research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of flucetosulfuron

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry (BK21 plus) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr

Edited by P. C. Healy, Griffith University, Australia (Received 4 September 2017; accepted 6 September 2017; online 12 September 2017)

The title compound, {systematic name: 1-[3-({[(4,6-di­meth­oxy­pyrimidin-2-yl)carbamo­yl]amino}­sulfon­yl)pyridin-2-yl]-2-fluoro­propyl 2-meth­oxy­acetate}, C18H22FN5O8S, is used as a herbicide (pyrimidinyl­sulfonyl­urea herbicide). The dihedral angle between the mean planes of the pyridine and pyrimidine rings is 86.90 (7)°. In the crystal, N/C—H⋯O hydrogen bonds, C—H⋯F and C—H⋯π inter­actions link adjacent mol­ecules, forming a chain along [020]. A further two C—H⋯O hydrogen bonds together with weak ππ inter­actions [ring centroid separation = 3.7584 (12) Å] further aggregate the structure into a three-dimensional architecture.

1. Chemical context

Flucetosulfuron, a relatively new herbicide, inhibits acetolactate synthase (ALS) in plants, as do other ALS inhibitors such as imidazolinones, pyrimidinyloxybenzoates, triazolo­pyrimidines, and sulfonyl­amino­carbonyl­triazolinones (Lee et al., 2014[Lee, Y.-S., Liu, K.-H., Moon, J.-K., Ko, B. J., Choi, H., Hwang, K.-S., Kim, E. & Kim, J.-H. (2014). J. Agric. Food Chem. 62, 3057-3063.]). It is a novel post-emergence sulfonyl­urea herbicide providing excellent control of Galium aparine and other important broadleaf weeds with good safety to cereal crops, wheat and barley (Kim, Lee et al., 2003[Kim, D. S., Lee, J. N., Hwang, K. H., Kang, K. G., Kim, T. Y., Koo, S. J. & Caseley, J. C. (2003). Congress Proceedings-BCPC International Congress: Crop Sci. & Tech. 2, 941-946.]) In rice, the herbicide provides excellent control of Echinochloa crus-galli, which is not or only marginally controlled by common sulfonyl­urea products, and also controls annual broadleaf weeds, sedges and perennial weeds of rice with similar efficacy to other sulfonyl­urea rice herbicides (Kim, Koo et al., 2003[Kim, D. S., Koo, S. J., Lee, J. N., Hwang, K. H., Kim, T. Y., Kang, K. G., Hwang, K. S., Joe, G. H., Cho, J. H. & Kim, D. W. (2003). Congress Proceedings-BCPC International Congress: Crop Sci. & Tech. 1, 87-92.]). Until now, its crystal structure had not been reported and we describe it herein.

[Scheme 1]

2. Structural commentary

The structure of flucetosulfuron is shown in Fig. 1[link]. The dihedral angle between the mean planes of the pyridine and pyrimidine rings is 86.90 (7)°. All bond lengths and angles are normal and comparable to those observed in similar crystal structures (Jeon et al., 2015[Jeon, Y., Kim, J., Kwon, E. & Kim, T. H. (2015). Acta Cryst. E71, o470-o471.]; Chopra et al., 2004[Chopra, D., Mohan, T. P., Rao, K. S. & Guru Row, T. N. (2004). Acta Cryst. E60, o2418-o2420.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom labelling and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

3. Supra­molecular features

In the crystal, mol­ecules are linked by C1—H1A⋯O3i, N3—H3N⋯O8i and C2—H2B⋯F1ii hydrogen bonds [H⋯O = 2.58, 2.01 and H⋯F = 2.53 Å; Table 1[link]] and C1—H1BCg1i inter­actions [H⋯π = 2.74 Å], forming a chain structure along [020] (yellow dashed lines in Fig. 2[link]). In addition, the chains are linked by C12—H12⋯O2iii hydrogen bonds [H⋯O =2.42 Å], forming a two-dimensional network structure parallel to (020) (red dashed lines in Fig. 2[link]). The C17—H17⋯O5iv hydrogen bond [H⋯O =2.55 Å] and weak ππ inter­actions (N1–N2/C3–C6) [Cg2⋯Cg2v= 3.7584 (12) Å; symmetry code: (v) −x + 2, −y + 1, −z + 1] generate a three-dimensional architecture with mol­ecules stacked along the a-axis direction (black dashed lines in Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N5/C8–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O8i 0.88 2.01 2.885 (2) 174
C1—H1A⋯O3i 0.98 2.58 3.368 (3) 137
C2—H2B⋯F1ii 0.98 2.53 3.161 (2) 122
C12—H12⋯O2iii 0.95 2.42 3.229 (3) 143
C17—H17A⋯O5iv 0.99 2.55 3.367 (3) 139
C1—H1BCg1i 0.98 2.74 3.488 (2) 134
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z; (iii) x-1, y-1, z; (iv) x, y+1, z.
[Figure 2]
Figure 2
The N/C—H⋯O hydrogen bond, C—H⋯F and C—H⋯π inter­actions (yellow dashed lines) link adjacent mol­ecules, forming chains along [020]. The chains are further linked by C—H⋯O hydrogen bonds (red dashed lines), forming a two-dimensional network parallel to (020). H atoms have been omitted for clarity.
[Figure 3]
Figure 3
A packing diagram showing the three-dimensional architecture formed by inter­molecular C—H⋯O hydrogen bonds (red dashed lines) and ππ inter­actions (black dashed lines). H atoms have been omitted for clarity.

4. Database survey

We have reported the crystal structures of several pesticides including compounds with pyrimidinyl­sulfonyl­urea, di­meth­oxy­pyrimidin and sulfonyl­urea ring (Kang et al., 2015[Kang, G., Kim, J., Kwon, E. & Kim, T. H. (2015). Acta Cryst. E71, o631-o632.]; Jeon et al., 2015[Jeon, Y., Kim, J., Kwon, E. & Kim, T. H. (2015). Acta Cryst. E71, o470-o471.]; Kwon et al., 2016[Kwon, E., Kim, J., Park, H. & Kim, T. H. (2016). Acta Cryst. E72, 1468-1470.]). Moreover, a database search (CSD Version 5.27, last update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded other comparable structures, methyl 2-{[3-(4,6-di­meth­oxy­pyrimidin-2-yl)ureido]sulfonyl­meth­yl}benzoate (Xia et al., 2008[Xia, J., Li, F., Yin, L., Yu, D. & Wu, D. (2008). Acta Cryst. E64, o632.]), 2-amino-4,6-di­meth­oxy­pyrimidin-1-ium 2,2-di­chloro­acetate (Lin et al., 2012[Lin, C.-H. & Liu, N.-S. (2012). Acta Cryst. E68, o1898.]), N-[(perhydro­cyclo­penta­[c]pyrrol-2-yl)amino­carbon­yl]-o-toluene­sulfonamide (Wu et al., 2012[Wu, D., Wang, X., Pang, D., Su, W. & Sun, Y. (2012). Acta Cryst. E68, o446.]) and 4-{4-[N-(5,6-di­meth­oxy­pyrimidin-4-yl)sulfamo­yl]phenyl­carbamo­yl}-2,6-di­meth­oxy­phenyl acetate (Pan et al., 2012[Pan, W.-G., Zhao, Z.-D., Luo, P., Lin, C.-W. & Miao, J.-H. (2012). Z. Kristallogr. NCS, 224, 583-585.]).

5. Synthesis and crystallization

The title compound was purchased from Dr Ehrenstorfer GmbH. Colourless single crystals suitable for X-ray diffraction were obtained from a CH3CN solution by slow evaporation at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically and refined using a riding model with d(N—H) = 0.88 Å, Uiso = 1.2Ueq(C) for urea N—H, d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic C—H, d(C—H) = 0.98 Å, Uiso = 1.5Ueq(C) for methyl groups, d(C—H) = 0.99 Å, Uiso = 1.2Ueq(C) for CH2 group, d(C—H) = 1.00 Å, Uiso = 1.5Ueq(C) for Csp3—H.

Table 2
Experimental details

Crystal data
Chemical formula C18H22FN5O8S
Mr 487.46
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 8.3993 (3), 9.1030 (3), 15.6862 (5)
α, β, γ (°) 92.116 (2), 101.113 (2), 112.810 (2)
V3) 1076.53 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.22
Crystal size (mm) 0.36 × 0.06 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc.,Madison, Wisconsin, USA.])
Tmin, Tmax 0.702, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 10919, 3773, 3081
Rint 0.031
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.099, 1.06
No. of reflections 3773
No. of parameters 302
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.39
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc.,Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

1-[3-({[(4,6-Dimethoxypyrimidin-2-yl)carbamoyl]amino}sulfonyl)pyridin-2-yl]-2-fluoropropyl 2-methoxyacetate top
Crystal data top
C18H22FN5O8SZ = 2
Mr = 487.46F(000) = 508
Triclinic, P1Dx = 1.504 Mg m3
a = 8.3993 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1030 (3) ÅCell parameters from 3325 reflections
c = 15.6862 (5) Åθ = 2.5–26.9°
α = 92.116 (2)°µ = 0.22 mm1
β = 101.113 (2)°T = 173 K
γ = 112.810 (2)°Needle, colourless
V = 1076.53 (6) Å30.36 × 0.06 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
3081 reflections with I > 2σ(I)
φ and ω scansRint = 0.031
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 25.0°, θmin = 1.3°
Tmin = 0.702, Tmax = 0.746h = 99
10919 measured reflectionsk = 1010
3773 independent reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0439P)2 + 0.337P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3773 reflectionsΔρmax = 0.45 e Å3
302 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.39351 (7)0.10312 (6)0.18674 (3)0.02316 (15)
F10.2117 (2)0.35690 (17)0.01327 (8)0.0529 (4)
O11.0327 (2)0.78934 (17)0.56837 (9)0.0345 (4)
O20.97933 (18)0.63951 (17)0.27393 (9)0.0268 (3)
O30.34138 (19)0.08587 (18)0.37121 (9)0.0309 (4)
O40.48165 (18)0.18107 (17)0.12133 (9)0.0278 (4)
O50.3822 (2)0.05369 (17)0.20150 (10)0.0330 (4)
O60.26027 (17)0.48834 (16)0.21292 (8)0.0226 (3)
O70.55822 (19)0.62252 (18)0.24672 (9)0.0302 (4)
O80.53183 (18)0.72872 (16)0.41130 (9)0.0262 (4)
N10.8060 (2)0.5524 (2)0.49899 (11)0.0227 (4)
N20.7821 (2)0.4766 (2)0.34862 (10)0.0213 (4)
N30.5794 (2)0.3194 (2)0.42532 (11)0.0249 (4)
H3N0.55380.30640.47710.030*
N40.4990 (2)0.2289 (2)0.27617 (10)0.0252 (4)
H4N0.58390.32090.27180.030*
N50.0364 (2)0.2072 (2)0.11793 (12)0.0310 (4)
C10.9641 (3)0.7561 (3)0.64590 (14)0.0356 (6)
H1A0.83890.73930.63260.053*
H1B1.03130.84720.69180.053*
H1C0.97520.65930.66620.053*
C20.8773 (3)0.5257 (3)0.19662 (13)0.0285 (5)
H2A0.87170.41880.20790.043*
H2B0.93420.55880.14750.043*
H2C0.75710.52240.18210.043*
C30.9464 (3)0.6843 (2)0.49563 (13)0.0238 (5)
C40.7292 (3)0.4557 (2)0.42344 (13)0.0207 (4)
C50.9225 (3)0.6125 (2)0.34821 (13)0.0215 (5)
C61.0123 (3)0.7244 (2)0.42113 (13)0.0253 (5)
H61.11130.82110.42050.030*
C70.4640 (3)0.2007 (2)0.35825 (13)0.0234 (5)
C80.1749 (3)0.0953 (2)0.16496 (12)0.0209 (5)
C90.1326 (3)0.2238 (2)0.13956 (13)0.0229 (5)
C100.1640 (3)0.0645 (3)0.12140 (15)0.0358 (6)
H100.28360.05250.10410.043*
C110.1331 (3)0.0655 (3)0.14834 (15)0.0356 (6)
H110.22830.16330.15180.043*
C120.0406 (3)0.0500 (3)0.17037 (14)0.0303 (5)
H120.06740.13760.18890.036*
C130.2671 (3)0.3930 (2)0.13829 (12)0.0219 (5)
H130.38840.39420.14470.026*
C140.2184 (3)0.4629 (3)0.05544 (13)0.0320 (5)
H140.09810.46290.05090.038*
C150.3463 (3)0.6282 (3)0.04812 (15)0.0416 (6)
H15A0.35130.70360.09590.062*
H15B0.30690.66090.00820.062*
H15C0.46420.62860.05190.062*
C160.4167 (3)0.5958 (2)0.26289 (13)0.0210 (5)
C170.3826 (3)0.6730 (3)0.34038 (12)0.0240 (5)
H17A0.35270.76420.32280.029*
H17B0.27990.59390.35900.029*
C180.6598 (3)0.8857 (3)0.40752 (15)0.0316 (5)
H18A0.70410.88580.35410.047*
H18B0.75870.91610.45880.047*
H18C0.60450.96280.40710.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0254 (3)0.0223 (3)0.0209 (3)0.0097 (2)0.0034 (2)0.0019 (2)
F10.0876 (12)0.0416 (9)0.0248 (7)0.0235 (8)0.0082 (7)0.0018 (6)
O10.0420 (10)0.0256 (9)0.0233 (8)0.0007 (7)0.0076 (7)0.0027 (6)
O20.0279 (8)0.0261 (8)0.0212 (8)0.0035 (7)0.0090 (6)0.0038 (6)
O30.0267 (8)0.0276 (9)0.0286 (8)0.0001 (7)0.0071 (7)0.0052 (7)
O40.0300 (8)0.0334 (9)0.0232 (8)0.0144 (7)0.0096 (6)0.0055 (6)
O50.0405 (9)0.0229 (8)0.0371 (9)0.0164 (7)0.0046 (7)0.0044 (7)
O60.0216 (7)0.0217 (8)0.0199 (7)0.0049 (6)0.0032 (6)0.0016 (6)
O70.0216 (8)0.0325 (9)0.0329 (9)0.0077 (7)0.0056 (7)0.0022 (7)
O80.0252 (8)0.0225 (8)0.0203 (7)0.0007 (6)0.0004 (6)0.0015 (6)
N10.0227 (9)0.0216 (9)0.0217 (9)0.0069 (8)0.0043 (7)0.0032 (7)
N20.0211 (9)0.0224 (9)0.0186 (9)0.0070 (8)0.0040 (7)0.0049 (7)
N30.0247 (9)0.0261 (10)0.0169 (9)0.0028 (8)0.0044 (7)0.0040 (7)
N40.0259 (10)0.0240 (10)0.0191 (9)0.0034 (8)0.0038 (7)0.0039 (7)
N50.0226 (10)0.0291 (11)0.0374 (11)0.0090 (9)0.0027 (8)0.0029 (8)
C10.0451 (14)0.0327 (13)0.0241 (12)0.0103 (11)0.0094 (10)0.0029 (10)
C20.0318 (12)0.0303 (12)0.0216 (11)0.0106 (10)0.0060 (9)0.0018 (9)
C30.0255 (11)0.0194 (11)0.0240 (11)0.0079 (9)0.0028 (9)0.0022 (9)
C40.0201 (10)0.0211 (11)0.0212 (11)0.0088 (9)0.0034 (8)0.0062 (9)
C50.0217 (11)0.0226 (11)0.0218 (11)0.0098 (9)0.0061 (8)0.0072 (9)
C60.0242 (11)0.0212 (11)0.0256 (11)0.0042 (9)0.0046 (9)0.0047 (9)
C70.0228 (11)0.0234 (12)0.0231 (11)0.0088 (10)0.0039 (9)0.0045 (9)
C80.0233 (11)0.0186 (11)0.0166 (10)0.0054 (9)0.0018 (8)0.0006 (8)
C90.0230 (11)0.0237 (11)0.0178 (10)0.0059 (9)0.0030 (8)0.0018 (8)
C100.0206 (12)0.0335 (14)0.0439 (14)0.0042 (11)0.0030 (10)0.0089 (11)
C110.0285 (13)0.0265 (13)0.0412 (14)0.0001 (11)0.0088 (10)0.0034 (11)
C120.0348 (13)0.0212 (12)0.0303 (12)0.0062 (10)0.0077 (10)0.0018 (9)
C130.0267 (11)0.0214 (11)0.0187 (10)0.0104 (9)0.0063 (8)0.0004 (8)
C140.0467 (14)0.0288 (13)0.0205 (11)0.0157 (11)0.0065 (10)0.0016 (9)
C150.0630 (18)0.0304 (14)0.0261 (13)0.0128 (12)0.0096 (12)0.0091 (10)
C160.0221 (11)0.0171 (10)0.0213 (11)0.0061 (9)0.0024 (9)0.0063 (8)
C170.0206 (11)0.0246 (11)0.0199 (11)0.0028 (9)0.0026 (8)0.0019 (9)
C180.0281 (12)0.0224 (12)0.0343 (13)0.0002 (10)0.0058 (10)0.0007 (10)
Geometric parameters (Å, º) top
S1—O51.4242 (15)C1—H1C0.9800
S1—O41.4295 (15)C2—H2A0.9800
S1—N41.6369 (17)C2—H2B0.9800
S1—C81.774 (2)C2—H2C0.9800
F1—C141.397 (2)C3—C61.389 (3)
O1—C31.343 (2)C5—C61.379 (3)
O1—C11.437 (3)C6—H60.9500
O2—C51.338 (2)C8—C121.385 (3)
O2—C21.448 (2)C8—C91.398 (3)
O3—C71.207 (2)C9—C131.520 (3)
O6—C161.359 (2)C10—C111.371 (3)
O6—C131.455 (2)C10—H100.9500
O7—C161.197 (2)C11—C121.383 (3)
O8—C171.412 (2)C11—H110.9500
O8—C181.429 (2)C12—H120.9500
N1—C31.329 (3)C13—C141.522 (3)
N1—C41.336 (2)C13—H131.0000
N2—C41.328 (2)C14—C151.497 (3)
N2—C51.339 (2)C14—H141.0000
N3—C71.388 (3)C15—H15A0.9800
N3—C41.389 (2)C15—H15B0.9800
N3—H3N0.8800C15—H15C0.9800
N4—C71.386 (3)C16—C171.510 (3)
N4—H4N0.8800C17—H17A0.9900
N5—C101.337 (3)C17—H17B0.9900
N5—C91.341 (3)C18—H18A0.9800
C1—H1A0.9800C18—H18B0.9800
C1—H1B0.9800C18—H18C0.9800
O5—S1—O4119.31 (9)C12—C8—S1116.68 (16)
O5—S1—N4110.36 (9)C9—C8—S1123.71 (15)
O4—S1—N4103.89 (9)N5—C9—C8121.03 (18)
O5—S1—C8107.60 (9)N5—C9—C13113.94 (18)
O4—S1—C8109.39 (9)C8—C9—C13124.95 (18)
N4—S1—C8105.49 (9)N5—C10—C11124.2 (2)
C3—O1—C1117.99 (17)N5—C10—H10117.9
C5—O2—C2117.95 (16)C11—C10—H10117.9
C16—O6—C13117.59 (15)C10—C11—C12118.0 (2)
C17—O8—C18114.20 (16)C10—C11—H11121.0
C3—N1—C4114.61 (17)C12—C11—H11121.0
C4—N2—C5116.32 (17)C11—C12—C8118.9 (2)
C7—N3—C4130.02 (17)C11—C12—H12120.5
C7—N3—H3N115.0C8—C12—H12120.5
C4—N3—H3N115.0O6—C13—C9105.26 (15)
C7—N4—S1124.61 (15)O6—C13—C14108.51 (16)
C7—N4—H4N117.7C9—C13—C14111.96 (17)
S1—N4—H4N117.7O6—C13—H13110.3
C10—N5—C9118.31 (19)C9—C13—H13110.3
O1—C1—H1A109.5C14—C13—H13110.3
O1—C1—H1B109.5F1—C14—C15108.89 (18)
H1A—C1—H1B109.5F1—C14—C13105.03 (17)
O1—C1—H1C109.5C15—C14—C13115.37 (19)
H1A—C1—H1C109.5F1—C14—H14109.1
H1B—C1—H1C109.5C15—C14—H14109.1
O2—C2—H2A109.5C13—C14—H14109.1
O2—C2—H2B109.5C14—C15—H15A109.5
H2A—C2—H2B109.5C14—C15—H15B109.5
O2—C2—H2C109.5H15A—C15—H15B109.5
H2A—C2—H2C109.5C14—C15—H15C109.5
H2B—C2—H2C109.5H15A—C15—H15C109.5
N1—C3—O1119.08 (18)H15B—C15—H15C109.5
N1—C3—C6124.73 (19)O7—C16—O6124.13 (18)
O1—C3—C6116.20 (18)O7—C16—C17126.38 (18)
N2—C4—N1126.77 (18)O6—C16—C17109.49 (17)
N2—C4—N3117.95 (17)O8—C17—C16111.44 (17)
N1—C4—N3115.28 (17)O8—C17—H17A109.3
O2—C5—N2118.40 (17)C16—C17—H17A109.3
O2—C5—C6118.68 (18)O8—C17—H17B109.3
N2—C5—C6122.91 (18)C16—C17—H17B109.3
C5—C6—C3114.59 (19)H17A—C17—H17B108.0
C5—C6—H6122.7O8—C18—H18A109.5
C3—C6—H6122.7O8—C18—H18B109.5
O3—C7—N4123.77 (18)H18A—C18—H18B109.5
O3—C7—N3121.97 (18)O8—C18—H18C109.5
N4—C7—N3114.23 (18)H18A—C18—H18C109.5
C12—C8—C9119.55 (19)H18B—C18—H18C109.5
O5—S1—N4—C748.10 (19)O4—S1—C8—C942.99 (19)
O4—S1—N4—C7177.12 (16)N4—S1—C8—C968.21 (18)
C8—S1—N4—C767.84 (19)C10—N5—C9—C80.1 (3)
C4—N1—C3—O1179.93 (18)C10—N5—C9—C13176.75 (18)
C4—N1—C3—C60.4 (3)C12—C8—C9—N51.9 (3)
C1—O1—C3—N12.3 (3)S1—C8—C9—N5175.19 (15)
C1—O1—C3—C6177.23 (18)C12—C8—C9—C13174.60 (19)
C5—N2—C4—N13.1 (3)S1—C8—C9—C138.3 (3)
C5—N2—C4—N3177.34 (17)C9—N5—C10—C112.1 (3)
C3—N1—C4—N22.1 (3)N5—C10—C11—C122.4 (3)
C3—N1—C4—N3178.32 (17)C10—C11—C12—C80.5 (3)
C7—N3—C4—N24.5 (3)C9—C8—C12—C111.6 (3)
C7—N3—C4—N1175.92 (19)S1—C8—C12—C11175.75 (16)
C2—O2—C5—N24.5 (3)C16—O6—C13—C9137.43 (16)
C2—O2—C5—C6176.37 (17)C16—O6—C13—C14102.57 (19)
C4—N2—C5—O2179.30 (17)N5—C9—C13—O670.7 (2)
C4—N2—C5—C61.6 (3)C8—C9—C13—O6106.1 (2)
O2—C5—C6—C3178.55 (17)N5—C9—C13—C1447.0 (2)
N2—C5—C6—C30.6 (3)C8—C9—C13—C14136.2 (2)
N1—C3—C6—C51.6 (3)O6—C13—C14—F1174.62 (16)
O1—C3—C6—C5178.85 (17)C9—C13—C14—F158.9 (2)
S1—N4—C7—O36.7 (3)O6—C13—C14—C1565.5 (2)
S1—N4—C7—N3175.33 (14)C9—C13—C14—C15178.77 (19)
C4—N3—C7—O3177.7 (2)C13—O6—C16—O74.0 (3)
C4—N3—C7—N44.4 (3)C13—O6—C16—C17175.72 (16)
O5—S1—C8—C123.21 (18)C18—O8—C17—C1685.3 (2)
O4—S1—C8—C12134.21 (16)O7—C16—C17—O825.1 (3)
N4—S1—C8—C12114.60 (16)O6—C16—C17—O8154.58 (15)
O5—S1—C8—C9173.98 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N5/C8–C12 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3N···O8i0.882.012.885 (2)174
C1—H1A···O3i0.982.583.368 (3)137
C2—H2B···F1ii0.982.533.161 (2)122
C12—H12···O2iii0.952.423.229 (3)143
C17—H17A···O5iv0.992.553.367 (3)139
C1—H1B···Cg1i0.982.743.488 (2)134
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x1, y1, z; (iv) x, y+1, z.
 

Funding information

This research was supported by the Basic Science Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2015R1D1A4A01020317 and 2017R1D1A3A03000534).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc.,Madison, Wisconsin, USA.
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationChopra, D., Mohan, T. P., Rao, K. S. & Guru Row, T. N. (2004). Acta Cryst. E60, o2418–o2420.  Web of Science CSD CrossRef IUCr Journals
First citationJeon, Y., Kim, J., Kwon, E. & Kim, T. H. (2015). Acta Cryst. E71, o470–o471.  Web of Science CSD CrossRef IUCr Journals
First citationKang, G., Kim, J., Kwon, E. & Kim, T. H. (2015). Acta Cryst. E71, o631–o632.  Web of Science CSD CrossRef IUCr Journals
First citationKim, D. S., Koo, S. J., Lee, J. N., Hwang, K. H., Kim, T. Y., Kang, K. G., Hwang, K. S., Joe, G. H., Cho, J. H. & Kim, D. W. (2003). Congress Proceedings-BCPC International Congress: Crop Sci. & Tech. 1, 87–92.
First citationKim, D. S., Lee, J. N., Hwang, K. H., Kang, K. G., Kim, T. Y., Koo, S. J. & Caseley, J. C. (2003). Congress Proceedings-BCPC International Congress: Crop Sci. & Tech. 2, 941-946.
First citationKwon, E., Kim, J., Park, H. & Kim, T. H. (2016). Acta Cryst. E72, 1468–1470.  Web of Science CSD CrossRef IUCr Journals
First citationLee, Y.-S., Liu, K.-H., Moon, J.-K., Ko, B. J., Choi, H., Hwang, K.-S., Kim, E. & Kim, J.-H. (2014). J. Agric. Food Chem. 62, 3057–3063.  Web of Science CrossRef CAS
First citationLin, C.-H. & Liu, N.-S. (2012). Acta Cryst. E68, o1898.  CSD CrossRef IUCr Journals
First citationPan, W.-G., Zhao, Z.-D., Luo, P., Lin, C.-W. & Miao, J.-H. (2012). Z. Kristallogr. NCS, 224, 583-585.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationWu, D., Wang, X., Pang, D., Su, W. & Sun, Y. (2012). Acta Cryst. E68, o446.  Web of Science CSD CrossRef IUCr Journals
First citationXia, J., Li, F., Yin, L., Yu, D. & Wu, D. (2008). Acta Cryst. E64, o632.  Web of Science CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds