research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Aceto­nitrile-κN)aqua­[N,N′-bis­­(pyridin-2-yl­methyl)ethane-1,2-di­amine-κ4N,N′,N′′,N′′′]zinc(II) perchlorate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 16 June 2017; accepted 22 September 2017; online 29 September 2017)

The structure of the title compound, [Zn(C14H18N4)(C2H3N)(H2O)](ClO4)2, contains a six-coordinate cation consisting of the tetra­dentate bis­picen ligand, coordinated water, and coordinated aceto­nitrile, with the latter two ligands adopting a cis configuration. There are two formula units in the asymmetric unit. Both cations show almost identical structural features with the bis­picen ligand adopting the more common cis-β conformation. One of the four perchlorate anions is disordered over two positions, with occupancies of 0.9090 (15) and 0.0910 (15). There is extensive inter-ionic hydrogen bonding between the perchlorate anions and O—H and N—H groups in the cations, including a bifurcated hydrogen bond between an N—H group and two O atoms of one perchlorate anion. As a result of this extended hydrogen-bond network, the ions are linked into a complex three-dimensional array.

1. Chemical context

One of the greatest challenges in synthetic chemistry is the selective conversion of non-activated C—H bonds to useful functional groups (Gunay & Theopold, 2010[Gunay, A. & Theopold, K. H. (2010). Chem. Rev. 110, 1060-1081.]). Coordination complexes have been extensively explored due to their potential to catalyze such transformations. The ligand's chelation around the metal ion determines the number and relative orientation of vacant coordination sites where terminal oxidants and/or substrates can bind. Installed steric bulk or substrate binding groups can either preclude certain mol­ecules from accessing the active site (Chen & White, 2010[Chen, M. S. & White, M. C. (2010). Science, 327, 566-571.]) or attract compounds with specific shapes or functional groups (Das et al., 2006[Das, S., Incarvito, C. D., Crabtree, R. H. & Brudvig, G. W. (2006). Science, 312, 1941-1943.]). These benefits rely upon the ability to understand, predict, and control the coordination geometry of the polydentate ligand.

[Scheme 1]

The 1,2-bis­(pyridin-2-ylmeth­yl)ethane-1,2-di­amine (bis­picen) ligand and other tetra­dentate ligands with reduced imine linkages have been observed to wrap around single transition metal ions in primarily two fashions: cis-α and cis-β (Scheme 2) (Chen et al., 2002[Chen, K., Costas, M., Kim, J., Tipton, A. K. & Que, L. Jr (2002). J. Am. Chem. Soc. 124, 3026-3035.]). The cis-α, in which the two pyridine groups are trans to each other, has been the only conformation heretofore observed with bis­picen and its methyl­ated derivatives (Goodson et al., 1990[Goodson, P. A., Glerup, J., Hodgson, D. J., Michelsen, K. & Pedersen, E. (1990). Inorg. Chem. 29, 503-508.], 1991[Goodson, P. A., Glerup, J., Hodgson, D. J., Michelsen, K. & Weihe, H. (1991). Inorg. Chem. 30, 4909-4914.]). The cis-β conformation, in which the two pyridine groups are cis to each other, has been observed most often with ligands with propane-1,3-di­amine backbones (England et al., 2007[England, J., Britovsek, G. J. P., Rabadia, N. & White, A. J. P. (2007). Inorg. Chem. 46, 3752-3767.]; Hureau et al., 2005a[Hureau, C., Anxolabéhère-Mallart, E., Blondin, G., Rivière, E. & Nierlich, M. (2005a). Eur. J. Inorg. Chem. 23, 4808-4817.],b[Hureau, C., Blondin, G., Charlot, M.-F., Philouze, C., Nierlich, M., Césario, M. & Anxolabéhère-Mallart, E. (2005b). Inorg. Chem. 44, 3669-3683.]).

A third conformational possibility, alternately described as trans or planar (Scheme 2), has been structurally observed most commonly for tetra­dentate ligands with imine linkages, such as salens (Jacobsen et al., 1991[Jacobsen, E. N., Zhang, W., Muci, A. R., Ecker, J. R. & Deng, L. (1991). J. Am. Chem. Soc. 113, 7063-7064.]). In tetra­dentate ligands with reduced imine linkages, the trans conformation has been observed rarely and only with ligands with either severely strained bridges or longer alkyl linkages between the amines (Mas-Ballesté et al., 2006[Mas-Ballesté, R., Costas, R., Van Den Berg, M. T. & Que, L. Jr (2006). Chem. Eur. J. 12, 7489-7500.]). Consequently, the trans conformer is rarely mentioned as a plausible isomer in reactivity studies involving bis­picen derivatives.

[Scheme 2]

In view of the fact that ZnII is a d10 system and thus has a relatively plastic coordination environment it is of inter­est to determine which of the possible conformations the bis­picen ligand adopts upon coordination to this metal ion. There is only one previous structural study of a bis­picen derivative of Zn (Parajón-Costa et al., 2013[Parajón-Costa, B. S., Echeverría, G. A., Piro, O. E. & Baran, E. J. (2013). Z. Naturforsch. Teil B, 68, 1327-1332.]). This study is in continuation of our past studies on the role of zinc in hydrolytic enzymes (Gultneh et al., 1996[Gultneh, Y., Allwar, Ahvazi, B., Blaise, D., Butcher, R. J., Jasinski, J. M. & Jasinski, J. P. (1996). Inorg. Chim. Acta, 241, 31-38.], 1999[Gultneh, Y., Khan, A. R., Blaise, D., Chaudhry, S., Ahvazi, B., Marvey, B. B. & Butcher, R. J. (1999). J. Inorg. Biochem. 75, 7-18.]), in particular the role of Zn in lowering the pKa of coordinated water mol­ecules.

2. Structural commentary

In the structure of the title compound (Fig. 1[link]), the six-coordinate cation consists of the tetra­dentate bis­picen ligand, coordinated water, and coordinated aceto­nitrile, with the latter two ligands adopting a cis conformation. There are two complete formula units in the asymmetric unit. Both cations show almost identical structural features with the bis­picen ligand adopting the more common cis-β conformation, in which the two pyridine groups are cis to each other with the H2O and CH3CN ligands in trans position to the N—H groups. One of the four perchlorate anions is disordered over two positions with occupancies of 0.9090 (15) and 0.0910 (15). A related complex containing a [cis-Zn(bis­picen)Cl(H2O)]+ cation and a [ZnCl4]2− anion has been published recently (Parajón-Costa et al., 2013[Parajón-Costa, B. S., Echeverría, G. A., Piro, O. E. & Baran, E. J. (2013). Z. Naturforsch. Teil B, 68, 1327-1332.]). In contrast to previous studies, bond lengths for the two types of Zn—N bonds (Zn—Npy and Zn—NN—H) show very similar values, with the exception of those which are trans to the coordinated aceto­nitrile (Table 1[link]). The latter are significantly longer [2.2056 (7) and 2.2066 (7) Å]. Inter­estingly, Zn—OH2 bond lengths are relatively short [2.1333 (7) and 2.1279 (7) Å] reflecting a strong Zn—O bond. Further studies will be made to see the effect of this on the pKa of the coordinated water. There is extensive inter-ionic hydrogen bonding (Table 2[link]) between the perchlorate anions and O—H and N—H groups in the cations including a bifurcated hydrogen bond between an N—H group and two O atoms of one perchlorate anion. As a result of this extended hydrogen-bond network the ions are linked into a complex three-dimensional array.

