research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ochraceolide A isolated from Elaeodendron trichotomum (Turcz.) Lundell

CROSSMARK_Color_square_no_text.svg

aFacultad de Química, Universidad Autónoma de Yucatán, Calle 43 No. 613, Col. Inalámbrica, 97069, Mérida, Yucatán, Mexico, and bInstituto de Química, Universidad Nacional Autónoma de México, Circuito, Exterior, Ciudad Universitaria, 04510, Mexico City, Mexico
*Correspondence e-mail: gmiron@correo.uady.mx

Edited by A. J. Lough, University of Toronto, Canada (Received 24 August 2017; accepted 6 September 2017; online 15 September 2017)

The title compound, C30H44O3 [systematic name: 6aR,6 bR,8aS,9aR,12aR,14bR)-4,4,6a,6;b,8a,14b-hexa­methyl-12-methyl­eneicosa­hydro-3H-phenanthro[1′,2′:6,7]indeno­[2,1-b]furan-3,11(2H)-dione], is a triterpene lactone, which was isolated from di­chloro­methane extract of Elaeodendron trichotomum (Turcz.) Lundell (celastraceae) stem bark. The compound has a lupane skeleton and consists of four fused six-membered rings and two five-membered rings. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds into a three-dimensional network. The configuration of ochraceolide A was proposed based on analogue compounds which belong to the lupane type.

1. Chemical context

Ochraceolides A–E are a group of cytotoxic lupane γ-lactones isolated from the Celastraceae family. Ochraceolide A was firstly isolated from Kokoona ochracea (Elm.) Merril stem bark (Ngassapa et al., 1991[Ngassapa, O. D., Soejarto, D. D., Che, C., Pezzuto, J. M. & Farnsworth, N. R. (1991). J. Nat. Prod. 54, 1353-1359.]) and afterwards from Lophopetalum wallichii (Sturm et al., 1996[Sturm, S., Gil, R. R., Chai, H., Ngassapa, O. D., Santisuk, T., Reutrakul, V., Howe, A., Moss, M., Besterman, J. M., Yang, S., Farthing, J. E., Tait, R. M., Lewis, J. A., O'Neill, M. J., Farnsworth, N. R., Cordell, G. A., Pezzuto, J. M. & Kinghorn, A. D. (1996). J. Nat. Prod. 59, 658-663.]) and Cassine xylocarpa (Callies et al., 2015[Callies, O., Bedoya, L. M., Beltrán, M., Muñoz, A., Calderón, P. O., Osorio, A. A., Jiménez, I. A., Alcamí, J. & Bazzocchi, I. L. (2015). J. Nat. Prod. 78, 1045-1055.]). The title compound has shown significant cytotoxic activity against murine lymphocytic leukemia cells (P-388) with an ED50 of 0.6 µM; human oral epidermoid carcinoma (KB-3) with an ED50 of 6.0 µM; and hormone-dependent breast cancer with an ED50 of 9.9 µM (Ngassapa et al., 1991[Ngassapa, O. D., Soejarto, D. D., Che, C., Pezzuto, J. M. & Farnsworth, N. R. (1991). J. Nat. Prod. 54, 1353-1359.]; Sturm et al., 1996[Sturm, S., Gil, R. R., Chai, H., Ngassapa, O. D., Santisuk, T., Reutrakul, V., Howe, A., Moss, M., Besterman, J. M., Yang, S., Farthing, J. E., Tait, R. M., Lewis, J. A., O'Neill, M. J., Farnsworth, N. R., Cordell, G. A., Pezzuto, J. M. & Kinghorn, A. D. (1996). J. Nat. Prod. 59, 658-663.]). In the same way, this compound has exhibited significant inhibitory activity in the FPTase assay with an IC50 of 2.2 µM (Sturm et al., 1996[Sturm, S., Gil, R. R., Chai, H., Ngassapa, O. D., Santisuk, T., Reutrakul, V., Howe, A., Moss, M., Besterman, J. M., Yang, S., Farthing, J. E., Tait, R. M., Lewis, J. A., O'Neill, M. J., Farnsworth, N. R., Cordell, G. A., Pezzuto, J. M. & Kinghorn, A. D. (1996). J. Nat. Prod. 59, 658-663.]) and inhibitory effects of human immunodeficiency virus type 1 replication with an IC50 of 39.0 µM (Callies et al., 2015[Callies, O., Bedoya, L. M., Beltrán, M., Muñoz, A., Calderón, P. O., Osorio, A. A., Jiménez, I. A., Alcamí, J. & Bazzocchi, I. L. (2015). J. Nat. Prod. 78, 1045-1055.]). Ochraceolide A is part of the structure of the Diels–Alder adduct (i.e. celastroidine A or volubilide) isolated from Hippocratea celastroides K. (Jiménez-Estrada et al., 2000[Jiménez-Estrada, M., Reyes-Chilpa, R., Hernández-Ortega, S., Cristobal-Telésforo, E., Torres-Colín, L., Jankowski, C. K., Aumelas, A. & Van Calsteren, M. R. (2000). Can. J. Chem. 78, 248-254.]) and Hyppocratea volubilis L. (Alvarenga et al., 2000[Alvarenga, N. L., Ferro, E. A., Ravelo, A. G., Kennedy, M. L., Maestro, M. A. & González, A. G. (2000). Tetrahedron, 56, 3771-3774.]). In these publications, the crystal structure of the adduct was reported as a solvate of di­chloro­methane and toluene, respectively. The X-ray analysis showed that the Diels–Alder adduct was integrated by the triterpene ochraceolide A and a theoretical diterpene, in which the former seems to have acted as dienophile and the latter as diene in the biosynthesis. Herein the first isolation of ochraceolide A from Elaeodendron trichotomum (Turcz.) Lundell stem bark is reported and the crystal structure described.

[Scheme 1]

2. Structural commentary

The title compound has a lupane skeleton and crystallizes in the ortho­rhom­bic space group P212121 with one mol­ecule in the asymmetric unit (Fig. 1[link]). The triterpene skeleton consists of four fused six-membered rings (AD) and two five-membered rings (E and F). The cyclo­hexane rings are trans-fused and in standard chair conformations. The cyclo­pentane (C17–C19/C21/C22) ring is trans-fused to the triterpene D ring and exhibits an envelope conformation [Q = 0.451 (4) Å and θ = 356.7 (5)°] with the puckered C17 atom having the maximum deviation of 0.285 (4) Å. The α-methyl­ene γ-lactone is cis-fused at C19–C21 to the cyclo­pentane E ring and is essentially planar with a maximum deviation of 0.006 (4) Å for atom C19. The torsion angle C20—C19—C21—O2 is 0.8 (4)° and the weighted average absolute inter­nal torsion angle for the lactone ring is 0.7 (2)°

[Figure 1]
Figure 1
The molecular structure of the title compound with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radius.

3. Supra­molecular features

In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds (Table 1[link], Fig. 2[link]). The lactone and A rings of adjacent mol­ecules inter­act through two hydrogen bonds (C2—H2A⋯O2 and C24—H24A⋯O3) in a head-to-tail arrangement, forming chains along [001]. These chains are further connected through a weak hydrogen bond between the oxygen of the ketone group (O1) and a methyl­ene group on the C ring (C12), forming an overall three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O2i 0.99 2.57 3.395 (5) 141
C12—H12A⋯O1ii 0.99 2.45 3.310 (6) 146
C24—H24A⋯O3i 0.98 2.58 3.357 (6) 137
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [-x-1, y+{\script{1\over 2}}, -z+{\script{5\over 2}}].
[Figure 2]
Figure 2
Part of the crystal structure showing hydrogen bonds as blue lines.

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.38, update November 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for α-methyl­ene γ-lactone fused to a cyclo­pentane ring gave only one entry for 6,6-dimethyl-3-methyl­ene­tetra­hydro-2H-cyclo­penta­[b]furan-2,5(3H)-dione (CCDC 658922; Edwards et al., 2008[Edwards, M. G., Kenworthy, M. N., Kitson, R. A., Scott, M. S. & Taylor, R. K. (2008). Angew. Chem. Int. Ed. 47, 1935-1937.]). In both compounds, the principal supra­molecular inter­actions are C—H⋯O hydrogen bonds and the α-methyl­ene γ-lactones are cis-fused to the corresponding cyclo­pentane ring. However, unlike the title compound, the γ-lactone of the synthetic compound presents a twisted conformation.

5. Isolation and crystallization

Elaeodendron trichotomum (Turcz.) Lundell was collected from Chunchucmil, Yucatán, México (20o 51.032′ N, 90o 11.488′ W). A voucher specimen (JTun2328) was deposited at the Herbarium Alfredo Barrera Marín, Universidad Autónoma de Yucatán, México. Dried and milled stem bark (2100 g) was exhaustively extracted by di­chloro­methane using a Soxhlet extraction apparatus to yield 184.2 g of crude extract. A portion of the extract (100 g) was chromatographed on silica gel (40–60 µm) using a gradient elution with n-hexa­ne–ethyl acetate (10–100% ethyl acetate), to obtain 44 fractions. Single crystals suitable for X-ray structure analysis were obtained by slow evaporation of the mixture of solvents present in fractions 7–10 at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms bonded to C atoms were positioned geometrically and refined using a riding model with C—H = 0.95–1.00 Å with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Table 2
Experimental details

Crystal data
Chemical formula C30H44O3
Mr 452.65
Crystal system, space group Orthorhombic, P212121
Temperature (K) 150
a, b, c (Å) 7.6131 (5), 11.7216 (7), 27.7076 (17)
V3) 2472.6 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.59
Crystal size (mm) 0.36 × 0.27 × 0.25
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.783, 0.864
No. of measured, independent and observed [I > 2σ(I)] reflections 14632, 4513, 4057
Rint 0.061
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.164, 1.09
No. of reflections 4513
No. of parameters 304
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.19
Absolute structure Flack x determined using 1515 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter 0.2 (3)
Computer programs: APEX3 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2014); cell refinement: APEX3 (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS2014 (Bruker, 2014); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

6aR,6 bR,8aS,9aR,12aR,14bR)-4,4,6a,6 b,8a,14b-Hexamethyl-12-methyleneicosahydro-3H-phenanthro[1',2':6,7]indeno[2,1-b]furan-3,11(2H)-dione top
Crystal data top
C30H44O3Dx = 1.216 Mg m3
Mr = 452.65Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 9889 reflections
a = 7.6131 (5) Åθ = 3.2–68.3°
b = 11.7216 (7) ŵ = 0.59 mm1
c = 27.7076 (17) ÅT = 150 K
V = 2472.6 (3) Å3Prism, colourless
Z = 40.36 × 0.27 × 0.25 mm
F(000) = 992
Data collection top
Bruker D8 Venture
diffractometer
4513 independent reflections
Radiation source: micro-focus X-ray source4057 reflections with I > 2σ(I)
Detector resolution: 52.0833 pixels mm-1Rint = 0.061
ω–scansθmax = 68.3°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 98
Tmin = 0.783, Tmax = 0.864k = 1314
14632 measured reflectionsl = 3333
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.061 w = 1/[σ2(Fo2) + (0.0789P)2 + 0.8039P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.164(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.28 e Å3
4513 reflectionsΔρmin = 0.19 e Å3
304 parametersAbsolute structure: Flack x determined using 1515 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
0 restraintsAbsolute structure parameter: 0.2 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7000 (9)0.2747 (4)1.1228 (2)0.127 (2)
O20.2109 (5)0.5554 (3)0.68677 (10)0.0712 (10)
O30.0663 (6)0.3910 (4)0.68208 (13)0.0865 (12)
C10.4287 (7)0.3773 (4)1.02722 (13)0.0568 (11)
H1A0.30120.38721.02160.068*
H1B0.46870.31181.00750.068*
C20.4602 (8)0.3508 (4)1.08081 (14)0.0692 (14)
H2A0.39990.40941.10050.083*
H2B0.40590.27621.08840.083*
C30.6490 (8)0.3471 (4)1.09523 (16)0.0674 (14)
C40.7745 (6)0.4361 (3)1.07509 (13)0.0498 (10)
C50.7231 (6)0.4658 (3)1.02182 (11)0.0415 (8)
H50.75400.39571.00310.050*
C60.8379 (6)0.5589 (3)0.99999 (13)0.0482 (9)
H6A0.96200.54551.00910.058*
H6B0.80220.63391.01310.058*
C70.8213 (5)0.5604 (3)0.94485 (12)0.0443 (8)
H7A0.86730.48760.93190.053*
H7B0.89530.62280.93190.053*
C80.6322 (5)0.5770 (3)0.92684 (11)0.0347 (7)
C90.5071 (5)0.4933 (3)0.95387 (10)0.0372 (8)
H90.54160.41590.94200.045*
C100.5260 (5)0.4859 (3)1.01054 (11)0.0420 (8)
C110.3177 (5)0.5085 (4)0.93680 (12)0.0460 (9)
H11A0.27460.58390.94780.055*
H11B0.24360.44940.95220.055*
C120.2954 (5)0.5006 (3)0.88168 (12)0.0424 (8)
H12A0.31190.42040.87150.051*
H12B0.17430.52350.87300.051*
C130.4255 (5)0.5761 (3)0.85450 (11)0.0326 (7)
H130.39920.65690.86340.039*
C140.6178 (4)0.5509 (3)0.87041 (11)0.0321 (7)
C150.7510 (5)0.6247 (3)0.84160 (12)0.0410 (8)
H15A0.74590.70390.85390.049*
H15B0.87080.59530.84780.049*
C160.7197 (5)0.6269 (4)0.78673 (12)0.0457 (9)
H16A0.79820.68420.77180.055*
H16B0.74960.55140.77300.055*
C170.5299 (5)0.6555 (3)0.77439 (12)0.0405 (8)
C180.4109 (4)0.5670 (3)0.79938 (11)0.0336 (7)
H180.45670.49000.79030.040*
C190.2307 (5)0.5807 (3)0.77408 (12)0.0415 (8)
H190.15220.63340.79250.050*
C200.1359 (5)0.4732 (3)0.76020 (13)0.0460 (9)
C210.2797 (6)0.6321 (4)0.72350 (13)0.0522 (10)
H210.22750.70990.71980.063*
C220.4785 (6)0.6384 (4)0.72141 (12)0.0504 (10)
H22A0.51780.70340.70130.060*
H22B0.52910.56700.70830.060*
C300.1290 (6)0.4657 (5)0.70646 (16)0.0625 (13)
C290.0717 (5)0.3894 (4)0.78608 (15)0.0525 (10)
H29A0.02150.32480.77060.063*
H29B0.07540.39320.82030.063*
C260.5821 (6)0.7027 (3)0.93685 (12)0.0470 (9)
H26A0.61890.72350.96960.071*
H26B0.45460.71180.93390.071*
H26C0.64110.75230.91340.071*
C280.4863 (6)0.7796 (3)0.78893 (14)0.0491 (9)
H28A0.53150.79470.82140.074*
H28B0.35870.79050.78860.074*
H28C0.54100.83240.76600.074*
C270.6651 (5)0.4251 (3)0.85928 (11)0.0382 (8)
H27A0.67670.41500.82430.057*
H27B0.57210.37500.87150.057*
H27C0.77650.40570.87500.057*
C250.4458 (7)0.5894 (4)1.03594 (13)0.0546 (11)
H25A0.33450.60961.02030.082*
H25B0.52710.65401.03380.082*
H25C0.42430.57091.06990.082*
C240.7708 (7)0.5395 (4)1.10971 (13)0.0584 (12)
H24A0.65010.56771.11270.088*
H24B0.84600.60021.09690.088*
H24C0.81400.51611.14150.088*
C230.9581 (8)0.3866 (5)1.07703 (17)0.0815 (18)
H23A0.98340.36051.10990.122*
H23B1.04340.44531.06770.122*
H23C0.96650.32201.05470.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.166 (5)0.085 (3)0.131 (4)0.003 (3)0.022 (4)0.066 (3)
O20.079 (2)0.100 (3)0.0340 (13)0.015 (2)0.0172 (15)0.0057 (15)
O30.090 (3)0.108 (3)0.062 (2)0.011 (2)0.0361 (19)0.023 (2)
C10.084 (3)0.058 (2)0.0289 (17)0.010 (2)0.0078 (19)0.0033 (16)
C20.116 (4)0.061 (3)0.0311 (19)0.014 (3)0.013 (2)0.0049 (18)
C30.115 (4)0.041 (2)0.046 (2)0.011 (2)0.007 (3)0.0053 (18)
C40.076 (3)0.0434 (19)0.0296 (16)0.0128 (19)0.0052 (17)0.0002 (14)
C50.064 (2)0.0337 (16)0.0270 (15)0.0099 (16)0.0007 (15)0.0032 (13)
C60.057 (2)0.050 (2)0.0371 (18)0.0026 (18)0.0093 (17)0.0000 (15)
C70.050 (2)0.049 (2)0.0336 (16)0.0053 (17)0.0016 (16)0.0048 (15)
C80.0472 (19)0.0259 (14)0.0312 (15)0.0022 (13)0.0003 (14)0.0001 (12)
C90.050 (2)0.0376 (17)0.0242 (14)0.0016 (15)0.0050 (14)0.0011 (12)
C100.060 (2)0.0402 (18)0.0253 (14)0.0005 (17)0.0048 (15)0.0029 (13)
C110.045 (2)0.061 (2)0.0320 (16)0.0069 (17)0.0054 (15)0.0050 (16)
C120.0439 (19)0.050 (2)0.0329 (16)0.0072 (16)0.0017 (15)0.0037 (15)
C130.0406 (17)0.0297 (15)0.0274 (14)0.0047 (13)0.0028 (13)0.0006 (12)
C140.0400 (17)0.0275 (15)0.0288 (14)0.0006 (13)0.0038 (13)0.0023 (11)
C150.0418 (19)0.0447 (18)0.0364 (17)0.0028 (15)0.0029 (14)0.0093 (14)
C160.047 (2)0.054 (2)0.0360 (18)0.0031 (17)0.0089 (15)0.0156 (16)
C170.049 (2)0.0415 (18)0.0305 (16)0.0104 (15)0.0075 (15)0.0103 (14)
C180.0394 (18)0.0333 (16)0.0280 (15)0.0087 (14)0.0002 (13)0.0013 (12)
C190.0452 (19)0.0445 (18)0.0348 (16)0.0176 (15)0.0005 (15)0.0002 (14)
C200.0397 (19)0.055 (2)0.0432 (19)0.0165 (17)0.0098 (16)0.0102 (17)
C210.063 (2)0.058 (2)0.0356 (18)0.024 (2)0.0016 (17)0.0059 (16)
C220.062 (2)0.061 (2)0.0288 (17)0.0212 (19)0.0064 (16)0.0122 (16)
C300.057 (3)0.087 (3)0.044 (2)0.022 (3)0.021 (2)0.014 (2)
C290.043 (2)0.060 (2)0.055 (2)0.0029 (18)0.0046 (18)0.0162 (19)
C260.075 (3)0.0307 (17)0.0350 (17)0.0006 (17)0.0062 (18)0.0047 (13)
C280.063 (3)0.0358 (18)0.049 (2)0.0035 (17)0.0063 (19)0.0128 (16)
C270.052 (2)0.0354 (17)0.0271 (14)0.0116 (15)0.0014 (14)0.0004 (13)
C250.070 (3)0.062 (2)0.0316 (17)0.020 (2)0.0030 (18)0.0088 (17)
C240.093 (3)0.052 (2)0.0298 (16)0.011 (2)0.0087 (19)0.0049 (16)
C230.106 (4)0.095 (4)0.044 (2)0.049 (4)0.019 (3)0.010 (2)
Geometric parameters (Å, º) top
O1—C31.206 (6)C14—C151.553 (5)
O2—C301.338 (7)C15—C161.539 (5)
O2—C211.455 (6)C15—H15A0.9900
O3—C301.205 (6)C15—H15B0.9900
C1—C21.536 (5)C16—C171.522 (5)
C1—C101.544 (6)C16—H16A0.9900
C1—H1A0.9900C16—H16B0.9900
C1—H1B0.9900C17—C221.532 (5)
C2—C31.492 (8)C17—C181.542 (5)
C2—H2A0.9900C17—C281.545 (5)
C2—H2B0.9900C18—C191.549 (5)
C3—C41.521 (7)C18—H181.0000
C4—C231.515 (7)C19—C201.502 (6)
C4—C241.546 (5)C19—C211.570 (5)
C4—C51.566 (4)C19—H191.0000
C5—C61.523 (6)C20—C291.311 (6)
C5—C101.550 (6)C20—C301.492 (5)
C5—H51.0000C21—C221.517 (6)
C6—C71.533 (5)C21—H211.0000
C6—H6A0.9900C22—H22A0.9900
C6—H6B0.9900C22—H22B0.9900
C7—C81.536 (5)C29—H29A0.9500
C7—H7A0.9900C29—H29B0.9500
C7—H7B0.9900C26—H26A0.9800
C8—C261.546 (5)C26—H26B0.9800
C8—C91.559 (5)C26—H26C0.9800
C8—C141.597 (4)C28—H28A0.9800
C9—C111.528 (5)C28—H28B0.9800
C9—C101.579 (4)C28—H28C0.9800
C9—H91.0000C27—H27A0.9800
C10—C251.530 (5)C27—H27B0.9800
C11—C121.539 (4)C27—H27C0.9800
C11—H11A0.9900C25—H25A0.9800
C11—H11B0.9900C25—H25B0.9800
C12—C131.527 (5)C25—H25C0.9800
C12—H12A0.9900C24—H24A0.9800
C12—H12B0.9900C24—H24B0.9800
C13—C181.535 (4)C24—H24C0.9800
C13—C141.557 (5)C23—H23A0.9800
C13—H131.0000C23—H23B0.9800
C14—C271.549 (4)C23—H23C0.9800
C30—O2—C21111.6 (3)C16—C15—H15B108.6
C2—C1—C10112.4 (4)C14—C15—H15B108.6
C2—C1—H1A109.1H15A—C15—H15B107.6
C10—C1—H1A109.1C17—C16—C15111.9 (3)
C2—C1—H1B109.1C17—C16—H16A109.2
C10—C1—H1B109.1C15—C16—H16A109.2
H1A—C1—H1B107.8C17—C16—H16B109.2
C3—C2—C1114.5 (4)C15—C16—H16B109.2
C3—C2—H2A108.6H16A—C16—H16B107.9
C1—C2—H2A108.6C16—C17—C22115.4 (3)
C3—C2—H2B108.6C16—C17—C18108.0 (3)
C1—C2—H2B108.6C22—C17—C18101.1 (3)
H2A—C2—H2B107.6C16—C17—C28110.7 (4)
O1—C3—C2120.0 (6)C22—C17—C28108.5 (3)
O1—C3—C4120.9 (6)C18—C17—C28112.9 (3)
C2—C3—C4119.1 (4)C13—C18—C17111.0 (3)
C23—C4—C3107.7 (4)C13—C18—C19120.5 (3)
C23—C4—C24107.2 (4)C17—C18—C19104.3 (3)
C3—C4—C24107.4 (4)C13—C18—H18106.8
C23—C4—C5110.4 (3)C17—C18—H18106.8
C3—C4—C5110.0 (4)C19—C18—H18106.8
C24—C4—C5113.9 (3)C20—C19—C18117.0 (3)
C6—C5—C10111.5 (3)C20—C19—C21101.9 (3)
C6—C5—C4113.0 (3)C18—C19—C21103.5 (3)
C10—C5—C4117.7 (3)C20—C19—H19111.2
C6—C5—H5104.3C18—C19—H19111.2
C10—C5—H5104.3C21—C19—H19111.2
C4—C5—H5104.3C29—C20—C30119.2 (4)
C5—C6—C7110.9 (3)C29—C20—C19131.9 (3)
C5—C6—H6A109.5C30—C20—C19108.8 (4)
C7—C6—H6A109.5O2—C21—C22111.3 (3)
C5—C6—H6B109.5O2—C21—C19107.6 (4)
C7—C6—H6B109.5C22—C21—C19106.9 (3)
H6A—C6—H6B108.0O2—C21—H21110.3
C6—C7—C8113.7 (3)C22—C21—H21110.3
C6—C7—H7A108.8C19—C21—H21110.3
C8—C7—H7A108.8C21—C22—C17103.0 (3)
C6—C7—H7B108.8C21—C22—H22A111.2
C8—C7—H7B108.8C17—C22—H22A111.2
H7A—C7—H7B107.7C21—C22—H22B111.2
C7—C8—C26107.0 (3)C17—C22—H22B111.2
C7—C8—C9109.7 (3)H22A—C22—H22B109.1
C26—C8—C9111.3 (3)O3—C30—O2121.8 (4)
C7—C8—C14111.0 (3)O3—C30—C20128.1 (5)
C26—C8—C14110.0 (3)O2—C30—C20110.1 (4)
C9—C8—C14107.9 (2)C20—C29—H29A120.0
C11—C9—C8110.7 (3)C20—C29—H29B120.0
C11—C9—C10113.6 (3)H29A—C29—H29B120.0
C8—C9—C10117.1 (3)C8—C26—H26A109.5
C11—C9—H9104.6C8—C26—H26B109.5
C8—C9—H9104.6H26A—C26—H26B109.5
C10—C9—H9104.6C8—C26—H26C109.5
C25—C10—C1108.9 (3)H26A—C26—H26C109.5
C25—C10—C5114.5 (3)H26B—C26—H26C109.5
C1—C10—C5106.2 (3)C17—C28—H28A109.5
C25—C10—C9112.2 (3)C17—C28—H28B109.5
C1—C10—C9107.4 (3)H28A—C28—H28B109.5
C5—C10—C9107.3 (3)C17—C28—H28C109.5
C9—C11—C12113.8 (3)H28A—C28—H28C109.5
C9—C11—H11A108.8H28B—C28—H28C109.5
C12—C11—H11A108.8C14—C27—H27A109.5
C9—C11—H11B108.8C14—C27—H27B109.5
C12—C11—H11B108.8H27A—C27—H27B109.5
H11A—C11—H11B107.7C14—C27—H27C109.5
C13—C12—C11112.5 (3)H27A—C27—H27C109.5
C13—C12—H12A109.1H27B—C27—H27C109.5
C11—C12—H12A109.1C10—C25—H25A109.5
C13—C12—H12B109.1C10—C25—H25B109.5
C11—C12—H12B109.1H25A—C25—H25B109.5
H12A—C12—H12B107.8C10—C25—H25C109.5
C12—C13—C18113.8 (3)H25A—C25—H25C109.5
C12—C13—C14111.1 (3)H25B—C25—H25C109.5
C18—C13—C14109.7 (3)C4—C24—H24A109.5
C12—C13—H13107.3C4—C24—H24B109.5
C18—C13—H13107.3H24A—C24—H24B109.5
C14—C13—H13107.3C4—C24—H24C109.5
C27—C14—C15106.0 (3)H24A—C24—H24C109.5
C27—C14—C13110.0 (3)H24B—C24—H24C109.5
C15—C14—C13111.3 (3)C4—C23—H23A109.5
C27—C14—C8111.2 (2)C4—C23—H23B109.5
C15—C14—C8110.6 (3)H23A—C23—H23B109.5
C13—C14—C8107.8 (2)C4—C23—H23C109.5
C16—C15—C14114.6 (3)H23A—C23—H23C109.5
C16—C15—H15A108.6H23B—C23—H23C109.5
C14—C15—H15A108.6
C10—C1—C2—C352.1 (6)C18—C13—C14—C8172.8 (2)
C1—C2—C3—O1139.3 (5)C7—C8—C14—C2762.4 (4)
C1—C2—C3—C441.2 (6)C26—C8—C14—C27179.3 (3)
O1—C3—C4—C2324.3 (6)C9—C8—C14—C2757.8 (4)
C2—C3—C4—C23156.2 (4)C7—C8—C14—C1555.1 (3)
O1—C3—C4—C2490.8 (6)C26—C8—C14—C1563.2 (4)
C2—C3—C4—C2488.7 (5)C9—C8—C14—C15175.3 (3)
O1—C3—C4—C5144.7 (5)C7—C8—C14—C13176.9 (3)
C2—C3—C4—C535.8 (5)C26—C8—C14—C1358.7 (4)
C23—C4—C5—C664.0 (5)C9—C8—C14—C1362.9 (3)
C3—C4—C5—C6177.2 (3)C27—C14—C15—C1672.7 (4)
C24—C4—C5—C656.6 (5)C13—C14—C15—C1646.9 (4)
C23—C4—C5—C10163.7 (4)C8—C14—C15—C16166.6 (3)
C3—C4—C5—C1044.9 (4)C14—C15—C16—C1750.6 (4)
C24—C4—C5—C1075.7 (5)C15—C16—C17—C22169.3 (3)
C10—C5—C6—C761.6 (4)C15—C16—C17—C1857.2 (4)
C4—C5—C6—C7163.1 (3)C15—C16—C17—C2866.9 (4)
C5—C6—C7—C857.3 (4)C12—C13—C18—C17173.2 (3)
C6—C7—C8—C2672.4 (4)C14—C13—C18—C1761.6 (3)
C6—C7—C8—C948.5 (4)C12—C13—C18—C1951.0 (4)
C6—C7—C8—C14167.6 (3)C14—C13—C18—C19176.2 (3)
C7—C8—C9—C11179.7 (3)C16—C17—C18—C1364.1 (4)
C26—C8—C9—C1161.4 (4)C22—C17—C18—C13174.3 (3)
C14—C8—C9—C1159.3 (3)C28—C17—C18—C1358.6 (4)
C7—C8—C9—C1047.2 (4)C16—C17—C18—C19164.7 (3)
C26—C8—C9—C1071.1 (4)C22—C17—C18—C1943.1 (3)
C14—C8—C9—C10168.2 (3)C28—C17—C18—C1972.6 (4)
C2—C1—C10—C2566.7 (5)C13—C18—C19—C2098.8 (4)
C2—C1—C10—C557.0 (5)C17—C18—C19—C20135.8 (3)
C2—C1—C10—C9171.6 (4)C13—C18—C19—C21150.0 (3)
C6—C5—C10—C2568.7 (4)C17—C18—C19—C2124.7 (3)
C4—C5—C10—C2564.3 (4)C18—C19—C20—C2963.3 (5)
C6—C5—C10—C1171.1 (3)C21—C19—C20—C29175.3 (4)
C4—C5—C10—C156.0 (4)C18—C19—C20—C30113.1 (3)
C6—C5—C10—C956.5 (4)C21—C19—C20—C301.0 (4)
C4—C5—C10—C9170.6 (3)C30—O2—C21—C22116.4 (4)
C11—C9—C10—C2555.7 (4)C30—O2—C21—C190.3 (4)
C8—C9—C10—C2575.5 (4)C20—C19—C21—O20.8 (4)
C11—C9—C10—C164.0 (4)C18—C19—C21—O2122.7 (3)
C8—C9—C10—C1164.8 (3)C20—C19—C21—C22118.8 (4)
C11—C9—C10—C5177.8 (3)C18—C19—C21—C223.1 (4)
C8—C9—C10—C551.0 (4)O2—C21—C22—C17146.9 (3)
C8—C9—C11—C1253.1 (4)C19—C21—C22—C1729.8 (4)
C10—C9—C11—C12172.7 (3)C16—C17—C22—C21160.8 (3)
C9—C11—C12—C1349.7 (4)C18—C17—C22—C2144.7 (4)
C11—C12—C13—C18178.0 (3)C28—C17—C22—C2174.3 (4)
C11—C12—C13—C1453.6 (4)C21—O2—C30—O3178.3 (4)
C12—C13—C14—C2760.9 (3)C21—O2—C30—C200.4 (5)
C18—C13—C14—C2765.8 (3)C29—C20—C30—O31.8 (7)
C12—C13—C14—C15178.1 (3)C19—C20—C30—O3178.7 (4)
C18—C13—C14—C1551.4 (3)C29—C20—C30—O2176.0 (4)
C12—C13—C14—C860.5 (3)C19—C20—C30—O20.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.992.573.395 (5)141
C12—H12A···O1ii0.992.453.310 (6)146
C24—H24A···O3i0.982.583.357 (6)137
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x1, y+1/2, z+5/2.
 

Acknowledgements

ADHE, GJMR and GML are grateful to Dra Reyna Reyes-Martínez for assistance in preparing the manuscript. ADHE thanks the Consejo Nacional de Ciencias y Tecnología–CONACYT for a postdoctoral fellowship.

Funding information

Funding for this research was provided by: Facultad de Química, Universidad Autonoma de Yucatan (award No. SISTPROY FQUI-2016-0006).

References

First citationAlvarenga, N. L., Ferro, E. A., Ravelo, A. G., Kennedy, M. L., Maestro, M. A. & González, A. G. (2000). Tetrahedron, 56, 3771–3774.  Web of Science CSD CrossRef CAS
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCallies, O., Bedoya, L. M., Beltrán, M., Muñoz, A., Calderón, P. O., Osorio, A. A., Jiménez, I. A., Alcamí, J. & Bazzocchi, I. L. (2015). J. Nat. Prod. 78, 1045–1055.  Web of Science CrossRef CAS PubMed
First citationEdwards, M. G., Kenworthy, M. N., Kitson, R. A., Scott, M. S. & Taylor, R. K. (2008). Angew. Chem. Int. Ed. 47, 1935–1937.  Web of Science CSD CrossRef CAS
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationJiménez-Estrada, M., Reyes-Chilpa, R., Hernández-Ortega, S., Cristobal-Telésforo, E., Torres-Colín, L., Jankowski, C. K., Aumelas, A. & Van Calsteren, M. R. (2000). Can. J. Chem. 78, 248–254.
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals
First citationNgassapa, O. D., Soejarto, D. D., Che, C., Pezzuto, J. M. & Farnsworth, N. R. (1991). J. Nat. Prod. 54, 1353–1359.  CrossRef PubMed CAS Web of Science
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationSturm, S., Gil, R. R., Chai, H., Ngassapa, O. D., Santisuk, T., Reutrakul, V., Howe, A., Moss, M., Besterman, J. M., Yang, S., Farthing, J. E., Tait, R. M., Lewis, J. A., O'Neill, M. J., Farnsworth, N. R., Cordell, G. A., Pezzuto, J. M. & Kinghorn, A. D. (1996). J. Nat. Prod. 59, 658–663.  CrossRef CAS PubMed Web of Science
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds