research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of {[1′-(di­phenyl­phosphino)ferrocen­yl]meth­yl}di­methyl­ammonium chloride monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague 2, Czech Republic
*Correspondence e-mail: petr.stepnicka@natur.cuni.cz

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 8 September 2017; accepted 19 September 2017; online 25 September 2017)

Individual ions and the solvating water mol­ecule constituting the structure of the title compound, [Fe(C8H13N)(C17H14P)]Cl·H2O, assemble into dimeric units located around crystallographic inversion centers via N—H⋯Cl and O—H⋯Cl hydrogen bonds. These discrete fragments are further inter­connected into chains by C—H⋯O inter­actions. The disubstituted ferrocene core in the {[1′-(di­phenyl­phosphino)ferrocen­yl]meth­yl}di­methyl­ammonium cation has an approximate synclinal eclipsed conformation and is tilted by 3.40 (11)°.

1. Chemical context

Chiral phosphinoferrocene amines are recognized to be efficient supporting ligands for transition-metal-catalysed reactions as well as useful synthetic precursors for a range of ferrocene derivatives (Štěpnička et al., 2008[Štěpnička, P. (2008). Ferrocenes: Ligands, Materials and Biomolecules. Chichester: Wiley.]). In contrast, their non-chiral counterparts have received limited attention. While studying functional derivatives of the ubiquitous 1,1′-bis­(di­phenyl­phosphino)ferrocene (dppf), we have devised an alternative synthesis of 1′-(di­phenyl­phosphino)-1-[(di­methyl­amino)­meth­yl]ferrocene, Ph2PfcCH2NMe2 (fc = ferrocene-1,1′-di­yl), firstly reported by Wright (1990[Wright, M. E. (1990). Organometallics, 9, 853-856.]), and studied this compound as a ligand in PdII and AuI complexes (Štěpnička et al., 2012[Štěpnička, P., Zábranský, M. & Císařová, I. (2012). ChemistryOpen 1, pp. 71-79.]). More recently, we have converted this phosphino­amine into a phosphinoferrocene betaine Ph2PfcCH2NMe2(CH2)3SO3, which was in turn used to prepare new functional ferrocene phosphines (Zábranský et al., 2015[Zábranský, M., Císařová, I. & Štěpnička, P. (2015). Dalton Trans. 44, 14494-14506.], 2017[Zábranský, M., Císařová, I. & Štěpnička, P. (2017). Eur. J. Inorg. Chem. pp. 2557-2572.]). This contribution describes the crystal structure of a hydrated hydro­chloride of this amine, [Ph2PfcCH2NHMe2]Cl·H2O, which was isolated serendipitously while regenerating the amine after preparation of the aforementioned betaine.

[Scheme 1]

2. Structural commentary

A view of the mol­ecular structure of the title compound, with atom labelling, is shown in Fig. 1[link]. The ferrocene moiety in the {[1′-(di­phenyl­phosphino)ferrocen­yl]meth­yl}di­methyl­ammonium cation has a regular geometry with the individual Fe—C bonds ranging from 2.0239 (15) Å (C1) to 2.0489 (15) Å (C7). Its cyclo­penta­dienyl rings are tilted by 3.40 (11)° and assume an eclipsed conformation with the attached substituents oriented in a synclinal fashion, as demonstrated by the torsion angle C1—Cg1—Cg2—C6 of −85.38 (12)°, where Cg1 and Cg2 are the centroids of the cyclo­penta­dienyl rings C1–C5 and C6–C10, respectively.

[Figure 1]
Figure 1
PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) plot of the cation in the structure of the title compound. Displacement ellipsoids correspond to the 50% probability level.

The protonated amino­methyl chain is directed away from the ferrocene core, with the angle between the C1—N bond and the axis of the ferrocene unit, Cg1⋯Cg2, being 148.99 (11)°. The phosphine substituent at the other cyclo­penta­dienyl ring is oriented so that one of its pivotal P—C(Ph) bonds lies nearly in the plane of the bonding five-membered ring C6–C10, while the other is roughly parallel with the axis of the ferrocene unit. The angle at which the P—C18 bond inter­sects the C6–C10 plane is 13.17 (10)°, whereas the angle subtended by the P—C12 bond and the Cg1⋯Cg2 line is only 8.68 (5)°.