Table 1
Selected geometric parameters (Å, °)

Zn1—N5A 2.1231 (8) Zn2—O2W 2.1279 (7)
Zn1—O1W 2.1333 (7) Zn2—N5B 2.1328 (8)
Zn1—N4A 2.1341 (7) Zn2—N4B 2.1345 (7)
Zn1—N2A 2.1692 (7) Zn2—N1B 2.1440 (7)
Zn1—N1A 2.1707 (7) Zn2—N2B 2.1674 (8)
Zn1—N3A 2.2056 (7) Zn2—N3B 2.2066 (7)
       
N5A—Zn1—O1W 86.48 (3) O2W—Zn2—N5B 86.23 (3)
N5A—Zn1—N4A 93.75 (3) O2W—Zn2—N4B 95.01 (3)
O1W—Zn1—N4A 95.55 (3) N5B—Zn2—N4B 94.02 (3)
N5A—Zn1—N2A 92.19 (3) O2W—Zn2—N1B 94.46 (3)
O1W—Zn1—N2A 172.06 (3) N5B—Zn2—N1B 95.88 (3)
N4A—Zn1—N2A 92.34 (3) N4B—Zn2—N1B 166.72 (3)
N5A—Zn1—N1A 96.07 (3) O2W—Zn2—N2B 173.16 (3)
O1W—Zn1—N1A 93.28 (3) N5B—Zn2—N2B 91.53 (3)
N4A—Zn1—N1A 167.17 (3) N4B—Zn2—N2B 91.59 (3)
N2A—Zn1—N1A 79.06 (3) N1B—Zn2—N2B 79.32 (3)
N5A—Zn1—N3A 171.11 (3) O2W—Zn2—N3B 99.39 (3)
O1W—Zn1—N3A 99.00 (3) N5B—Zn2—N3B 171.13 (3)
N4A—Zn1—N3A 78.83 (3) N4B—Zn2—N3B 78.74 (3)
N2A—Zn1—N3A 83.32 (3) N1B—Zn2—N3B 90.55 (3)
N1A—Zn1—N3A 90.62 (3) N2B—Zn2—N3B 83.64 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W2⋯O41i 0.80 (1) 2.04 (1) 2.8410 (12) 178 (2)
O1W—H1W2⋯O43Ai 0.80 (1) 1.94 (2) 2.730 (15) 170 (2)
N2A—H2AB⋯O41 1.00 2.28 3.1809 (12) 150
N2A—H2AB⋯O42 1.00 2.28 3.1468 (15) 144
N2A—H2AB⋯O42A 1.00 2.40 3.328 (12) 153
N2A—H2AB⋯O43A 1.00 2.50 3.396 (15) 149
N3A—H3AB⋯O23 1.00 2.17 3.0889 (12) 152
C4A—H4AA⋯O42ii 0.95 2.60 3.4025 (15) 142
C7A—H7AA⋯O24iii 0.99 2.41 3.1218 (12) 128
C14A—H14A⋯O32iv 0.95 2.41 3.1645 (13) 136
C16A—H16B⋯O22v 0.98 2.51 3.4788 (13) 169
O2W—H2W1⋯O31iv 0.82 (1) 2.00 (1) 2.8091 (11) 174 (2)
O2W—H2W2⋯O11 0.82 (1) 1.99 (1) 2.7690 (11) 159 (2)
N2B—H2BB⋯O31vi 1.00 2.36 3.2467 (12) 148
N2B—H2BB⋯O33vi 1.00 2.32 3.2331 (15) 152
N3B—H3BB⋯O14 1.00 2.20 3.1169 (13) 152
C7B—H7BB⋯O13i 0.99 2.44 3.1430 (12) 128
C14B—H14B⋯O43i 0.95 2.48 3.2138 (15) 134
C14B—H14B⋯O44Ai 0.95 2.32 3.149 (13) 145
C16B—H16D⋯O43Ai 0.98 2.54 3.419 (13) 150
C16B—H16E⋯O11vii 0.98 2.55 3.5083 (14) 166
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+1, -z+1; (iii) x+1, y, z; (iv) -x+1, -y+1, -z; (v) x, y-1, z; (vi) -x, -y+1, -z; (vii) x, y+1, z.
[Figure 1]
Figure 1
Diagram of the Zn-containing cation, showing the atom labeling. Anions have been omitted for clarity. Atomic displacement parameters are at the 30% probability level.

3. Supra­molecular features

There is a complex array of hydrogen bonds between the O—H and N—H groups in the cations and the O atoms of the anions. In addition, there are weak C—H⋯O inter­actions between the CH3 groups of the coordinated aceto­nitrile moieties and the adjoining O atoms of the perchlorate anions. These link the ions into a complex three-dimensional array (Fig. 2[link]).

[Figure 2]
Figure 2
Packing diagram, viewed along the c axis, showing the extensive O—H⋯O, N—H⋯O, and C—H⋯O inter­actions linking the cations and anions into a complex three-dimensional array. For the disordered moieties, only the major conformation is shown.

4. Database survey

A survey of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for complexes of bis­picen with Zn gave only one hit (Parajón-Costa et al., 2013[Parajón-Costa, B. S., Echeverría, G. A., Piro, O. E. & Baran, E. J. (2013). Z. Naturforsch. Teil B, 68, 1327-1332.]). This structure contained a [cis-Zn(bis­picen)Cl(H2O)]+ cation and a [ZnCl4]2− anion.

5. Synthesis and crystallization

Pyridine-2-carbaldehyde (2.3996 g, 0.0022 mol) was added to a reaction flask and dissolved in 50 ml methanol. Ethyl­enedi­amine (0.6732 g, 0.0012 mol) was added to the solution. The mixture was stirred for 3 d before refluxing the reaction for 1 h. The contents of the reaction flask were cooled to 268 K. 4 equivalents of NaBH4 (1.6646 g, 0.0044 mol) were added to the reaction mixture which was then allowed to reach room temperature. The mixture was stirred overnight. Methanol was evaporated under reduced pressure. The contents were redissolved in water (50 ml) before being extracted with chloro­form (4 × 50 ml). Moisture was removed using anhydrous MgSO4. Chloro­form was evaporated under reduced pressure producing the ligand as a brown oil (yield 68%). The zinc(II) complex was prepared by reacting 0.4356 g (0.0018 mol) of the ligand in 50 ml aceto­nitrile with Zn(ClO4)2·6H2O (0.4251 g, 0.0018 mol). The mixture was stirred at room temperature overnight and layered with 50 ml diethyl ether. The container was sealed and di­ethyl­ether allowed to diffuse into the solution for 3 d to give yellow crystals which were filtered and dried [yield based on Zn(ClO4)2: 55%].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H ranging from 0.95 to 0.99 Å and N—H at 1.00 Å. Displacement parameters were fixed to Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and 1.2 for all other C-bound and N-bound H atoms. H atoms attached to water were refined isotropically. One of the four perchlorate anions is disordered over two positions with occupancies of 0.9090 (15) and 0.0910 (15), and were constrained to have similar displacement and metrical parameters.

Table 3
Experimental details

Crystal data
Chemical formula [Zn(C14H18N4)(C2H3N)(H2O)](ClO4)2
Mr 565.66
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.2959 (3), 10.3169 (4), 27.7884 (9)
α, β, γ (°) 92.969 (1), 98.241 (1), 109.620 (1)
V3) 2204.36 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.42
Crystal size (mm) 0.45 × 0.41 × 0.29
 
Data collection
Diffractometer Bruker Quest CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.453, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 37729, 37729, 31022
Rint 0.047
(sin θ/λ)max−1) 1.066
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.107, 1.05
No. of reflections 37729
No. of parameters 636
No. of restraints 56
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.24, −1.15
Computer programs: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(Acetonitrile-κN)aqua[N,N'-bis(pyridin-2-ylmethyl)ethane-1,2-diamine-κ4N,N',N'',N''']zinc(II) perchlorate top
Crystal data top
[Zn(C14H18N4)(C2H3N)(H2O)](ClO4)2Z = 4
Mr = 565.66F(000) = 1160
Triclinic, P1Dx = 1.704 Mg m3
a = 8.2959 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3169 (4) ÅCell parameters from 9442 reflections
c = 27.7884 (9) Åθ = 3.2–61.9°
α = 92.969 (1)°µ = 1.42 mm1
β = 98.241 (1)°T = 100 K
γ = 109.620 (1)°Block, colourless
V = 2204.36 (14) Å30.45 × 0.41 × 0.29 mm
Data collection top
Bruker Quest CCD
diffractometer
31022 reflections with I > 2σ(I)
ω scansRint = 0.047
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 49.2°, θmin = 2.3°
Tmin = 0.453, Tmax = 0.753h = 99
37729 measured reflectionsk = 1212
37729 independent reflectionsl = 3233
Refinement top
Refinement on F256 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0391P)2 + 1.0144P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.006
37729 reflectionsΔρmax = 2.24 e Å3
636 parametersΔρmin = 1.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.83273 (2)0.76731 (2)0.37527 (2)0.01022 (2)
O1W0.61524 (9)0.81617 (8)0.34185 (2)0.01495 (10)
H1W10.611 (2)0.8958 (14)0.3465 (7)0.021 (4)*
H1W20.5198 (19)0.7649 (16)0.3439 (7)0.022 (4)*
N1A0.71985 (8)0.70563 (8)0.43995 (2)0.01171 (9)
N2A1.03060 (9)0.70258 (8)0.41604 (3)0.01261 (10)
H2AB1.07210.64830.39290.015*
N3A0.99210 (9)0.97233 (8)0.41415 (2)0.01183 (9)
H3AB0.91571.01570.42830.014*
N4A0.99441 (9)0.85294 (8)0.32333 (2)0.01277 (10)
N5A0.71429 (11)0.57128 (9)0.33332 (3)0.01715 (12)
C1A0.58572 (10)0.73342 (10)0.45424 (3)0.01395 (12)
H1AA0.52100.77310.43250.017*
C2A0.53812 (11)0.70639 (10)0.49963 (3)0.01520 (13)
H2AA0.44100.72530.50840.018*
C3A0.63487 (11)0.65113 (10)0.53211 (3)0.01514 (13)
H3AA0.60580.63250.56350.018*
C4A0.77454 (11)0.62379 (10)0.51771 (3)0.01419 (12)
H4AA0.84400.58740.53930.017*
C5A0.81176 (10)0.65040 (9)0.47104 (3)0.01169 (10)
C6A0.95559 (11)0.61389 (10)0.45279 (3)0.01427 (12)
H6AA1.04830.62290.48080.017*
H6AB0.90940.51610.43830.017*
C7A1.17523 (10)0.83110 (10)0.43644 (3)0.01500 (12)
H7AA1.24670.86540.41100.018*
H7AB1.25000.81130.46400.018*
C8A1.10825 (11)0.94212 (10)0.45419 (3)0.01437 (12)
H8AA1.04410.91060.48130.017*
H8AB1.20771.02770.46690.017*
C9A1.08674 (12)1.06278 (9)0.38040 (3)0.01483 (12)
H9AA1.20401.11970.39800.018*
H9AB1.02481.12640.37010.018*
C10A1.10454 (10)0.98339 (9)0.33561 (3)0.01292 (11)
C11A1.22877 (12)1.04752 (11)0.30741 (3)0.01845 (15)
H11A1.30721.13920.31730.022*
C12A1.23620 (13)0.97543 (13)0.26464 (4)0.02126 (17)
H12A1.31891.01750.24460.026*
C13A1.12063 (13)0.84058 (12)0.25154 (3)0.01897 (15)
H13A1.12200.78940.22230.023*
C14A1.00344 (12)0.78261 (10)0.28217 (3)0.01595 (13)
H14A0.92660.68970.27380.019*
C15A0.66602 (11)0.46620 (9)0.31015 (3)0.01465 (12)
C16A0.60567 (15)0.33475 (10)0.27988 (3)0.01905 (15)
H16A0.48550.31480.26380.029*
H16B0.61100.26120.30030.029*
H16C0.67970.33940.25510.029*
Zn20.17061 (2)0.21312 (2)0.12948 (2)0.01100 (2)
O2W0.38318 (9)0.15838 (8)0.16247 (2)0.01486 (10)
H2W10.479 (2)0.2123 (17)0.1601 (7)0.030 (5)*
H2W20.386 (2)0.0810 (14)0.1559 (6)0.019 (4)*
N1B0.28232 (9)0.27927 (8)0.06607 (2)0.01196 (10)
N2B0.02412 (9)0.28556 (9)0.09126 (3)0.01434 (11)
H2BB0.06330.33850.11550.017*
N3B0.00700 (9)0.01205 (8)0.08839 (3)0.01278 (10)
H3BB0.08150.03070.07300.015*
N4B0.00625 (9)0.12413 (8)0.18045 (3)0.01389 (11)
N5B0.29347 (11)0.40678 (9)0.17350 (3)0.01795 (13)
C1B0.41515 (10)0.25042 (10)0.05142 (3)0.01366 (12)
H1BA0.47620.20620.07240.016*
C2B0.46654 (11)0.28262 (10)0.00690 (3)0.01498 (13)
H2BA0.56210.26220.00230.018*
C3B0.37530 (12)0.34545 (10)0.02411 (3)0.01559 (13)
H3BA0.40720.36820.05490.019*
C4B0.23719 (12)0.37432 (10)0.00934 (3)0.01569 (13)
H4BA0.17190.41590.03010.019*
C5B0.19527 (10)0.34154 (9)0.03642 (3)0.01292 (11)
C6B0.05258 (12)0.37796 (10)0.05555 (4)0.01661 (13)
H6BA0.10040.47460.07120.020*
H6BB0.03960.37230.02780.020*
C7B0.17097 (11)0.15995 (11)0.06975 (4)0.01697 (14)
H7BA0.24500.18370.04300.020*
H7BB0.24240.12380.09500.020*
C8B0.10838 (11)0.04847 (10)0.04981 (3)0.01612 (13)
H8BA0.20990.03520.03650.019*
H8BB0.04480.08190.02280.019*
C9B0.08761 (12)0.08171 (10)0.12122 (3)0.01626 (13)
H9BA0.02590.14610.13060.020*
H9BB0.20500.13750.10340.020*
C10B0.10482 (11)0.00548 (10)0.16698 (3)0.01407 (12)
C11B0.23001 (13)0.07162 (12)0.19458 (4)0.02008 (16)
H11B0.30850.16300.18410.024*
C12B0.23822 (14)0.00165 (13)0.23783 (4)0.02261 (18)
H12B0.32150.04500.25750.027*
C13B0.12295 (13)0.13227 (12)0.25180 (3)0.01974 (16)
H13B0.12570.18210.28120.024*
C14B0.00359 (12)0.19202 (11)0.22199 (3)0.01707 (14)
H14B0.07410.28430.23120.020*
C15B0.34115 (11)0.51392 (10)0.19532 (3)0.01525 (12)
C16B0.39955 (14)0.64762 (10)0.22374 (4)0.01918 (15)
H16D0.32430.64570.24800.029*
H16E0.39470.71850.20200.029*
H16F0.51930.66930.24040.029*
Cl10.33629 (2)0.17248 (2)0.09748 (2)0.01340 (3)
O110.30474 (11)0.12439 (8)0.14429 (3)0.01993 (13)
O120.37512 (14)0.29685 (10)0.10216 (4)0.02729 (17)
O130.47992 (13)0.06661 (11)0.08384 (4)0.0317 (2)
O140.18341 (12)0.19854 (12)0.06120 (3)0.0314 (2)
Cl20.66222 (2)1.15399 (2)0.40344 (2)0.01185 (3)
O210.62121 (14)1.27698 (10)0.39746 (3)0.02598 (17)
O220.68767 (11)1.10012 (8)0.35669 (2)0.01847 (12)
O230.81983 (11)1.18512 (11)0.43829 (3)0.02691 (17)
O240.52286 (13)1.05033 (11)0.42000 (4)0.0321 (2)
Cl30.21799 (3)0.50962 (2)0.16092 (2)0.01582 (3)
O310.27818 (11)0.65914 (9)0.16224 (4)0.02509 (16)
O320.26294 (13)0.44580 (11)0.20132 (4)0.0314 (2)
O330.03501 (14)0.46092 (13)0.16261 (6)0.0477 (3)
O340.3044 (2)0.48292 (17)0.11636 (4)0.0603 (4)
Cl41.18034 (5)0.48638 (4)0.33410 (2)0.01448 (5)0.9090 (15)
O411.28183 (13)0.63107 (11)0.35110 (4)0.0286 (2)0.9090 (15)
O421.06676 (17)0.43235 (13)0.36849 (4)0.0339 (3)0.9090 (15)
O431.07584 (18)0.47935 (13)0.28758 (4)0.0358 (3)0.9090 (15)
O441.29117 (16)0.40816 (15)0.32951 (7)0.0499 (4)0.9090 (15)
Cl4A1.2271 (6)0.4988 (5)0.33959 (14)0.0173 (6)0.0910 (15)
O41A1.3201 (11)0.4703 (10)0.3811 (3)0.0286 (2)0.0910 (15)
O42A1.0388 (13)0.4473 (12)0.3392 (4)0.0339 (3)0.0910 (15)
O43A1.280 (2)0.6441 (11)0.3365 (4)0.0358 (3)0.0910 (15)
O44A1.2617 (16)0.4390 (15)0.2955 (5)0.0499 (4)0.0910 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.00995 (3)0.01079 (4)0.00945 (3)0.00291 (3)0.00217 (2)0.00021 (2)
O1W0.0134 (2)0.0150 (3)0.0161 (2)0.00531 (19)0.00066 (17)0.00013 (19)
N1A0.0103 (2)0.0137 (3)0.0118 (2)0.00480 (18)0.00263 (16)0.00136 (18)
N2A0.0126 (2)0.0133 (3)0.0137 (2)0.00588 (19)0.00452 (18)0.00143 (19)
N3A0.0122 (2)0.0120 (3)0.0117 (2)0.00456 (18)0.00275 (17)0.00024 (18)
N4A0.0133 (2)0.0135 (3)0.0111 (2)0.00355 (19)0.00376 (17)0.00090 (19)
N5A0.0180 (3)0.0136 (3)0.0177 (3)0.0034 (2)0.0025 (2)0.0018 (2)
C1A0.0117 (2)0.0181 (3)0.0132 (2)0.0066 (2)0.0026 (2)0.0009 (2)
C2A0.0131 (3)0.0183 (4)0.0145 (3)0.0051 (2)0.0049 (2)0.0000 (2)
C3A0.0158 (3)0.0153 (3)0.0131 (2)0.0029 (2)0.0051 (2)0.0007 (2)
C4A0.0148 (3)0.0144 (3)0.0135 (2)0.0046 (2)0.0035 (2)0.0033 (2)
C5A0.0113 (2)0.0116 (3)0.0127 (2)0.0041 (2)0.00288 (18)0.0020 (2)
C6A0.0145 (3)0.0142 (3)0.0171 (3)0.0076 (2)0.0049 (2)0.0045 (2)
C7A0.0099 (2)0.0168 (3)0.0187 (3)0.0051 (2)0.0023 (2)0.0030 (3)
C8A0.0135 (3)0.0137 (3)0.0139 (2)0.0036 (2)0.0004 (2)0.0005 (2)
C9A0.0178 (3)0.0105 (3)0.0159 (3)0.0035 (2)0.0057 (2)0.0013 (2)
C10A0.0123 (2)0.0136 (3)0.0128 (2)0.0036 (2)0.00367 (19)0.0027 (2)
C11A0.0172 (3)0.0194 (4)0.0182 (3)0.0031 (3)0.0079 (3)0.0049 (3)
C12A0.0199 (4)0.0275 (5)0.0178 (3)0.0067 (3)0.0104 (3)0.0061 (3)
C13A0.0210 (3)0.0264 (5)0.0127 (3)0.0106 (3)0.0071 (2)0.0024 (3)
C14A0.0175 (3)0.0184 (4)0.0118 (2)0.0056 (3)0.0044 (2)0.0004 (2)
C15A0.0168 (3)0.0122 (3)0.0139 (3)0.0035 (2)0.0034 (2)0.0007 (2)
C16A0.0287 (4)0.0117 (3)0.0144 (3)0.0040 (3)0.0043 (3)0.0005 (2)
Zn20.01021 (3)0.01191 (4)0.00994 (3)0.00248 (3)0.00271 (2)0.00051 (3)
O2W0.0141 (2)0.0145 (3)0.0153 (2)0.00460 (19)0.00156 (17)0.00032 (19)
N1B0.0109 (2)0.0138 (3)0.0114 (2)0.00427 (18)0.00268 (16)0.00160 (18)
N2B0.0135 (2)0.0148 (3)0.0167 (2)0.0067 (2)0.00503 (19)0.0004 (2)
N3B0.0122 (2)0.0128 (3)0.0132 (2)0.00396 (19)0.00343 (17)0.00034 (19)
N4B0.0135 (2)0.0156 (3)0.0123 (2)0.0037 (2)0.00466 (18)0.0001 (2)
N5B0.0182 (3)0.0147 (3)0.0184 (3)0.0034 (2)0.0023 (2)0.0026 (2)
C1B0.0124 (2)0.0177 (3)0.0118 (2)0.0061 (2)0.00272 (19)0.0019 (2)
C2B0.0137 (3)0.0192 (4)0.0123 (2)0.0053 (2)0.0041 (2)0.0012 (2)
C3B0.0167 (3)0.0167 (4)0.0117 (2)0.0033 (2)0.0031 (2)0.0022 (2)
C4B0.0162 (3)0.0156 (3)0.0150 (3)0.0048 (2)0.0023 (2)0.0046 (2)
C5B0.0119 (2)0.0125 (3)0.0143 (2)0.0041 (2)0.0022 (2)0.0023 (2)
C6B0.0163 (3)0.0150 (3)0.0219 (3)0.0084 (3)0.0058 (3)0.0050 (3)
C7B0.0100 (2)0.0192 (4)0.0218 (3)0.0054 (2)0.0023 (2)0.0023 (3)
C8B0.0141 (3)0.0157 (3)0.0154 (3)0.0027 (2)0.0006 (2)0.0012 (2)
C9B0.0174 (3)0.0122 (3)0.0182 (3)0.0027 (2)0.0063 (2)0.0006 (2)
C10B0.0128 (3)0.0155 (3)0.0144 (3)0.0045 (2)0.0045 (2)0.0030 (2)
C11B0.0177 (3)0.0209 (4)0.0202 (3)0.0021 (3)0.0088 (3)0.0057 (3)
C12B0.0205 (4)0.0302 (5)0.0194 (3)0.0078 (3)0.0113 (3)0.0085 (3)
C13B0.0209 (4)0.0276 (5)0.0140 (3)0.0105 (3)0.0080 (3)0.0038 (3)
C14B0.0184 (3)0.0202 (4)0.0128 (3)0.0059 (3)0.0059 (2)0.0001 (2)
C15B0.0161 (3)0.0132 (3)0.0156 (3)0.0039 (2)0.0032 (2)0.0000 (2)
C16B0.0255 (4)0.0125 (3)0.0177 (3)0.0040 (3)0.0054 (3)0.0012 (3)
Cl10.01268 (6)0.01273 (7)0.01505 (6)0.00419 (5)0.00425 (5)0.00015 (5)
O110.0276 (3)0.0176 (3)0.0170 (2)0.0092 (3)0.0090 (2)0.0001 (2)
O120.0400 (5)0.0205 (4)0.0306 (4)0.0195 (4)0.0129 (3)0.0039 (3)
O130.0281 (4)0.0244 (4)0.0381 (5)0.0021 (3)0.0190 (4)0.0039 (4)
O140.0241 (4)0.0441 (6)0.0252 (4)0.0174 (4)0.0069 (3)0.0100 (4)
Cl20.01223 (6)0.01228 (7)0.01196 (6)0.00475 (5)0.00369 (5)0.00156 (5)
O210.0431 (5)0.0244 (4)0.0232 (3)0.0248 (4)0.0125 (3)0.0065 (3)
O220.0265 (3)0.0180 (3)0.0133 (2)0.0101 (2)0.0060 (2)0.0003 (2)
O230.0217 (3)0.0375 (5)0.0204 (3)0.0139 (3)0.0057 (2)0.0068 (3)
O240.0290 (4)0.0255 (4)0.0368 (5)0.0031 (3)0.0195 (4)0.0047 (4)
Cl30.01840 (8)0.01536 (8)0.01327 (6)0.00440 (6)0.00522 (5)0.00059 (6)
O310.0211 (3)0.0159 (3)0.0381 (4)0.0051 (2)0.0087 (3)0.0000 (3)
O320.0294 (4)0.0306 (5)0.0326 (4)0.0080 (3)0.0116 (3)0.0113 (4)
O330.0229 (4)0.0339 (6)0.0813 (10)0.0011 (4)0.0264 (5)0.0116 (6)
O340.0904 (11)0.0514 (8)0.0264 (5)0.0168 (8)0.0155 (6)0.0158 (5)
Cl40.01332 (12)0.01540 (11)0.01515 (10)0.00505 (11)0.00474 (10)0.00139 (8)
O410.0188 (3)0.0219 (4)0.0380 (5)0.0011 (3)0.0079 (4)0.0122 (4)
O420.0441 (6)0.0305 (5)0.0285 (4)0.0074 (4)0.0227 (4)0.0075 (4)
O430.0524 (7)0.0308 (6)0.0174 (3)0.0114 (5)0.0060 (4)0.0023 (3)
O440.0274 (5)0.0380 (7)0.0897 (12)0.0219 (5)0.0089 (6)0.0136 (7)
Cl4A0.0147 (13)0.0239 (15)0.0141 (10)0.0072 (13)0.0038 (10)0.0015 (9)
O41A0.0188 (3)0.0219 (4)0.0380 (5)0.0011 (3)0.0079 (4)0.0122 (4)
O42A0.0441 (6)0.0305 (5)0.0285 (4)0.0074 (4)0.0227 (4)0.0075 (4)
O43A0.0524 (7)0.0308 (6)0.0174 (3)0.0114 (5)0.0060 (4)0.0023 (3)
O44A0.0274 (5)0.0380 (7)0.0897 (12)0.0219 (5)0.0089 (6)0.0136 (7)
Geometric parameters (Å, º) top
Zn1—N5A2.1231 (8)N2B—C6B1.4730 (12)
Zn1—O1W2.1333 (7)N2B—C7B1.4737 (12)
Zn1—N4A2.1341 (7)N2B—H2BB1.0000
Zn1—N2A2.1692 (7)N3B—C9B1.4734 (11)
Zn1—N1A2.1707 (7)N3B—C8B1.4818 (12)
Zn1—N3A2.2056 (7)N3B—H3BB1.0000
O1W—H1W10.839 (13)N4B—C10B1.3413 (12)
O1W—H1W20.803 (13)N4B—C14B1.3458 (11)
N1A—C5A1.3441 (11)N5B—C15B1.1464 (12)
N1A—C1A1.3443 (10)C1B—C2B1.3861 (11)
N2A—C6A1.4711 (11)C1B—H1BA0.9500
N2A—C7A1.4757 (12)C2B—C3B1.3915 (13)
N2A—H2AB1.0000C2B—H2BA0.9500
N3A—C9A1.4754 (11)C3B—C4B1.3861 (13)
N3A—C8A1.4811 (11)C3B—H3BA0.9500
N3A—H3AB1.0000C4B—C5B1.3945 (12)
N4A—C10A1.3415 (11)C4B—H4BA0.9500
N4A—C14A1.3476 (11)C5B—C6B1.5111 (12)
N5A—C15A1.1457 (12)C6B—H6BA0.9900
C1A—C2A1.3892 (11)C6B—H6BB0.9900
C1A—H1AA0.9500C7B—C8B1.5222 (14)
C2A—C3A1.3917 (14)C7B—H7BA0.9900
C2A—H2AA0.9500C7B—H7BB0.9900
C3A—C4A1.3867 (13)C8B—H8BA0.9900
C3A—H3AA0.9500C8B—H8BB0.9900
C4A—C5A1.3954 (11)C9B—C10B1.5099 (12)
C4A—H4AA0.9500C9B—H9BA0.9900
C5A—C6A1.5094 (11)C9B—H9BB0.9900
C6A—H6AA0.9900C10B—C11B1.3925 (12)
C6A—H6AB0.9900C11B—C12B1.3917 (15)
C7A—C8A1.5204 (13)C11B—H11B0.9500
C7A—H7AA0.9900C12B—C13B1.3873 (17)
C7A—H7AB0.9900C12B—H12B0.9500
C8A—H8AA0.9900C13B—C14B1.3874 (13)
C8A—H8AB0.9900C13B—H13B0.9500
C9A—C10A1.5067 (12)C14B—H14B0.9500
C9A—H9AA0.9900C15B—C16B1.4456 (13)
C9A—H9AB0.9900C16B—H16D0.9800
C10A—C11A1.3933 (12)C16B—H16E0.9800
C11A—C12A1.3891 (14)C16B—H16F0.9800
C11A—H11A0.9500Cl1—O121.4317 (9)
C12A—C13A1.3925 (16)Cl1—O131.4334 (9)
C12A—H12A0.9500Cl1—O141.4399 (9)
C13A—C14A1.3880 (12)Cl1—O111.4577 (7)
C13A—H13A0.9500Cl2—O211.4313 (9)
C14A—H14A0.9500Cl2—O241.4371 (9)
C15A—C16A1.4499 (13)Cl2—O231.4399 (8)
C16A—H16A0.9800Cl2—O221.4574 (7)
C16A—H16B0.9800Cl3—O331.4227 (10)
C16A—H16C0.9800Cl3—O341.4272 (11)
Zn2—O2W2.1279 (7)Cl3—O321.4289 (9)
Zn2—N5B2.1328 (8)Cl3—O311.4575 (9)
Zn2—N4B2.1345 (7)Cl4—O441.4263 (12)
Zn2—N1B2.1440 (7)Cl4—O431.4334 (11)
Zn2—N2B2.1674 (8)Cl4—O421.4396 (10)
Zn2—N3B2.2066 (7)Cl4—O411.4592 (11)
O2W—H2W10.818 (13)Cl4A—O41A1.394 (10)
O2W—H2W20.817 (13)Cl4A—O43A1.425 (11)
N1B—C1B1.3436 (11)Cl4A—O44A1.451 (11)
N1B—C5B1.3451 (11)Cl4A—O42A1.470 (10)
N5A—Zn1—O1W86.48 (3)Zn2—O2W—H2W1115.0 (14)
N5A—Zn1—N4A93.75 (3)Zn2—O2W—H2W2120.0 (12)
O1W—Zn1—N4A95.55 (3)H2W1—O2W—H2W2106.0 (16)
N5A—Zn1—N2A92.19 (3)C1B—N1B—C5B118.86 (7)
O1W—Zn1—N2A172.06 (3)C1B—N1B—Zn2126.05 (6)
N4A—Zn1—N2A92.34 (3)C5B—N1B—Zn2114.63 (5)
N5A—Zn1—N1A96.07 (3)C6B—N2B—C7B114.68 (7)
O1W—Zn1—N1A93.28 (3)C6B—N2B—Zn2109.28 (5)
N4A—Zn1—N1A167.17 (3)C7B—N2B—Zn2105.72 (6)
N2A—Zn1—N1A79.06 (3)C6B—N2B—H2BB109.0
N5A—Zn1—N3A171.11 (3)C7B—N2B—H2BB109.0
O1W—Zn1—N3A99.00 (3)Zn2—N2B—H2BB109.0
N4A—Zn1—N3A78.83 (3)C9B—N3B—C8B113.46 (7)
N2A—Zn1—N3A83.32 (3)C9B—N3B—Zn2110.38 (5)
N1A—Zn1—N3A90.62 (3)C8B—N3B—Zn2103.99 (6)
Zn1—O1W—H1W1121.3 (12)C9B—N3B—H3BB109.6
Zn1—O1W—H1W2118.1 (13)C8B—N3B—H3BB109.6
H1W1—O1W—H1W2104.6 (15)Zn2—N3B—H3BB109.6
C5A—N1A—C1A118.48 (7)C10B—N4B—C14B118.88 (7)
C5A—N1A—Zn1113.99 (5)C10B—N4B—Zn2115.92 (5)
C1A—N1A—Zn1126.90 (6)C14B—N4B—Zn2124.92 (6)
C6A—N2A—C7A114.60 (7)C15B—N5B—Zn2171.64 (8)
C6A—N2A—Zn1109.42 (5)N1B—C1B—C2B122.58 (8)
C7A—N2A—Zn1105.92 (5)N1B—C1B—H1BA118.7
C6A—N2A—H2AB108.9C2B—C1B—H1BA118.7
C7A—N2A—H2AB108.9C1B—C2B—C3B118.67 (8)
Zn1—N2A—H2AB108.9C1B—C2B—H2BA120.7
C9A—N3A—C8A113.24 (7)C3B—C2B—H2BA120.7
C9A—N3A—Zn1110.38 (5)C4B—C3B—C2B118.97 (8)
C8A—N3A—Zn1104.29 (5)C4B—C3B—H3BA120.5
C9A—N3A—H3AB109.6C2B—C3B—H3BA120.5
C8A—N3A—H3AB109.6C3B—C4B—C5B119.14 (8)
Zn1—N3A—H3AB109.6C3B—C4B—H4BA120.4
C10A—N4A—C14A118.80 (7)C5B—C4B—H4BA120.4
C10A—N4A—Zn1115.96 (5)N1B—C5B—C4B121.76 (8)
C14A—N4A—Zn1124.98 (6)N1B—C5B—C6B116.85 (7)
C15A—N5A—Zn1173.47 (8)C4B—C5B—C6B121.37 (8)
N1A—C1A—C2A122.56 (8)N2B—C6B—C5B112.39 (7)
N1A—C1A—H1AA118.7N2B—C6B—H6BA109.1
C2A—C1A—H1AA118.7C5B—C6B—H6BA109.1
C1A—C2A—C3A118.96 (8)N2B—C6B—H6BB109.1
C1A—C2A—H2AA120.5C5B—C6B—H6BB109.1
C3A—C2A—H2AA120.5H6BA—C6B—H6BB107.9
C4A—C3A—C2A118.64 (7)N2B—C7B—C8B111.43 (7)
C4A—C3A—H3AA120.7N2B—C7B—H7BA109.3
C2A—C3A—H3AA120.7C8B—C7B—H7BA109.3
C3A—C4A—C5A119.11 (8)N2B—C7B—H7BB109.3
C3A—C4A—H4AA120.4C8B—C7B—H7BB109.3
C5A—C4A—H4AA120.4H7BA—C7B—H7BB108.0
N1A—C5A—C4A122.22 (7)N3B—C8B—C7B111.31 (7)
N1A—C5A—C6A116.98 (7)N3B—C8B—H8BA109.4
C4A—C5A—C6A120.78 (7)C7B—C8B—H8BA109.4
N2A—C6A—C5A112.56 (7)N3B—C8B—H8BB109.4
N2A—C6A—H6AA109.1C7B—C8B—H8BB109.4
C5A—C6A—H6AA109.1H8BA—C8B—H8BB108.0
N2A—C6A—H6AB109.1N3B—C9B—C10B112.76 (7)
C5A—C6A—H6AB109.1N3B—C9B—H9BA109.0
H6AA—C6A—H6AB107.8C10B—C9B—H9BA109.0
N2A—C7A—C8A111.17 (7)N3B—C9B—H9BB109.0
N2A—C7A—H7AA109.4C10B—C9B—H9BB109.0
C8A—C7A—H7AA109.4H9BA—C9B—H9BB107.8
N2A—C7A—H7AB109.4N4B—C10B—C11B122.01 (8)
C8A—C7A—H7AB109.4N4B—C10B—C9B118.08 (7)
H7AA—C7A—H7AB108.0C11B—C10B—C9B119.88 (9)
N3A—C8A—C7A111.08 (7)C12B—C11B—C10B118.89 (10)
N3A—C8A—H8AA109.4C12B—C11B—H11B120.6
C7A—C8A—H8AA109.4C10B—C11B—H11B120.6
N3A—C8A—H8AB109.4C13B—C12B—C11B119.03 (8)
C7A—C8A—H8AB109.4C13B—C12B—H12B120.5
H8AA—C8A—H8AB108.0C11B—C12B—H12B120.5
N3A—C9A—C10A113.01 (7)C12B—C13B—C14B118.73 (9)
N3A—C9A—H9AA109.0C12B—C13B—H13B120.6
C10A—C9A—H9AA109.0C14B—C13B—H13B120.6
N3A—C9A—H9AB109.0N4B—C14B—C13B122.44 (9)
C10A—C9A—H9AB109.0N4B—C14B—H14B118.8
H9AA—C9A—H9AB107.8C13B—C14B—H14B118.8
N4A—C10A—C11A122.03 (8)N5B—C15B—C16B178.72 (10)
N4A—C10A—C9A118.05 (7)C15B—C16B—H16D109.5
C11A—C10A—C9A119.89 (8)C15B—C16B—H16E109.5
C12A—C11A—C10A119.04 (9)H16D—C16B—H16E109.5
C12A—C11A—H11A120.5C15B—C16B—H16F109.5
C10A—C11A—H11A120.5H16D—C16B—H16F109.5
C11A—C12A—C13A119.00 (8)H16E—C16B—H16F109.5
C11A—C12A—H12A120.5O12—Cl1—O13110.20 (6)
C13A—C12A—H12A120.5O12—Cl1—O14110.05 (6)
C14A—C13A—C12A118.56 (8)O13—Cl1—O14109.68 (7)
C14A—C13A—H13A120.7O12—Cl1—O11109.31 (5)
C12A—C13A—H13A120.7O13—Cl1—O11108.58 (6)
N4A—C14A—C13A122.55 (9)O14—Cl1—O11108.98 (5)
N4A—C14A—H14A118.7O21—Cl2—O24110.32 (7)
C13A—C14A—H14A118.7O21—Cl2—O23109.89 (6)
N5A—C15A—C16A178.76 (10)O24—Cl2—O23109.62 (7)
C15A—C16A—H16A109.5O21—Cl2—O22109.38 (5)
C15A—C16A—H16B109.5O24—Cl2—O22108.82 (6)
H16A—C16A—H16B109.5O23—Cl2—O22108.78 (5)
C15A—C16A—H16C109.5O33—Cl3—O34110.84 (10)
H16A—C16A—H16C109.5O33—Cl3—O32110.98 (7)
H16B—C16A—H16C109.5O34—Cl3—O32109.27 (9)
O2W—Zn2—N5B86.23 (3)O33—Cl3—O31108.63 (7)
O2W—Zn2—N4B95.01 (3)O34—Cl3—O31107.40 (8)
N5B—Zn2—N4B94.02 (3)O32—Cl3—O31109.64 (6)
O2W—Zn2—N1B94.46 (3)O44—Cl4—O43109.61 (9)
N5B—Zn2—N1B95.88 (3)O44—Cl4—O42110.78 (10)
N4B—Zn2—N1B166.72 (3)O43—Cl4—O42108.45 (8)
O2W—Zn2—N2B173.16 (3)O44—Cl4—O41110.85 (8)
N5B—Zn2—N2B91.53 (3)O43—Cl4—O41108.89 (8)
N4B—Zn2—N2B91.59 (3)O42—Cl4—O41108.19 (7)
N1B—Zn2—N2B79.32 (3)O41A—Cl4A—O43A110.6 (7)
O2W—Zn2—N3B99.39 (3)O41A—Cl4A—O44A110.7 (7)
N5B—Zn2—N3B171.13 (3)O43A—Cl4A—O44A106.2 (8)
N4B—Zn2—N3B78.74 (3)O41A—Cl4A—O42A112.6 (6)
N1B—Zn2—N3B90.55 (3)O43A—Cl4A—O42A107.6 (8)
N2B—Zn2—N3B83.64 (3)O44A—Cl4A—O42A108.9 (7)
C5A—N1A—C1A—C2A0.45 (13)C5B—N1B—C1B—C2B0.17 (13)
Zn1—N1A—C1A—C2A170.73 (7)Zn2—N1B—C1B—C2B171.97 (7)
N1A—C1A—C2A—C3A1.40 (14)N1B—C1B—C2B—C3B0.97 (14)
C1A—C2A—C3A—C4A0.62 (14)C1B—C2B—C3B—C4B0.37 (14)
C2A—C3A—C4A—C5A0.99 (13)C2B—C3B—C4B—C5B0.95 (14)
C1A—N1A—C5A—C4A1.28 (13)C1B—N1B—C5B—C4B1.23 (13)
Zn1—N1A—C5A—C4A170.23 (7)Zn2—N1B—C5B—C4B171.48 (7)
C1A—N1A—C5A—C6A176.98 (8)C1B—N1B—C5B—C6B177.17 (8)
Zn1—N1A—C5A—C6A11.51 (10)Zn2—N1B—C5B—C6B10.12 (10)
C3A—C4A—C5A—N1A2.01 (13)C3B—C4B—C5B—N1B1.80 (14)
C3A—C4A—C5A—C6A176.18 (8)C3B—C4B—C5B—C6B176.53 (9)
C7A—N2A—C6A—C5A88.34 (9)C7B—N2B—C6B—C5B88.80 (9)
Zn1—N2A—C6A—C5A30.44 (8)Zn2—N2B—C6B—C5B29.66 (9)
N1A—C5A—C6A—N2A28.85 (11)N1B—C5B—C6B—N2B27.36 (11)
C4A—C5A—C6A—N2A152.86 (8)C4B—C5B—C6B—N2B154.22 (8)
C6A—N2A—C7A—C8A81.07 (9)C6B—N2B—C7B—C8B80.96 (10)
Zn1—N2A—C7A—C8A39.66 (8)Zn2—N2B—C7B—C8B39.49 (8)
C9A—N3A—C8A—C7A78.77 (9)C9B—N3B—C8B—C7B79.08 (9)
Zn1—N3A—C8A—C7A41.26 (7)Zn2—N3B—C8B—C7B40.87 (8)
N2A—C7A—C8A—N3A57.67 (9)N2B—C7B—C8B—N3B57.50 (10)
C8A—N3A—C9A—C10A95.69 (9)C8B—N3B—C9B—C10B94.37 (9)
Zn1—N3A—C9A—C10A20.81 (9)Zn2—N3B—C9B—C10B21.88 (9)
C14A—N4A—C10A—C11A0.70 (13)C14B—N4B—C10B—C11B0.15 (14)
Zn1—N4A—C10A—C11A173.79 (7)Zn2—N4B—C10B—C11B174.13 (8)
C14A—N4A—C10A—C9A177.04 (8)C14B—N4B—C10B—C9B177.88 (9)
Zn1—N4A—C10A—C9A8.47 (10)Zn2—N4B—C10B—C9B7.84 (11)
N3A—C9A—C10A—N4A20.16 (11)N3B—C9B—C10B—N4B20.49 (12)
N3A—C9A—C10A—C11A162.05 (8)N3B—C9B—C10B—C11B161.43 (9)
N4A—C10A—C11A—C12A1.57 (15)N4B—C10B—C11B—C12B0.97 (16)
C9A—C10A—C11A—C12A176.13 (9)C9B—C10B—C11B—C12B177.03 (10)
C10A—C11A—C12A—C13A0.78 (16)C10B—C11B—C12B—C13B0.76 (17)
C11A—C12A—C13A—C14A0.78 (16)C11B—C12B—C13B—C14B0.20 (17)
C10A—N4A—C14A—C13A0.98 (14)C10B—N4B—C14B—C13B0.88 (15)
Zn1—N4A—C14A—C13A174.93 (7)Zn2—N4B—C14B—C13B174.61 (8)
C12A—C13A—C14A—N4A1.72 (15)C12B—C13B—C14B—N4B1.06 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W2···O41i0.80 (1)2.04 (1)2.8410 (12)178 (2)
O1W—H1W2···O43Ai0.80 (1)1.94 (2)2.730 (15)170 (2)
N2A—H2AB···O411.002.283.1809 (12)150
N2A—H2AB···O421.002.283.1468 (15)144
N2A—H2AB···O42A1.002.403.328 (12)153
N2A—H2AB···O43A1.002.503.396 (15)149
N3A—H3AB···O231.002.173.0889 (12)152
C4A—H4AA···O42ii0.952.603.4025 (15)142
C7A—H7AA···O24iii0.992.413.1218 (12)128
C14A—H14A···O32iv0.952.413.1645 (13)136
C16A—H16B···O22v0.982.513.4788 (13)169
O2W—H2W1···O31iv0.82 (1)2.00 (1)2.8091 (11)174 (2)
O2W—H2W2···O110.82 (1)1.99 (1)2.7690 (11)159 (2)
N2B—H2BB···O31vi1.002.363.2467 (12)148
N2B—H2BB···O33vi1.002.323.2331 (15)152
N3B—H3BB···O141.002.203.1169 (13)152
C7B—H7BB···O13i0.992.443.1430 (12)128
C14B—H14B···O43i0.952.483.2138 (15)134
C14B—H14B···O44Ai0.952.323.149 (13)145
C16B—H16D···O43Ai0.982.543.419 (13)150
C16B—H16E···O11vii0.982.553.5083 (14)166
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+1; (iii) x+1, y, z; (iv) x+1, y+1, z; (v) x, y1, z; (vi) x, y+1, z; (vii) x, y+1, z.
 

Acknowledgements

RJB is grateful to Howard University Nanoscience Facility for access to liquid nitro­gen.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. 1205608, Partnership for Reduced Dimensional Materials, to RJB); NSF MRI program (grant No. CHE-0619278), for the purchase of an X-ray diffractometer.

References

First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChen, K., Costas, M., Kim, J., Tipton, A. K. & Que, L. Jr (2002). J. Am. Chem. Soc. 124, 3026–3035.  CrossRef PubMed CAS
First citationChen, M. S. & White, M. C. (2010). Science, 327, 566–571.  CrossRef CAS PubMed
First citationDas, S., Incarvito, C. D., Crabtree, R. H. & Brudvig, G. W. (2006). Science, 312, 1941–1943.  CrossRef PubMed CAS
First citationEngland, J., Britovsek, G. J. P., Rabadia, N. & White, A. J. P. (2007). Inorg. Chem. 46, 3752–3767.  CrossRef PubMed CAS
First citationGoodson, P. A., Glerup, J., Hodgson, D. J., Michelsen, K. & Pedersen, E. (1990). Inorg. Chem. 29, 503–508.  CSD CrossRef CAS Web of Science
First citationGoodson, P. A., Glerup, J., Hodgson, D. J., Michelsen, K. & Weihe, H. (1991). Inorg. Chem. 30, 4909–4914.  CrossRef CAS
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationGultneh, Y., Allwar, Ahvazi, B., Blaise, D., Butcher, R. J., Jasinski, J. M. & Jasinski, J. P. (1996). Inorg. Chim. Acta, 241, 31–38.  CrossRef CAS
First citationGultneh, Y., Khan, A. R., Blaise, D., Chaudhry, S., Ahvazi, B., Marvey, B. B. & Butcher, R. J. (1999). J. Inorg. Biochem. 75, 7–18.  Web of Science CSD CrossRef CAS
First citationGunay, A. & Theopold, K. H. (2010). Chem. Rev. 110, 1060–1081.  CrossRef CAS PubMed
First citationHureau, C., Anxolabéhère-Mallart, E., Blondin, G., Rivière, E. & Nierlich, M. (2005a). Eur. J. Inorg. Chem. 23, 4808–4817.  CrossRef
First citationHureau, C., Blondin, G., Charlot, M.-F., Philouze, C., Nierlich, M., Césario, M. & Anxolabéhère-Mallart, E. (2005b). Inorg. Chem. 44, 3669–3683.  CrossRef PubMed CAS
First citationJacobsen, E. N., Zhang, W., Muci, A. R., Ecker, J. R. & Deng, L. (1991). J. Am. Chem. Soc. 113, 7063–7064.  CrossRef CAS Web of Science
First citationMas-Ballesté, R., Costas, R., Van Den Berg, M. T. & Que, L. Jr (2006). Chem. Eur. J. 12, 7489–7500.  PubMed
First citationParajón-Costa, B. S., Echeverría, G. A., Piro, O. E. & Baran, E. J. (2013). Z. Naturforsch. Teil B, 68, 1327–1332.
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
First citation[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds