (aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36 Al-Khod 123, Muscat, Sultanate of , Oman, bSpraying Systems Company Turkey, Esentepe Mah. Kore Şehitleri Cad. Kaya Aldoğan Sok., Serhan apt. No:3 Daire:3 Şişli / İstanbul, Turkey, cOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, Atakum 55139 Samsun, Turkey, and dDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: maria_malysheva@mail.univ.kiev.ua
The title compound, C20H27N3O, was synthesized by condensation reaction of 3,5-di-tert-butyl-4-hydroxybenzaldehyde and 2-hydrazinylpyridine, and crystallizes in the centrosymmetric monoclinic C2/c. The conformation about the C=N bond is E. The dihedral angle between the rings is 18.1 (3)°. An intermolecular N—H⋯N hydrogen bond generates an R22(8) ring motif. In the crystal, N—H⋯N hydrogen bonds connect pairs of molecules, forming dimers. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state.
Keywords: crystal structure; hydrazine; 2- hydrazinopyridine; 3,5-di-tert-butyl-4-hydroxybenzaldehyde; hydrogen bonding; Schiff base.
CCDC reference: 1567740
1. Chemical context
Sterically hindered phenol anti-oxidants are widely used in polymers and lubricants. They can protect polymers by increasing both their process stability and their long-term stability against oxidative degradation (Yamazaki & Seguchi, 1997; Silin et al., 1999). and have attracted much attention for their excellent biological properties, especially for their potential pharmacological and antitumor properties (Küçükgüzel et al., 2006; Khattab, 2005; Karthikeyan et al., 2006; Okabe et al., 1993). Furthermore, 3,5-di-tert-butyl-2-hydroxybenzaldehyde-derived shows proton which plays an important role in many fields of chemistry and biochemistry. The in salicylideneanilines has been the subject of particular interest because it is closely related to thermochromism and While salicylideneanilines are widely used as precursor compounds for the design of various type new metal complexes, they are also convenient model compounds for studying theoretical aspects of coordination chemistry and as well as for designing molecular architectures by means of molecular motifs capable of hydrogen-bond formation. The present work is a part of an ongoing structural study of and their utilization in the synthesis of quinoxaline derivatives (Faizi et al., 2016a), fluorescence sensors (Faizi et al., 2016b) and azoimine compounds (Faizi et al., 2015, 2017). We report herein on the synthesis and and DFT computational calculation of the new title Schiff base compound with a sterically hindered phenol, (I). The results of calculations by density functional theory (DFT) on (I) carried out at the B3LYP/6-311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state.
2. Structural commentary
The molecular structure of (I), shown in Fig. 1, is not planar, with the dihedral angle between the pyridyl and tert-butyl substituted benzene rings being 18.19 (3)°. The N—N and N—C bond lengths are of 1.396 (7) and 1.253 (7) Å, respectively, indicate single- and double-bond character for these bonds. The C1—O1 bond length of 1.370 (6) Å indicates single-bond character. The conformation about the C15=N1 bond is E with an N2—N1—C15—C4 torsion angle of 177.9 (5)°. Bond distances for (I) are comparable to those found in closely related structures (Fun et al., 2013). It appears that the hydroxy group is prevented from forming a hydrogen bond because of by the tert-butyl groups.
3. Supramolecular features
In the crystal, molecules are connected by pairs of N—H⋯N hydrogen bonds (Fig. 2, Table 1), forming dimers with graph set R22 (8). In addition, weak C—H⋯O hydrogen bonds and C—H⋯π interactions connect the dimers, forming chains along [100] (Fig. 3). There are no other significant intermolecular contacts present.
4. DFT study
The DFT quantum-chemical calculations were performed at the B3LYP/6-311 G(d,p) level (Becke, 1993) as implemented in GAUSSIAN09 (Frisch et al., 2009). DFT structure optimization of (I) was performed starting from the X-ray geometry and the values compared with experimental values (see Table 2). From these results we can conclude that basis set 6-311 G(d,p) is well suited in its approach to the experimental data.
|
The DFT study of (I) shows that the HOMO and LUMO are localized in the plane extending from the whole pyridine ring to the phenol ring. The electron distribution of the HOMO-1, HOMO, LUMO and the LUMO+1 energy levels are shown in Fig. 4. The HOMO molecular orbital exhibits both σ and π character, whereas HOMO-1 is dominated by π-orbital density. The LUMO is mainly composed of σ-density while LUMO+1 has both σ and π electronic density. The HOMO–LUMO gap was found to be 0.1562 a.u. and the frontier molecular orbital energies, EHOMO and ELUMO are −0.201 and −0.045 a.u., respectively.
5. Database survey
There are very few examples of similar compounds in the literature. To the best of our knowledge, the similar compound synthesized by (Cuadro et al., 1998) for biological evaluation of 5-lipoxygenase inhibitors has not been structurally characterized. Two very similar compounds have been reported, one synthesized from 2-hydrazinylpyridine and 4-tert-butyl-2,6-diformylphenol (Li et al., 2013) as a fluorescent chemosensor for ZnII and applications in live cell imaging. The other compound is the Schiff base 2,4-di-tert-butyl-6-{[2-(pyridin-2-yl)hydrazono]methyl}phenol used for stabilization of oxidovanadium(IV) (Kundu et al., 2013).A search of the Cambridge Structural Database (CSD, Version 5.37, update May 2016; Groom et al., 2016) shows that these compounds have not been characterized by X-ray diffraction.
6. Synthesis and crystallization
A mixture of 3,5-di-tert-butyl-4-hydroxybenzaldehyde 0.100 g (0.427 mmol) and 2-hydrazinylpyridine 0.046 g (0.427 mmol) in methanol was refluxed for 3 h in the presence of a catalytic amount of glacial acetic acid. After cooling, the red-coloured precipitate was washed with hot methanol several times, and then dried, giving a red-coloured shiny crystalline compound in 86% yield (0.120 g). Red block-like crystals of the title compound were obtained by slow evaporation of a solution in dichloromethane and ethanol (5:1 v/v).
7. Refinement
Crystal data, data collection and structure . All C-bound hydrogen atoms were included in calculated positions with C—H = 0.93 (aromatic) or 0.96 Å (methylene) and allowed to ride, with Uiso(H) = 1.2Ueq(C). The N-bound H atom was located in a difference-Fourier map but was also allowed to ride in the with N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N).
details are summarized in Table 3Supporting information
CCDC reference: 1567740
https://doi.org/10.1107/S2056989017011707/hg5492sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017011707/hg5492Isup2.hkl
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT (Sheldrick 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).C20H27N3O | F(000) = 1408 |
Mr = 325.44 | Dx = 1.161 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 29.5091 (15) Å | Cell parameters from 10906 reflections |
b = 6.2270 (4) Å | θ = 1.4–26.8° |
c = 20.2703 (10) Å | µ = 0.07 mm−1 |
β = 91.130 (4)° | T = 296 K |
V = 3724.0 (4) Å3 | Stick, red |
Z = 8 | 0.33 × 0.24 × 0.08 mm |
Stoe IPDS 2 diffractometer | 3468 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 1430 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.097 |
Detector resolution: 6.67 pixels mm-1 | θmax = 25.5°, θmin = 1.4° |
rotation method scans | h = −35→35 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −7→7 |
Tmin = 0.978, Tmax = 0.994 | l = −24→24 |
17357 measured reflections |
Refinement on F2 | 4 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.101 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.321 | w = 1/[σ2(Fo2) + (0.1794P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.96 | (Δ/σ)max < 0.001 |
3468 reflections | Δρmax = 0.95 e Å−3 |
222 parameters | Δρmin = −0.34 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.44818 (13) | 0.9043 (6) | 0.53805 (18) | 0.0870 (13) | |
C6 | 0.40894 (16) | 0.6560 (8) | 0.4671 (2) | 0.0602 (12) | |
C1 | 0.41473 (17) | 0.7532 (8) | 0.5303 (2) | 0.0643 (13) | |
N3 | 0.25835 (18) | −0.3445 (11) | 0.4118 (3) | 0.0956 (15) | |
C5 | 0.37623 (17) | 0.4983 (8) | 0.4620 (2) | 0.0653 (13) | |
H5 | 0.371669 | 0.430688 | 0.421532 | 0.078* | |
C2 | 0.38832 (17) | 0.6977 (7) | 0.5845 (2) | 0.0616 (13) | |
C7 | 0.43754 (17) | 0.7232 (8) | 0.4082 (2) | 0.0652 (13) | |
C4 | 0.34989 (16) | 0.4362 (8) | 0.5145 (2) | 0.0630 (13) | |
C3 | 0.35632 (17) | 0.5396 (8) | 0.5744 (2) | 0.0682 (13) | |
H3 | 0.338180 | 0.500452 | 0.609405 | 0.082* | |
C11 | 0.39633 (18) | 0.8015 (8) | 0.6539 (2) | 0.0692 (14) | |
C16 | 0.2803 (2) | −0.1665 (11) | 0.4050 (3) | 0.0854 (18) | |
C15 | 0.31797 (19) | 0.2599 (9) | 0.5093 (3) | 0.0753 (15) | |
H15 | 0.299604 | 0.229578 | 0.544903 | 0.090* | |
N1 | 0.31443 (18) | 0.1472 (10) | 0.4583 (3) | 0.1040 (17) | |
C9 | 0.48786 (17) | 0.6685 (9) | 0.4218 (3) | 0.0788 (15) | |
H9A | 0.498240 | 0.741762 | 0.460985 | 0.118* | |
H9B | 0.491083 | 0.516377 | 0.427934 | 0.118* | |
H9C | 0.505562 | 0.713463 | 0.385090 | 0.118* | |
C14 | 0.3634 (2) | 0.7150 (10) | 0.7038 (3) | 0.0892 (18) | |
H14A | 0.367140 | 0.562344 | 0.707671 | 0.134* | |
H14B | 0.369399 | 0.781038 | 0.745907 | 0.134* | |
H14C | 0.332975 | 0.746899 | 0.689537 | 0.134* | |
C8 | 0.4238 (2) | 0.6008 (10) | 0.3455 (2) | 0.0842 (17) | |
H8A | 0.442361 | 0.646829 | 0.309754 | 0.126* | |
H8B | 0.427952 | 0.449608 | 0.352592 | 0.126* | |
H8C | 0.392568 | 0.629283 | 0.334777 | 0.126* | |
C10 | 0.4322 (2) | 0.9641 (8) | 0.3928 (3) | 0.0794 (15) | |
H10A | 0.440539 | 1.046680 | 0.431129 | 0.119* | |
H10B | 0.451519 | 1.002048 | 0.357028 | 0.119* | |
H10C | 0.401251 | 0.993870 | 0.380523 | 0.119* | |
N2 | 0.2841 (2) | −0.0247 (10) | 0.4575 (3) | 0.1095 (18) | |
H2 | 0.267022 | −0.043331 | 0.490969 | 0.131* | |
C13 | 0.3886 (2) | 1.0443 (9) | 0.6502 (3) | 0.0920 (19) | |
H13A | 0.408889 | 1.106044 | 0.618980 | 0.138* | |
H13B | 0.357876 | 1.072581 | 0.636557 | 0.138* | |
H13C | 0.394300 | 1.106719 | 0.692927 | 0.138* | |
C20 | 0.2570 (2) | −0.4838 (11) | 0.3587 (4) | 0.0966 (19) | |
H20 | 0.241637 | −0.613249 | 0.362703 | 0.116* | |
C17 | 0.3004 (2) | −0.1115 (11) | 0.3471 (4) | 0.0971 (19) | |
H17 | 0.314885 | 0.020392 | 0.343305 | 0.117* | |
C12 | 0.4451 (2) | 0.7483 (11) | 0.6794 (3) | 0.0922 (18) | |
H12A | 0.450337 | 0.816345 | 0.721370 | 0.138* | |
H12B | 0.466707 | 0.799996 | 0.648434 | 0.138* | |
H12C | 0.448268 | 0.595631 | 0.684231 | 0.138* | |
C19 | 0.2775 (2) | −0.4384 (12) | 0.3005 (3) | 0.0912 (18) | |
H19 | 0.276520 | −0.535037 | 0.265545 | 0.109* | |
C18 | 0.2992 (2) | −0.2481 (13) | 0.2956 (3) | 0.098 (2) | |
H18 | 0.313282 | −0.211489 | 0.256542 | 0.117* | |
H1 | 0.4585 (7) | 0.975 (3) | 0.5674 (9) | 0.22 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.101 (3) | 0.082 (3) | 0.078 (2) | −0.042 (2) | 0.008 (2) | −0.013 (2) |
C6 | 0.065 (3) | 0.054 (3) | 0.061 (3) | −0.006 (2) | 0.005 (2) | 0.002 (2) |
C1 | 0.074 (3) | 0.056 (3) | 0.063 (3) | −0.012 (3) | 0.006 (2) | −0.005 (2) |
N3 | 0.086 (3) | 0.110 (4) | 0.091 (3) | 0.011 (3) | 0.016 (3) | 0.009 (3) |
C5 | 0.080 (3) | 0.057 (3) | 0.058 (3) | −0.008 (3) | 0.001 (2) | 0.002 (2) |
C2 | 0.073 (3) | 0.049 (3) | 0.063 (3) | 0.001 (2) | 0.003 (2) | −0.002 (2) |
C7 | 0.074 (3) | 0.061 (3) | 0.061 (3) | −0.009 (2) | 0.011 (2) | 0.001 (2) |
C4 | 0.066 (3) | 0.054 (3) | 0.069 (3) | −0.006 (2) | 0.004 (2) | 0.003 (2) |
C3 | 0.069 (3) | 0.064 (3) | 0.072 (3) | −0.008 (3) | 0.009 (2) | 0.007 (3) |
C11 | 0.083 (3) | 0.064 (3) | 0.062 (3) | −0.002 (3) | 0.006 (3) | −0.002 (2) |
C16 | 0.094 (4) | 0.074 (4) | 0.087 (4) | 0.003 (4) | −0.014 (4) | −0.012 (4) |
C15 | 0.084 (4) | 0.070 (3) | 0.071 (3) | −0.014 (3) | −0.003 (3) | −0.014 (3) |
N1 | 0.096 (4) | 0.099 (4) | 0.116 (4) | −0.026 (3) | 0.007 (3) | 0.020 (3) |
C9 | 0.075 (3) | 0.079 (4) | 0.082 (3) | −0.002 (3) | 0.013 (3) | −0.002 (3) |
C14 | 0.109 (4) | 0.096 (4) | 0.064 (3) | 0.011 (4) | 0.025 (3) | 0.004 (3) |
C8 | 0.101 (4) | 0.089 (4) | 0.062 (3) | −0.016 (3) | 0.000 (3) | −0.006 (3) |
C10 | 0.089 (4) | 0.066 (3) | 0.083 (3) | −0.006 (3) | 0.010 (3) | 0.015 (3) |
N2 | 0.115 (4) | 0.109 (4) | 0.105 (4) | −0.034 (4) | 0.020 (3) | −0.002 (3) |
C13 | 0.130 (5) | 0.062 (4) | 0.084 (4) | 0.003 (3) | 0.015 (4) | −0.011 (3) |
C20 | 0.087 (4) | 0.089 (5) | 0.114 (5) | −0.017 (4) | 0.009 (4) | 0.006 (4) |
C17 | 0.096 (5) | 0.089 (5) | 0.106 (5) | −0.009 (4) | −0.003 (4) | 0.010 (4) |
C12 | 0.094 (4) | 0.111 (5) | 0.071 (3) | 0.007 (4) | −0.005 (3) | −0.006 (3) |
C19 | 0.083 (4) | 0.106 (5) | 0.085 (4) | −0.014 (4) | 0.013 (3) | −0.022 (4) |
C18 | 0.087 (4) | 0.127 (6) | 0.081 (4) | −0.013 (4) | 0.007 (3) | −0.002 (4) |
O1—C1 | 1.370 (6) | C9—H9A | 0.9600 |
O1—H1 | 0.794 (15) | C9—H9B | 0.9600 |
C6—C5 | 1.379 (6) | C9—H9C | 0.9600 |
C6—C1 | 1.423 (6) | C14—H14A | 0.9600 |
C6—C7 | 1.534 (7) | C14—H14B | 0.9600 |
C1—C2 | 1.403 (7) | C14—H14C | 0.9600 |
N3—C16 | 1.292 (8) | C8—H8A | 0.9600 |
N3—C20 | 1.383 (8) | C8—H8B | 0.9600 |
C5—C4 | 1.385 (7) | C8—H8C | 0.9600 |
C5—H5 | 0.9300 | C10—H10A | 0.9600 |
C2—C3 | 1.377 (7) | C10—H10B | 0.9600 |
C2—C11 | 1.561 (7) | C10—H10C | 0.9600 |
C7—C8 | 1.530 (7) | N2—H2 | 0.8600 |
C7—C10 | 1.540 (7) | C13—H13A | 0.9600 |
C7—C9 | 1.543 (7) | C13—H13B | 0.9600 |
C4—C3 | 1.384 (7) | C13—H13C | 0.9600 |
C4—C15 | 1.449 (7) | C20—C19 | 1.364 (9) |
C3—H3 | 0.9300 | C20—H20 | 0.9300 |
C11—C14 | 1.515 (7) | C17—C18 | 1.347 (9) |
C11—C13 | 1.531 (7) | C17—H17 | 0.9300 |
C11—C12 | 1.555 (7) | C12—H12A | 0.9600 |
C16—C17 | 1.369 (9) | C12—H12B | 0.9600 |
C16—N2 | 1.386 (8) | C12—H12C | 0.9600 |
C15—N1 | 1.253 (7) | C19—C18 | 1.351 (9) |
C15—H15 | 0.9300 | C19—H19 | 0.9300 |
N1—N2 | 1.396 (7) | C18—H18 | 0.9300 |
C1—O1—H1 | 136.7 (16) | C11—C14—H14A | 109.5 |
C5—C6—C1 | 116.2 (4) | C11—C14—H14B | 109.5 |
C5—C6—C7 | 122.0 (4) | H14A—C14—H14B | 109.5 |
C1—C6—C7 | 121.7 (4) | C11—C14—H14C | 109.5 |
O1—C1—C2 | 119.3 (4) | H14A—C14—H14C | 109.5 |
O1—C1—C6 | 117.9 (4) | H14B—C14—H14C | 109.5 |
C2—C1—C6 | 122.8 (4) | C7—C8—H8A | 109.5 |
C16—N3—C20 | 117.4 (5) | C7—C8—H8B | 109.5 |
C6—C5—C4 | 122.9 (4) | H8A—C8—H8B | 109.5 |
C6—C5—H5 | 118.5 | C7—C8—H8C | 109.5 |
C4—C5—H5 | 118.5 | H8A—C8—H8C | 109.5 |
C3—C2—C1 | 116.7 (4) | H8B—C8—H8C | 109.5 |
C3—C2—C11 | 121.5 (5) | C7—C10—H10A | 109.5 |
C1—C2—C11 | 121.8 (4) | C7—C10—H10B | 109.5 |
C8—C7—C6 | 111.8 (4) | H10A—C10—H10B | 109.5 |
C8—C7—C10 | 107.0 (4) | C7—C10—H10C | 109.5 |
C6—C7—C10 | 111.6 (4) | H10A—C10—H10C | 109.5 |
C8—C7—C9 | 106.1 (4) | H10B—C10—H10C | 109.5 |
C6—C7—C9 | 110.0 (4) | C16—N2—N1 | 122.6 (6) |
C10—C7—C9 | 110.2 (4) | C16—N2—H2 | 118.7 |
C3—C4—C5 | 118.3 (4) | N1—N2—H2 | 118.7 |
C3—C4—C15 | 119.6 (5) | C11—C13—H13A | 109.5 |
C5—C4—C15 | 122.0 (5) | C11—C13—H13B | 109.5 |
C2—C3—C4 | 123.1 (5) | H13A—C13—H13B | 109.5 |
C2—C3—H3 | 118.5 | C11—C13—H13C | 109.5 |
C4—C3—H3 | 118.5 | H13A—C13—H13C | 109.5 |
C14—C11—C13 | 106.7 (5) | H13B—C13—H13C | 109.5 |
C14—C11—C12 | 107.6 (4) | C19—C20—N3 | 122.5 (6) |
C13—C11—C12 | 111.2 (5) | C19—C20—H20 | 118.7 |
C14—C11—C2 | 111.5 (4) | N3—C20—H20 | 118.7 |
C13—C11—C2 | 110.3 (4) | C18—C17—C16 | 120.1 (7) |
C12—C11—C2 | 109.5 (4) | C18—C17—H17 | 120.0 |
N3—C16—C17 | 122.2 (6) | C16—C17—H17 | 120.0 |
N3—C16—N2 | 119.8 (7) | C11—C12—H12A | 109.5 |
C17—C16—N2 | 118.0 (6) | C11—C12—H12B | 109.5 |
N1—C15—C4 | 121.9 (6) | H12A—C12—H12B | 109.5 |
N1—C15—H15 | 119.1 | C11—C12—H12C | 109.5 |
C4—C15—H15 | 119.1 | H12A—C12—H12C | 109.5 |
C15—N1—N2 | 118.8 (6) | H12B—C12—H12C | 109.5 |
C7—C9—H9A | 109.5 | C18—C19—C20 | 117.6 (6) |
C7—C9—H9B | 109.5 | C18—C19—H19 | 121.2 |
H9A—C9—H9B | 109.5 | C20—C19—H19 | 121.2 |
C7—C9—H9C | 109.5 | C17—C18—C19 | 120.1 (6) |
H9A—C9—H9C | 109.5 | C17—C18—H18 | 119.9 |
H9B—C9—H9C | 109.5 | C19—C18—H18 | 119.9 |
C5—C6—C1—O1 | 177.4 (4) | C15—C4—C3—C2 | 175.1 (5) |
C7—C6—C1—O1 | −2.6 (7) | C3—C2—C11—C14 | −3.1 (7) |
C5—C6—C1—C2 | −1.4 (7) | C1—C2—C11—C14 | 179.9 (5) |
C7—C6—C1—C2 | 178.6 (5) | C3—C2—C11—C13 | −121.5 (5) |
C1—C6—C5—C4 | 0.4 (7) | C1—C2—C11—C13 | 61.6 (6) |
C7—C6—C5—C4 | −179.6 (5) | C3—C2—C11—C12 | 115.8 (6) |
O1—C1—C2—C3 | −177.8 (4) | C1—C2—C11—C12 | −61.1 (6) |
C6—C1—C2—C3 | 1.0 (7) | C20—N3—C16—C17 | 2.1 (9) |
O1—C1—C2—C11 | −0.7 (7) | C20—N3—C16—N2 | −177.6 (6) |
C6—C1—C2—C11 | 178.1 (4) | C3—C4—C15—N1 | −172.4 (6) |
C5—C6—C7—C8 | 1.9 (7) | C5—C4—C15—N1 | 4.0 (8) |
C1—C6—C7—C8 | −178.1 (5) | C4—C15—N1—N2 | 177.9 (5) |
C5—C6—C7—C10 | 121.7 (5) | N3—C16—N2—N1 | 166.7 (6) |
C1—C6—C7—C10 | −58.3 (6) | C17—C16—N2—N1 | −13.1 (9) |
C5—C6—C7—C9 | −115.6 (5) | C15—N1—N2—C16 | −175.4 (6) |
C1—C6—C7—C9 | 64.4 (6) | C16—N3—C20—C19 | −0.5 (9) |
C6—C5—C4—C3 | 1.0 (7) | N3—C16—C17—C18 | −2.5 (10) |
C6—C5—C4—C15 | −175.5 (5) | N2—C16—C17—C18 | 177.3 (6) |
C1—C2—C3—C4 | 0.5 (7) | N3—C20—C19—C18 | −0.8 (10) |
C11—C2—C3—C4 | −176.6 (5) | C16—C17—C18—C19 | 1.1 (10) |
C5—C4—C3—C2 | −1.5 (8) | C20—C19—C18—C17 | 0.5 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···N3i | 0.86 | 2.23 | 3.062 (8) | 162 |
Symmetry code: (i) −x+1/2, −y−1/2, −z+1. |
Parameter | X-ray | B3LYP/6-311G(d,p) |
O1—C1 | 1.370 (6) | 1.370 |
C15—N1 | 1.253 (7) | 1.252 |
N3—C20 | 1.386 (8) | 1.386 |
N1—N2 | 1.396 (7) | 1.395 |
N3—C16 | 1.292 (8) | 1.292 |
C16—N2—N1 | 122.6 (6) | 122.67 |
C15—N1—N2 | 118.8 (6) | 118.85 |
N1—C15—C4 | 121.9 (6) | 121.88 |
Acknowledgements
The authors are grateful to the National Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine, for financial support, and to Dr Musheer Ahmad and Dr Graham Smith for helpful discussions.
References
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science
Cuadro, A. M., Valenciano, J., Vaquero, J. J., Alvarez-Builla, J., Sunkel, C., de Casa-Juana, M. F. & Ortega, M. P. (1998). Bioorg. Med. Chem. 6, 173–180. Web of Science CrossRef CAS PubMed
Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016a). Acta Cryst. E72, 1366–1369. Web of Science CSD CrossRef IUCr Journals
Faizi, M. S. H., Dege, N., Haque, A., Kalibabchuk, V. A. & Cemberci, M. (2017). Acta Cryst. E73, 96–98. Web of Science CSD CrossRef IUCr Journals
Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016b). Sens. Actuators B Chem. 222, 15–20. Web of Science CrossRef CAS
Faizi, M. S. H. & Prisyazhnaya, E. V. (2015). Acta Cryst. E71, m175–m176. Web of Science CSD CrossRef IUCr Journals
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals
Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.
Fun, H.-K., Chantrapromma, S., Nilwanna, B., Kobkeatthawin, T. & Boonnak, N. (2013). Acta Cryst. E69, o1203–o1204. CSD CrossRef CAS IUCr Journals
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals
Karthikeyan, M. S., Prasad, D. J., Poojary, B., Subrahmanya Bhat, K., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489. Web of Science CrossRef PubMed CAS
Khattab, S. N. (2005). Molecules, 10, 1218–1228. Web of Science CrossRef PubMed CAS
Küçükgüzel, G., Kocatepe, A., De Clercq, E., Şahin, F. & Güllüce, M. (2006). Eur. J. Med. Chem. 41, 353–359. Web of Science PubMed
Kundu, S., Maity, S., Maity, A. N., Ke, S.-C. & Ghosh, P. (2013). Dalton Trans. 42, 4586–4601. Web of Science CSD CrossRef CAS PubMed
Li, K., Wang, X. & Tong, A. (2013). Anal. Chim. Acta, 776, 69–73. Web of Science CrossRef CAS PubMed
Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680. CSD CrossRef CAS Web of Science IUCr Journals
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Silin, M. A., Kelaren, V. I., Abu-Ammar, V., Putkaradze, D. Kh. & Golubeva, I. A. (1999). Pet. Chem. 40, 209–214.
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
Yamazaki, T. & Seguchi, T. (1997). J. Polym. Sci. A Polym. Chem. 35, 2431–2439. CrossRef CAS
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.