3. Supra­molecular features

Each [Ph2PfcCH2NHMe2]+ cation in the structure of the title compound is involved in an N—H⋯Cl hydrogen bond to a proximal chloride anion (for hydrogen-bond parameters, see Table 1[link]). The anions further act as hydrogen-bond acceptors for a pair of inversion-related water mol­ecules, which in turn results in the formation of charge-neutral, closed dimeric arrays {(Ph2PfcCH2NHMe2)2Cl2(H2O)2} around the crystallographic inversion centers. These discrete units are further inter­linked into chains along the a axis via the weaker C—H⋯O and C—H⋯Cl inter­actions, as shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H1N⋯Cl 0.92 2.13 3.0323 (16) 167
O1W—H1W⋯Cl 0.98 2.23 3.2162 (19) 177
O1W—H2W⋯Cli 1.02 2.29 3.289 (2) 166
C10—H10⋯O1Wii 0.95 2.46 3.390 (3) 165
C11—H11B⋯Clii 0.99 2.77 3.7369 (17) 167
Symmetry codes: (i) -x, -y+2, -z+2; (ii) -x+1, -y+2, -z+2.
[Figure 2]
Figure 2
Section of the hydrogen-bonded chains in the structure of the title compound. For clarity, hydrogen atoms not involved in hydrogen bonding are omitted.

4. Database survey

A search in the Cambridge Structural Database (Version 5.38 with the latest update from May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structurally related compounds resulted in the structures of two similar (ferrocenylmeth­yl)ammonium salts, namely N-(ferrocenylmeth­yl)di­methyl­ammonium chloride (Winter & Wolmershäuser, 1998[Winter, R. F. & Wolmershäuser, G. (1998). J. Organomet. Chem. 570, 201-218.]) and its dihydrate (Guo et al., 2006[Guo, H.-X., Zhou, X.-J., Lin, Z.-X. & Liu, J.-M. (2006). Acta Cryst. E62, m1770-m1772.]), and two complexes obtained from Ph2PfcCH2NMe2 featuring a protonated (di­methyl­amino)­methyl side chain, viz. [AuCl(Ph2PfcCH2NHMe2)]X, where X = Cl and ClO4 (Štěpnička et al., 2012[Štěpnička, P., Zábranský, M. & Císařová, I. (2012). ChemistryOpen 1, pp. 71-79.]).

5. Synthesis and crystallization

The `amine' Ph2PfcCH2NMe2 regenerated from the synthesis of the phosphinoferrocene betaine Ph2PfcCH2NMe2(CH2)3SO3 (Zábranský et al., 2015[Zábranský, M., Císařová, I. & Štěpnička, P. (2015). Dalton Trans. 44, 14494-14506.]) (ca 100 mg) was dissolved in acetic acid (10 mL) and the solution was evaporated under reduced pressure. After this procedure was repeated twice using chloro­form as a solvent, the residue was dissolved in a minimum amount of hot ethyl acetate. The solution was filtered and layered with hexane. Crystallization by liquid-phase diffusion over several days afforded orange crystals of the title compound. The yield was not determined.

Analysis calculated for [C25H27FeNP]Cl·H2O (481.76 g mol−1): C 62.32, H 6.07, N 2.91%. Found: C 62.23, H 5.91, N 2.79%. ESI MS: m/z 383 ([Ph2PfcCH2]+), 428 ([Ph2PfcCH2NMe2 + H]+)

6. Refinement

Relevant crystallographic data and structure refinement parameters are summarized in Table 2[link]. All non-hydrogen atoms were refined freely with anisotropic displacement parameters. The hydrogen atoms of the water mol­ecule and the NH proton were located on a difference electron-density map and refined as riding atoms with Uiso(H) set to 1.2Ueq of their bonding atom. Hydrogen atoms bonded to carbons were included in their theoretical positions and refined as riding atoms with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Fe(C8H13N)(C17H14P)]Cl·H2O
Mr 481.76
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 7.9888 (3), 12.7596 (6), 13.2311 (5)
α, β, γ (°) 111.037 (1), 104.075 (1), 99.628 (2)
V3) 1171.76 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.84
Crystal size (mm) 0.27 × 0.26 × 0.14
 
Data collection
Diffractometer Bruker D8 VENTURE Kappa Duo PHOTON 100 CMOS
Absorption correction Numerical (SADABS; Bruker, 2014[Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.78, 0.89
No. of measured, independent and observed [I > 2σ(I)] reflections 24764, 5361, 4820
Rint 0.024
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.074, 1.06
No. of reflections 5361
No. of parameters 273
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.77, −0.53
Computer programs: Instrument Service and SAINT (Bruker, 2015[Bruker (2015). Instrument Service and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: Instrument Service (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

{[1'-(Diphenylphosphino)ferrocenyl]methyl}dimethylammonium chloride monohydrate top
Crystal data top
[Fe(C8H13N)(C17H14P]Cl·H2OZ = 2
Mr = 481.76F(000) = 504
Triclinic, P1Dx = 1.365 Mg m3
a = 7.9888 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.7596 (6) ÅCell parameters from 9875 reflections
c = 13.2311 (5) Åθ = 2.7–27.5°
α = 111.037 (1)°µ = 0.84 mm1
β = 104.075 (1)°T = 150 K
γ = 99.628 (2)°Plate, orange
V = 1171.76 (8) Å30.27 × 0.26 × 0.14 mm
Data collection top
Bruker D8 VENTURE Kappa Duo PHOTON 100 CMOS
diffractometer
5361 independent reflections
Radiation source: IµS micro-focus sealed tube4820 reflections with I > 2σ(I)
Quazar Mo multilayer optic monochromatorRint = 0.024
φ and ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: numerical
(SADABS; Bruker, 2014)
h = 1010
Tmin = 0.78, Tmax = 0.89k = 1616
24764 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: mixed
wR(F2) = 0.074H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0302P)2 + 0.8395P]
where P = (Fo2 + 2Fc2)/3
5361 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.53 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.35629 (3)0.59451 (2)0.78521 (2)0.01686 (7)
P0.60918 (5)0.42728 (3)0.65913 (3)0.02008 (9)
N0.48959 (19)0.94040 (11)0.77917 (12)0.0222 (3)
H1N0.41150.96190.81850.027*
C10.3623 (2)0.73548 (13)0.74808 (13)0.0190 (3)
C20.3012 (2)0.63030 (14)0.64396 (13)0.0246 (3)
H20.35590.61200.58600.029*
C30.1436 (2)0.55845 (15)0.64331 (15)0.0305 (4)
H30.07550.48320.58500.037*
C40.1056 (2)0.61835 (16)0.74453 (17)0.0306 (4)
H40.00750.59030.76550.037*
C50.2396 (2)0.72753 (15)0.80907 (15)0.0242 (3)
H50.24630.78530.88050.029*
C60.5294 (2)0.49253 (13)0.77727 (13)0.0188 (3)
C70.3773 (2)0.44264 (14)0.80049 (13)0.0214 (3)
H70.29590.36680.75490.026*
C80.3684 (3)0.52571 (16)0.90340 (14)0.0282 (4)
H80.27940.51530.93800.034*
C90.5155 (3)0.62697 (15)0.94565 (14)0.0295 (4)
H90.54270.69561.01390.035*
C100.6153 (2)0.60790 (14)0.86822 (14)0.0240 (3)
H100.71990.66170.87530.029*
C110.5289 (2)0.83286 (14)0.79066 (14)0.0231 (3)
H11A0.60980.80670.74680.028*
H11B0.59210.85290.87230.028*
C120.7610 (2)0.35513 (13)0.71926 (14)0.0218 (3)
C130.8462 (2)0.28984 (15)0.64905 (17)0.0315 (4)
H130.82580.28520.57360.038*
C140.9599 (2)0.23210 (16)0.6890 (2)0.0422 (5)
H141.01320.18560.63960.051*
C150.9964 (3)0.24150 (17)0.7998 (2)0.0442 (6)
H151.07540.20220.82680.053*
C160.9178 (3)0.30812 (18)0.8711 (2)0.0395 (5)
H160.94440.31600.94790.047*
C170.7991 (2)0.36410 (16)0.83049 (16)0.0290 (4)
H170.74390.40880.87970.035*
C180.4138 (2)0.30073 (13)0.56095 (13)0.0194 (3)
C190.2952 (2)0.31205 (15)0.47127 (14)0.0257 (3)
H190.31540.38420.46410.031*
C200.1473 (2)0.21872 (16)0.39223 (15)0.0303 (4)
H200.06690.22780.33210.036*
C210.1172 (2)0.11288 (16)0.40097 (15)0.0293 (4)
H210.01700.04910.34650.035*
C220.2337 (2)0.10042 (15)0.48951 (15)0.0298 (4)
H220.21350.02780.49570.036*
C230.3807 (2)0.19393 (14)0.56956 (14)0.0249 (3)
H230.45900.18480.63060.030*
C240.3962 (3)0.91775 (17)0.65899 (16)0.0363 (4)
H24A0.36880.98900.65630.054*
H24B0.28410.85470.62820.054*
H24C0.47380.89450.61280.054*
C250.6568 (3)1.03899 (16)0.83233 (19)0.0405 (5)
H25A0.74121.01910.79070.061*
H25B0.71171.05340.91260.061*
H25C0.62771.10950.82880.061*
Cl0.23009 (6)1.03869 (4)0.89357 (4)0.02978 (10)
O1W0.0368 (2)1.16218 (15)1.07177 (16)0.0569 (4)
H2W0.02681.10161.09380.068*
H1W0.09731.12331.01890.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.01965 (11)0.01487 (11)0.01374 (11)0.00601 (8)0.00136 (8)0.00560 (8)
P0.0215 (2)0.01765 (19)0.01958 (19)0.00385 (15)0.00531 (15)0.00777 (15)
N0.0266 (7)0.0174 (6)0.0224 (7)0.0044 (5)0.0097 (6)0.0076 (5)
C10.0216 (7)0.0165 (7)0.0189 (7)0.0076 (6)0.0027 (6)0.0089 (6)
C20.0342 (9)0.0206 (8)0.0164 (7)0.0094 (7)0.0009 (6)0.0092 (6)
C30.0296 (9)0.0221 (8)0.0272 (8)0.0013 (7)0.0102 (7)0.0117 (7)
C40.0178 (8)0.0319 (9)0.0445 (10)0.0069 (7)0.0042 (7)0.0225 (8)
C50.0243 (8)0.0242 (8)0.0298 (8)0.0141 (7)0.0101 (7)0.0137 (7)
C60.0212 (7)0.0152 (7)0.0183 (7)0.0073 (6)0.0021 (6)0.0071 (6)
C70.0282 (8)0.0188 (7)0.0214 (7)0.0090 (6)0.0078 (6)0.0122 (6)
C80.0408 (10)0.0328 (9)0.0202 (8)0.0186 (8)0.0127 (7)0.0160 (7)
C90.0409 (10)0.0271 (9)0.0147 (7)0.0170 (8)0.0003 (7)0.0052 (6)
C100.0226 (8)0.0178 (7)0.0222 (8)0.0067 (6)0.0048 (6)0.0056 (6)
C110.0216 (8)0.0201 (7)0.0261 (8)0.0070 (6)0.0051 (6)0.0091 (6)
C120.0160 (7)0.0162 (7)0.0273 (8)0.0016 (6)0.0043 (6)0.0059 (6)
C130.0202 (8)0.0249 (8)0.0353 (10)0.0023 (7)0.0078 (7)0.0001 (7)
C140.0194 (8)0.0228 (9)0.0659 (15)0.0055 (7)0.0101 (9)0.0010 (9)
C150.0200 (9)0.0268 (9)0.0811 (17)0.0074 (7)0.0050 (9)0.0245 (10)
C160.0291 (10)0.0403 (11)0.0527 (12)0.0103 (8)0.0038 (9)0.0296 (10)
C170.0266 (9)0.0312 (9)0.0334 (9)0.0122 (7)0.0091 (7)0.0170 (8)
C180.0216 (7)0.0187 (7)0.0158 (7)0.0062 (6)0.0057 (6)0.0051 (6)
C190.0323 (9)0.0243 (8)0.0205 (8)0.0114 (7)0.0060 (7)0.0094 (6)
C200.0301 (9)0.0345 (9)0.0199 (8)0.0128 (7)0.0004 (7)0.0083 (7)
C210.0227 (8)0.0279 (9)0.0238 (8)0.0040 (7)0.0010 (7)0.0018 (7)
C220.0286 (9)0.0223 (8)0.0298 (9)0.0014 (7)0.0014 (7)0.0092 (7)
C230.0247 (8)0.0229 (8)0.0222 (8)0.0040 (6)0.0001 (6)0.0101 (7)
C240.0516 (12)0.0342 (10)0.0265 (9)0.0102 (9)0.0105 (8)0.0188 (8)
C250.0382 (11)0.0231 (9)0.0487 (12)0.0046 (8)0.0140 (9)0.0083 (8)
Cl0.0340 (2)0.0292 (2)0.0265 (2)0.01592 (17)0.01079 (17)0.00835 (17)
O1W0.0473 (9)0.0474 (9)0.0704 (12)0.0122 (8)0.0307 (9)0.0117 (8)
Geometric parameters (Å, º) top
Fe—C12.0239 (15)C9—H90.9500
Fe—C52.0341 (16)C10—H100.9500
Fe—C102.0389 (16)C11—H11A0.9900
Fe—C82.0411 (16)C11—H11B0.9900
Fe—C92.0433 (16)C12—C171.386 (2)
Fe—C22.0433 (16)C12—C131.401 (2)
Fe—C42.0469 (17)C13—C141.384 (3)
Fe—C32.0472 (16)C13—H130.9500
Fe—C62.0472 (15)C14—C151.380 (3)
Fe—C72.0489 (15)C14—H140.9500
P—C61.8084 (16)C15—C161.377 (3)
P—C121.8390 (17)C15—H150.9500
P—C181.8427 (16)C16—C171.397 (2)
N—C241.480 (2)C16—H160.9500
N—C251.485 (2)C17—H170.9500
N—C111.508 (2)C18—C231.395 (2)
N—H1N0.9207C18—C191.396 (2)
C1—C51.426 (2)C19—C201.393 (2)
C1—C21.437 (2)C19—H190.9500
C1—C111.487 (2)C20—C211.383 (3)
C2—C31.424 (3)C20—H200.9500
C2—H20.9500C21—C221.385 (2)
C3—C41.418 (3)C21—H210.9500
C3—H30.9500C22—C231.394 (2)
C4—C51.421 (2)C22—H220.9500
C4—H40.9500C23—H230.9500
C5—H50.9500C24—H24A0.9800
C6—C71.428 (2)C24—H24B0.9800
C6—C101.440 (2)C24—H24C0.9800
C7—C81.421 (2)C25—H25A0.9800
C7—H70.9500C25—H25B0.9800
C8—C91.420 (3)C25—H25C0.9800
C8—H80.9500O1W—H2W1.0206
C9—C101.424 (3)O1W—H1W0.9824
C1—Fe—C541.14 (6)C7—C6—P128.31 (12)
C1—Fe—C10106.92 (7)C10—C6—P124.39 (13)
C5—Fe—C10126.23 (7)C7—C6—Fe69.66 (9)
C1—Fe—C8148.86 (7)C10—C6—Fe69.05 (8)
C5—Fe—C8115.03 (7)P—C6—Fe127.25 (8)
C10—Fe—C868.79 (7)C8—C7—C6108.38 (15)
C1—Fe—C9115.70 (7)C8—C7—Fe69.38 (9)
C5—Fe—C9104.86 (7)C6—C7—Fe69.53 (8)
C10—Fe—C940.82 (7)C8—C7—H7125.8
C8—Fe—C940.70 (8)C6—C7—H7125.8
C1—Fe—C241.36 (6)Fe—C7—H7126.9
C5—Fe—C269.00 (7)C9—C8—C7108.19 (15)
C10—Fe—C2119.30 (7)C9—C8—Fe69.73 (9)
C8—Fe—C2167.52 (7)C7—C8—Fe69.97 (9)
C9—Fe—C2151.52 (8)C9—C8—H8125.9
C1—Fe—C469.01 (7)C7—C8—H8125.9
C5—Fe—C440.74 (7)Fe—C8—H8126.0
C10—Fe—C4163.98 (7)C8—C9—C10108.27 (15)
C8—Fe—C4106.22 (8)C8—C9—Fe69.57 (9)
C9—Fe—C4125.71 (8)C10—C9—Fe69.43 (9)
C2—Fe—C468.59 (7)C8—C9—H9125.9
C1—Fe—C369.10 (6)C10—C9—H9125.9
C5—Fe—C368.56 (7)Fe—C9—H9126.7
C10—Fe—C3154.05 (8)C9—C10—C6107.85 (15)
C8—Fe—C3128.15 (8)C9—C10—Fe69.75 (9)
C9—Fe—C3164.68 (8)C6—C10—Fe69.67 (9)
C2—Fe—C340.75 (7)C9—C10—H10126.1
C4—Fe—C340.52 (8)C6—C10—H10126.1
C1—Fe—C6129.28 (6)Fe—C10—H10126.1
C5—Fe—C6166.26 (7)C1—C11—N112.09 (13)
C10—Fe—C641.28 (6)C1—C11—H11A109.2
C8—Fe—C668.83 (7)N—C11—H11A109.2
C9—Fe—C668.93 (6)C1—C11—H11B109.2
C2—Fe—C6110.24 (7)N—C11—H11B109.2
C4—Fe—C6152.74 (7)H11A—C11—H11B107.9
C3—Fe—C6120.44 (7)C17—C12—C13118.37 (16)
C1—Fe—C7168.72 (6)C17—C12—P123.83 (13)
C5—Fe—C7149.81 (7)C13—C12—P117.78 (14)
C10—Fe—C768.83 (7)C14—C13—C12120.41 (19)
C8—Fe—C740.66 (6)C14—C13—H13119.8
C9—Fe—C768.44 (7)C12—C13—H13119.8
C2—Fe—C7130.66 (6)C15—C14—C13120.62 (19)
C4—Fe—C7117.98 (7)C15—C14—H14119.7
C3—Fe—C7109.84 (7)C13—C14—H14119.7
C6—Fe—C740.81 (6)C16—C15—C14119.70 (18)
C6—P—C12100.79 (7)C16—C15—H15120.1
C6—P—C18101.23 (7)C14—C15—H15120.1
C12—P—C18100.82 (7)C15—C16—C17120.0 (2)
C24—N—C25111.96 (15)C15—C16—H16120.0
C24—N—C11112.50 (13)C17—C16—H16120.0
C25—N—C11110.50 (14)C12—C17—C16120.80 (18)
C24—N—H1N105.9C12—C17—H17119.6
C25—N—H1N107.8C16—C17—H17119.6
C11—N—H1N107.9C23—C18—C19118.43 (15)
C5—C1—C2107.59 (15)C23—C18—P123.76 (12)
C5—C1—C11124.99 (15)C19—C18—P117.78 (12)
C2—C1—C11127.30 (15)C20—C19—C18120.71 (16)
C5—C1—Fe69.82 (9)C20—C19—H19119.6
C2—C1—Fe70.04 (9)C18—C19—H19119.6
C11—C1—Fe122.55 (11)C21—C20—C19120.27 (16)
C3—C2—C1107.63 (15)C21—C20—H20119.9
C3—C2—Fe69.77 (9)C19—C20—H20119.9
C1—C2—Fe68.59 (9)C20—C21—C22119.64 (16)
C3—C2—H2126.2C20—C21—H21120.2
C1—C2—H2126.2C22—C21—H21120.2
Fe—C2—H2127.0C21—C22—C23120.31 (16)
C4—C3—C2108.37 (15)C21—C22—H22119.8
C4—C3—Fe69.73 (10)C23—C22—H22119.8
C2—C3—Fe69.48 (9)C22—C23—C18120.63 (15)
C4—C3—H3125.8C22—C23—H23119.7
C2—C3—H3125.8C18—C23—H23119.7
Fe—C3—H3126.6N—C24—H24A109.5
C3—C4—C5108.16 (16)N—C24—H24B109.5
C3—C4—Fe69.75 (10)H24A—C24—H24B109.5
C5—C4—Fe69.14 (9)N—C24—H24C109.5
C3—C4—H4125.9H24A—C24—H24C109.5
C5—C4—H4125.9H24B—C24—H24C109.5
Fe—C4—H4126.8N—C25—H25A109.5
C4—C5—C1108.24 (15)N—C25—H25B109.5
C4—C5—Fe70.11 (10)H25A—C25—H25B109.5
C1—C5—Fe69.05 (9)N—C25—H25C109.5
C4—C5—H5125.9H25A—C25—H25C109.5
C1—C5—H5125.9H25B—C25—H25C109.5
Fe—C5—H5126.5H2W—O1W—H1W107.9
C7—C6—C10107.30 (14)
C5—C1—C2—C30.93 (17)Fe—C9—C10—C659.48 (10)
C11—C1—C2—C3175.34 (14)C8—C9—C10—Fe58.89 (11)
Fe—C1—C2—C359.05 (11)C7—C6—C10—C90.14 (17)
C5—C1—C2—Fe59.99 (11)P—C6—C10—C9178.91 (11)
C11—C1—C2—Fe116.29 (15)Fe—C6—C10—C959.53 (11)
C1—C2—C3—C40.75 (18)C7—C6—C10—Fe59.39 (10)
Fe—C2—C3—C459.06 (12)P—C6—C10—Fe121.56 (11)
C1—C2—C3—Fe58.32 (10)C5—C1—C11—N77.55 (19)
C2—C3—C4—C50.27 (19)C2—C1—C11—N106.78 (17)
Fe—C3—C4—C558.64 (11)Fe—C1—C11—N164.53 (10)
C2—C3—C4—Fe58.91 (11)C24—N—C11—C159.33 (18)
C3—C4—C5—C10.31 (18)C25—N—C11—C1174.72 (14)
Fe—C4—C5—C158.70 (11)C6—P—C12—C173.86 (16)
C3—C4—C5—Fe59.01 (12)C18—P—C12—C17107.64 (15)
C2—C1—C5—C40.77 (17)C6—P—C12—C13177.80 (13)
C11—C1—C5—C4175.61 (14)C18—P—C12—C1374.02 (14)
Fe—C1—C5—C459.36 (11)C17—C12—C13—C142.5 (2)
C2—C1—C5—Fe60.13 (10)P—C12—C13—C14179.02 (14)
C11—C1—C5—Fe116.26 (15)C12—C13—C14—C152.5 (3)
C12—P—C6—C789.13 (14)C13—C14—C15—C160.6 (3)
C18—P—C6—C714.33 (15)C14—C15—C16—C171.2 (3)
C12—P—C6—C1089.71 (13)C13—C12—C17—C160.8 (3)
C18—P—C6—C10166.83 (13)P—C12—C17—C16179.14 (14)
C12—P—C6—Fe178.35 (9)C15—C16—C17—C121.0 (3)
C18—P—C6—Fe78.20 (11)C6—P—C18—C2383.71 (15)
C10—C6—C7—C80.36 (17)C12—P—C18—C2319.72 (15)
P—C6—C7—C8179.36 (12)C6—P—C18—C1997.97 (13)
Fe—C6—C7—C858.65 (11)C12—P—C18—C19158.60 (13)
C10—C6—C7—Fe59.01 (10)C23—C18—C19—C200.1 (2)
P—C6—C7—Fe121.99 (12)P—C18—C19—C20178.34 (13)
C6—C7—C8—C90.73 (18)C18—C19—C20—C210.7 (3)
Fe—C7—C8—C959.47 (11)C19—C20—C21—C220.7 (3)
C6—C7—C8—Fe58.75 (11)C20—C21—C22—C230.1 (3)
C7—C8—C9—C100.81 (18)C21—C22—C23—C180.8 (3)
Fe—C8—C9—C1058.81 (11)C19—C18—C23—C220.8 (3)
C7—C8—C9—Fe59.62 (11)P—C18—C23—C22177.51 (14)
C8—C9—C10—C60.58 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1N···Cl0.922.133.0323 (16)167
O1W—H1W···Cl0.982.233.2162 (19)177
O1W—H2W···Cli1.022.293.289 (2)166
C10—H10···O1Wii0.952.463.390 (3)165
C11—H11B···Clii0.992.773.7369 (17)167
Symmetry codes: (i) x, y+2, z+2; (ii) x+1, y+2, z+2.
 

Acknowledgements

The authors are grateful to Dr Ivana Císařová from the Department of Inorganic Chemistry, Faculty of Science, Charles University for recording the diffraction data of the title compound.

Funding information

This work was supported by the Czech Science Foundation (project no. 15-11571S).

References

First citationBruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBruker (2015). Instrument Service and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationGuo, H.-X., Zhou, X.-J., Lin, Z.-X. & Liu, J.-M. (2006). Acta Cryst. E62, m1770–m1772.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationŠtěpnička, P. (2008). Ferrocenes: Ligands, Materials and Biomolecules. Chichester: Wiley.
First citationŠtěpnička, P., Zábranský, M. & Císařová, I. (2012). ChemistryOpen 1, pp. 71–79.  PubMed
First citationWinter, R. F. & Wolmershäuser, G. (1998). J. Organomet. Chem. 570, 201–218.  Web of Science CSD CrossRef CAS
First citationWright, M. E. (1990). Organometallics, 9, 853–856.  CrossRef CAS Web of Science
First citationZábranský, M., Císařová, I. & Štěpnička, P. (2015). Dalton Trans. 44, 14494–14506.  PubMed
First citationZábranský, M., Císařová, I. & Štěpnička, P. (2017). Eur. J. Inorg. Chem. pp. 2557–2572.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds