research communications
(E)-2,6-Dibromo-4-{2-[1-(1H,1H,2H,2H-perfluorooctyl)pyridinium-4-yl]ethenyl}phenolate methanol disolvate, a fluoroponytailed solvatochromic dye
aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80-82, 6020 Innsbruck, Austria, bUniversity of Helsinki, Department of Chemistry, PO Box 55, 00014 Helsinki, Finland, and cUniversity of Innsbruck, Institute of Mineralogy and Petrography, Innrain 52, 6020 Innsbruck, Austria
*Correspondence e-mail: herwig.schottenberger@uibk.ac.at
The title compound, C21H12Br2F13NO·2CH3OH, was obtained by condensation of 4-methyl-1-(1H,1H,2H,2H-perfluorooctyl)pyridinium iodide and 3,5-dibromo-4-hydroxybenzaldehyde, followed by deprotonation. It crystallizes as a methanol disolvate and exhibits short O—H⋯O hydrogen bonds and a disordered perfluoroalkyl chain [occupancy ratio 0.538 (7):0.462 (7)]. Significant π–π stacking interactions are observed between the benzene and pyridine rings of neighbouring molecules along the b-axis direction.
Keywords: crystal structure; fluoroalkyl; methanol; phenolate; pyridinium; solvatochromism.
CCDC reference: 1575370
1. Chemical context
Dyes with a fundamental type of ). It was intended to combine the structural features of a delocalized π-electron system with those of polyfluorinated compounds in order to derive a new material with advantageous properties such as altered solubility (Hoang & Mecozzi, 2004) and affinity (Wagner et al., 2016) profiles, given that the physical and chemical properties of organic compounds are strongly affected by the introduction of fluorinated substituents. Fluorosurfactants have a tendency towards micelle formation in biphasic or ternary solvent mixtures. Thus, the utilization of solvatochromic surfactants as self-indicating micelle reporters (Kedia et al., 2014) is an attractive analytical concept for fluorous-phase-related materials science.
as in the title compound have long been known (Hünig & Rosenthal, 19552. Structural commentary
The title compound comprises a delocalized π-electron system, involving either a zwitterionic benzoid or a non-polar quinoid resonance structure. Inspection of bond lengths leads to the conclusion that it is not a typical cyclohexadienone system (Chandran et al., 2008; Chiverton et al., 1991) but rather a benzoid system similar to 2,6-dibromophenol predominant (Eriksson & Eriksson, 2001; Lu et al., 2011; Lehmler & Parkin, 2005). The heterocyclic ring also resembles a typical pyridinium system. Furthermore, the shortest C=C bond in the bridge linking the two rings is between C6 and C7 with a length of 1.337 (6) Å, whereas the adjacent bonds are considerably longer. The framework thus is not quinoid but benzoid. The conjugated moieties of the dye molecule are almost planar and the mean planes of the benzene and pyridine rings form an angle of 2.97 (2)°, whilst the fluorinated chains protrude from the plane.
The carbon atoms C17–C21 and fluorine atoms F3–F13 of the polyfluorinated tail are disordered over sets of sites with an occupancy ratio for the two disorder fragments of 0.538 (7):0.462 (7). The chain adopts a slightly helical conformation (Fournier et al., 2010) with an average C—C—C—C twist angle (deviation from 180°) of 3°. Typically, π-electron donor–acceptor-substituted conjugated systems exhibit solvatochromism. Solutions of the title compound display absorption maxima at 610 nm (blue) in THF and 502 nm (red) in MeOH. Here, increased solvent polarity leads to higher transition energy (negative solvatochromism). A quinoid system based on 2,6-dibromophenol displaying positive solvatochromism has been reported previously (Laus et al., 2003).
3. Supramolecular features
The three components of the title compound are linked into a finite hydrogen-bonded chain. The two solvent molecules are connected by an O1S—H1S⋯O2S bond, and additionally the interaction O2S—H2S⋯O1 links the second solvent molecule with the main molecule (Table 1, Fig. 1). In addition, there are significant π–π stacking interactions between the benzene and pyridine rings. These are weakly connecting in the b-axis direction. Centroid–centroid distances Cg1⋯Cg2i and Cg1⋯Cg2ii are 3.525 (3) and 3.605 (3) Å, respectively [Cg1 and Cg2 are the centroids of the benzene and pyridine rings, respectively; symmetry codes: (i) 1 − x, − + y, − z; (ii) 1 − x, + y, − z]. The packing of the molecules is displayed in Fig. 2.
|
4. Database survey
of an acceptor-substituted conjugated 2,6-dibromophenol derivative (refcode SULSAV), displaying visible solvatochromism, has been reported (Stock5. Synthesis and crystallization
4-Methyl-1-(1H,1H,2H,2H- perfluorooctyl)pyridinium iodide (1): A solution of 4-methylpyridine (10.0 g, 107.4 mmol) and 1H,1H,2H,2H-perfluorooctyl iodide (66.2 g, 139.2 mmol) in CH3CN (15 ml) was refluxed for 24 h. The mixture was diluted with Et2O (250 ml) and allowed to rest at 249 K overnight. The product 1 was collected by filtration, washed with Et2O (100 ml) and dried to give 59.3 g (97%) of a dark-red powder. 1H NMR (300 MHz, CD3OD): δ 8.97 (d, J = 6.5 Hz, 2H), 8.01 (d, J = 6.5 Hz, 2H), 5.01 (t, J = 7.2 Hz, 2H), 3.25–3.04 (m, 2H), 2.71 (s, 3H) ppm.
(E)-4-(2-(3,5-Dibromo-4-hydroxyphenyl)ethenyl)-1-(1H,1H,2H,2H-perfluorooctyl)pyridinium iodide (2): A solution of intermediate 1 (2.03 g, 3.57 mmol), 3,5-dibromo-4-hydroxybenzaldehyde (1.00 g, 3.57 mmol) and piperidine (0.5 ml, 5 mmol) in MeOH (10 ml) was refluxed for 4 h. After removal of the solvent, the residue was washed with CHCl3 (50 ml) and H2O (20 ml), dissolved in MeOH (70 ml) and precipitated with Et2O (400 ml). The crude product (2.0 g) was redissolved in acetone (40 ml) and precipitated with H2O (400 ml), filtered and dried to give 1.53 g (52%) of 2 as a red–brown powder, m.p. 497 K. 1H NMR (300 MHz, CD3OD): δ 8.52 (d, J = 6.7 Hz, 2H), 7.81 (d, J = 6.6 Hz, 2H), 7.73 (s, 2H), 7.63 (d, J = 15.8 Hz, 1H), 6.82 (d, J = 15.8 Hz, 1H), 4.78 (t, J = 7.2 Hz, 2H), 3.18–2.93 (m, 2H) ppm IR (neat): ν 3035(w), 3002(w), 2956(w), 1641(w), 1601(m), 1563(m), 1499(m), 1469(m), 1425(w), 1366(w), 1315(w), 1232(m), 1171(s), 1140(vs), 1075(m), 1041(m), 958(m), 916(w), 859(m), 809(w), 780(w), 745(m), 717(m), 695(m), 652(m), 616(m), 588(m), 551(w), 514(m), 488(w) cm−1.
(E)-2,6-Dibromo-4-(2-(1-(1H,1H,2H,2H-perfluorooctyl)pyridinium-4-yl)ethenyl)phenolate methanol disolvate (3): A solution of NaOH (2 ml 5%, 2.5 mmol) was added to intermediate 2 (1.0 g, 1.2 mmol) in MeOH (20 ml). The mixture was ultrasonicated for 25 min, then heated and diluted with H2O (400 ml). After resting at 277 K overnight, the mixture was filtered and the dark-red product 3 was collected and dried: 0.57 g (68%). M.p. 513 K. Suitable crystals were obtained by diffusion of Et2O into a solution of 3 in MeOH at 249 K. 1H NMR (300 MHz, CD3OD): δ 8.52 (d, J = 6.3 Hz, 2H), 7.81 (d, J = 6.3 Hz, 2H), 7.73 (s, 2H), 7.63 (d, J = 15.8 Hz, 1H), 6.90–6.75 (m, 1H), 4.78 (t, J = 7.2 Hz, 2H), 3.17–2.95 (m, 2H) ppm IR (neat): ν 3642(w), 3305(w), 3037(w), 2999(w), 2958(w), 2939(w), 1641(m), 1601(m), 1562(s), 1523(s), 1499(s), 1469(m), 1425(m), 1366(w), 1315(w), 1231(m), 1171(vs), 1140(vs), 1119(s), 1076(m), 1041(m), 996(w), 959(m), 916(w), 857(m), 809(m), 780(w), 745(m), 717(s), 707(m), 694(s), 653(m), 616(m), 589(m), 565(w), 551(m), 530(m), 516(m), 491(w) cm−1.
6. Refinement
Crystal data, data collection and structure . All H atoms were identified in difference maps. Methyl H atoms were idealized and included as rigid groups allowed to rotate but not tip and refined with Uiso(H) set to 1.5Ueq(C) of the parent carbon atom. All other H atoms bonded to carbon atoms were positioned geometrically and refined with Uiso(H) set to 1.2Ueq(C) of the parent carbon atom. Hydrogen atoms in OH groups were refined with restrained distances [O—H = 0.84 (1) Å] and their Uiso parameters were refined freely.
details are summarized in Table 2The terminal C5F11 unit of the polyfluorinated tail was found to be disordered over two orientations. The two disorder components, each consisting of 16 atomic positions, were refined using 401 distance restraints (SADI) for chemically equivalent C—C, C—F and F⋯F bonds, and the final occupancy ratio was 0.538 (7):0.462 (7). All disordered atoms were refined anisotropically. The extension of the modelled disorder increased the number of refined parameters substantially. Consequently, the obtained data/parameter ratio is lower than normally expected.
Supporting information
CCDC reference: 1575370
https://doi.org/10.1107/S2056989017013378/lh5850sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017013378/lh5850Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017013378/lh5850Isup3.mol
Supporting information file. DOI: https://doi.org/10.1107/S2056989017013378/lh5850Isup4.cml
Data collection: CrysAlis PRO 1.171.38.43f (Rigaku Oxford Diffraction, 2015); cell
CrysAlis PRO 1.171.38.43f (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO 1.171.38.43f (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008).C21H12Br2F13NO·2CH4O | Dx = 1.834 Mg m−3 |
Mr = 765.22 | Melting point: 513 K |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 22.2362 (7) Å | Cell parameters from 3207 reflections |
b = 6.7922 (18) Å | θ = 6.8–62.6° |
c = 18.9098 (5) Å | µ = 4.80 mm−1 |
β = 103.989 (3)° | T = 173 K |
V = 2771.3 (7) Å3 | Needle, red |
Z = 4 | 0.36 × 0.06 × 0.04 mm |
F(000) = 1504 |
Rigaku Xcalibur Ruby Gemini ultra diffractometer | 4314 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance Ultra (Cu) X-ray Source | 3371 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.035 |
Detector resolution: 10.3575 pixels mm-1 | θmax = 62.7°, θmin = 4.1° |
ω scans | h = −25→22 |
Absorption correction: analytical [CrysAlis PRO (Rigaku Oxford Diffraction, 2015), based on expressions derived by Clark & Reid (1995)] | k = −7→6 |
Tmin = 0.499, Tmax = 0.853 | l = −14→21 |
11115 measured reflections |
Refinement on F2 | 403 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.0459P)2 + 2.6693P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.002 |
4314 reflections | Δρmax = 0.74 e Å−3 |
516 parameters | Δρmin = −0.72 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.72887 (2) | 0.71430 (7) | 0.85956 (2) | 0.03986 (15) | |
Br2 | 0.58110 (2) | 0.70255 (10) | 1.06685 (3) | 0.06123 (19) | |
O1 | 0.69939 (13) | 0.7051 (4) | 1.00942 (15) | 0.0413 (7) | |
N1 | 0.30370 (15) | 0.7317 (5) | 0.55358 (18) | 0.0355 (8) | |
C1 | 0.35778 (19) | 0.7194 (6) | 0.5334 (2) | 0.0384 (10) | |
H1 | 0.3574 | 0.7177 | 0.4830 | 0.046* | |
C2 | 0.41297 (19) | 0.7094 (6) | 0.5841 (2) | 0.0373 (10) | |
H2 | 0.4505 | 0.7012 | 0.5686 | 0.045* | |
C3 | 0.41516 (19) | 0.7111 (6) | 0.6584 (2) | 0.0349 (9) | |
C4 | 0.35844 (19) | 0.7177 (6) | 0.6781 (2) | 0.0360 (9) | |
H4 | 0.3575 | 0.7151 | 0.7280 | 0.043* | |
C5 | 0.30411 (19) | 0.7278 (6) | 0.6247 (2) | 0.0366 (10) | |
H5 | 0.2658 | 0.7322 | 0.6386 | 0.044* | |
C6 | 0.47455 (19) | 0.7076 (6) | 0.7121 (2) | 0.0373 (10) | |
H6 | 0.5111 | 0.6998 | 0.6946 | 0.045* | |
C7 | 0.48119 (19) | 0.7145 (6) | 0.7842 (2) | 0.0375 (10) | |
H7 | 0.4440 | 0.7199 | 0.8005 | 0.045* | |
C8 | 0.53856 (19) | 0.7149 (6) | 0.8404 (2) | 0.0347 (9) | |
C9 | 0.59774 (18) | 0.7163 (6) | 0.8264 (2) | 0.0336 (9) | |
H9 | 0.6016 | 0.7186 | 0.7775 | 0.040* | |
C10 | 0.64987 (18) | 0.7145 (6) | 0.8824 (2) | 0.0321 (9) | |
C11 | 0.65004 (18) | 0.7098 (6) | 0.9584 (2) | 0.0343 (9) | |
C12 | 0.58882 (19) | 0.7105 (6) | 0.9690 (2) | 0.0371 (9) | |
C13 | 0.53587 (18) | 0.7137 (6) | 0.9137 (2) | 0.0377 (10) | |
H13 | 0.4966 | 0.7152 | 0.9254 | 0.045* | |
C14 | 0.24393 (19) | 0.7506 (6) | 0.4984 (2) | 0.0390 (10) | |
H14A | 0.2518 | 0.7731 | 0.4497 | 0.047* | |
H14B | 0.2205 | 0.8648 | 0.5103 | 0.047* | |
C15 | 0.20596 (19) | 0.5630 (6) | 0.4972 (2) | 0.0389 (10) | |
H15A | 0.2305 | 0.4488 | 0.4876 | 0.047* | |
H15B | 0.1971 | 0.5439 | 0.5456 | 0.047* | |
C16 | 0.14596 (17) | 0.5710 (6) | 0.4401 (2) | 0.0390 (10) | |
F1 | 0.11416 (12) | 0.7347 (4) | 0.44718 (17) | 0.0615 (8) | |
F2 | 0.15626 (12) | 0.5751 (5) | 0.37277 (13) | 0.0621 (8) | |
C17 | 0.1052 (6) | 0.3886 (19) | 0.4512 (11) | 0.032 (3) | 0.538 (7) |
F3 | 0.0880 (11) | 0.395 (3) | 0.5138 (13) | 0.046 (3) | 0.538 (7) |
F4 | 0.1392 (9) | 0.227 (2) | 0.4520 (9) | 0.047 (3) | 0.538 (7) |
C18 | 0.0443 (6) | 0.398 (2) | 0.3879 (6) | 0.049 (5) | 0.538 (7) |
F5 | 0.0088 (6) | 0.553 (2) | 0.3897 (9) | 0.096 (5) | 0.538 (7) |
F6 | 0.0511 (6) | 0.380 (2) | 0.3204 (6) | 0.114 (6) | 0.538 (7) |
C19 | 0.0003 (5) | 0.2195 (14) | 0.3942 (5) | 0.0466 (13) | 0.538 (7) |
F7 | −0.0127 (5) | 0.2142 (17) | 0.4591 (4) | 0.086 (4) | 0.538 (7) |
F8 | 0.0246 (3) | 0.0455 (11) | 0.3845 (7) | 0.109 (4) | 0.538 (7) |
C20 | −0.0657 (5) | 0.2196 (13) | 0.3402 (6) | 0.049 (3) | 0.538 (7) |
F9 | −0.0608 (7) | 0.227 (2) | 0.2719 (6) | 0.096 (5) | 0.538 (7) |
F10 | −0.0975 (3) | 0.3771 (10) | 0.3515 (4) | 0.095 (3) | 0.538 (7) |
C21 | −0.1086 (5) | 0.0383 (14) | 0.3430 (6) | 0.0659 (17) | 0.538 (7) |
F11 | −0.0834 (3) | −0.1257 (10) | 0.3271 (7) | 0.126 (4) | 0.538 (7) |
F12 | −0.1620 (5) | 0.063 (2) | 0.2950 (6) | 0.093 (4) | 0.538 (7) |
F13 | −0.1200 (5) | 0.020 (2) | 0.4076 (5) | 0.114 (6) | 0.538 (7) |
C17A | 0.1030 (7) | 0.396 (2) | 0.4358 (14) | 0.032 (3) | 0.462 (7) |
F3A | 0.1343 (11) | 0.230 (3) | 0.4336 (12) | 0.081 (7) | 0.462 (7) |
F4A | 0.0912 (14) | 0.406 (4) | 0.5014 (16) | 0.074 (8) | 0.462 (7) |
C18A | 0.0435 (6) | 0.3502 (19) | 0.3801 (6) | 0.034 (4) | 0.462 (7) |
F5A | 0.0231 (6) | 0.5312 (18) | 0.3621 (8) | 0.063 (3) | 0.462 (7) |
F6A | 0.0670 (6) | 0.2830 (18) | 0.3267 (6) | 0.055 (3) | 0.462 (7) |
C19A | −0.0047 (6) | 0.2143 (16) | 0.3974 (5) | 0.0466 (13) | 0.462 (7) |
F7A | −0.0318 (5) | 0.3151 (16) | 0.4410 (6) | 0.080 (4) | 0.462 (7) |
F8A | 0.0262 (4) | 0.0682 (13) | 0.4367 (5) | 0.070 (3) | 0.462 (7) |
C20A | −0.0509 (5) | 0.1407 (16) | 0.3308 (6) | 0.051 (4) | 0.462 (7) |
F9A | −0.0241 (4) | −0.0059 (14) | 0.3042 (5) | 0.104 (4) | 0.462 (7) |
F10A | −0.0640 (8) | 0.282 (2) | 0.2817 (9) | 0.110 (7) | 0.462 (7) |
C21A | −0.1099 (5) | 0.0648 (16) | 0.3461 (7) | 0.0659 (17) | 0.462 (7) |
F11A | −0.1445 (3) | 0.2054 (15) | 0.3637 (7) | 0.121 (4) | 0.462 (7) |
F12A | −0.0958 (6) | −0.061 (2) | 0.4003 (7) | 0.108 (6) | 0.462 (7) |
F13A | −0.1435 (7) | −0.028 (2) | 0.2889 (7) | 0.099 (5) | 0.462 (7) |
O1S | 0.65266 (18) | 0.2293 (6) | 1.1488 (2) | 0.0597 (9) | |
H1S | 0.678 (2) | 0.321 (7) | 1.146 (4) | 0.10 (2)* | |
C1S | 0.6945 (3) | 0.0714 (8) | 1.1694 (3) | 0.0690 (15) | |
H1S1 | 0.7365 | 0.1231 | 1.1877 | 0.104* | |
H1S2 | 0.6933 | −0.0130 | 1.1270 | 0.104* | |
H1S3 | 0.6827 | −0.0057 | 1.2077 | 0.104* | |
O2S | 0.72828 (18) | 0.5293 (6) | 1.1399 (2) | 0.0699 (11) | |
H2S | 0.713 (3) | 0.582 (9) | 1.0994 (17) | 0.09 (2)* | |
C2S | 0.7847 (3) | 0.5858 (10) | 1.1829 (3) | 0.0746 (16) | |
H2S1 | 0.7859 | 0.7296 | 1.1876 | 0.112* | |
H2S2 | 0.8178 | 0.5422 | 1.1605 | 0.112* | |
H2S3 | 0.7906 | 0.5261 | 1.2312 | 0.112* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0307 (2) | 0.0410 (3) | 0.0472 (3) | −0.00156 (19) | 0.00816 (18) | −0.0061 (2) |
Br2 | 0.0379 (3) | 0.1009 (5) | 0.0449 (3) | −0.0003 (3) | 0.0099 (2) | 0.0052 (3) |
O1 | 0.0285 (15) | 0.0506 (18) | 0.0395 (16) | −0.0031 (13) | −0.0018 (13) | 0.0026 (13) |
N1 | 0.0327 (18) | 0.0273 (18) | 0.041 (2) | −0.0018 (14) | −0.0013 (15) | 0.0000 (14) |
C1 | 0.036 (2) | 0.036 (2) | 0.043 (2) | −0.0035 (18) | 0.0078 (19) | −0.0013 (18) |
C2 | 0.031 (2) | 0.031 (2) | 0.048 (3) | −0.0014 (18) | 0.0064 (18) | −0.0033 (19) |
C3 | 0.033 (2) | 0.0195 (19) | 0.049 (3) | −0.0007 (17) | 0.0035 (18) | −0.0019 (18) |
C4 | 0.034 (2) | 0.032 (2) | 0.039 (2) | −0.0023 (18) | 0.0025 (18) | 0.0009 (18) |
C5 | 0.033 (2) | 0.031 (2) | 0.045 (3) | −0.0029 (17) | 0.0076 (18) | −0.0012 (18) |
C6 | 0.029 (2) | 0.031 (2) | 0.049 (3) | −0.0020 (17) | 0.0040 (18) | −0.0021 (19) |
C7 | 0.031 (2) | 0.029 (2) | 0.049 (3) | −0.0009 (18) | 0.0020 (18) | 0.0005 (19) |
C8 | 0.032 (2) | 0.023 (2) | 0.044 (2) | −0.0009 (17) | −0.0006 (18) | 0.0005 (17) |
C9 | 0.033 (2) | 0.025 (2) | 0.040 (2) | 0.0000 (17) | 0.0032 (17) | −0.0034 (17) |
C10 | 0.032 (2) | 0.0229 (19) | 0.040 (2) | −0.0025 (16) | 0.0058 (17) | 0.0009 (17) |
C11 | 0.031 (2) | 0.024 (2) | 0.046 (2) | −0.0028 (17) | 0.0053 (19) | −0.0001 (18) |
C12 | 0.032 (2) | 0.036 (2) | 0.041 (2) | −0.0006 (18) | 0.0045 (18) | 0.0013 (18) |
C13 | 0.026 (2) | 0.033 (2) | 0.052 (3) | −0.0002 (17) | 0.0058 (18) | −0.0008 (19) |
C14 | 0.031 (2) | 0.040 (3) | 0.040 (2) | 0.0012 (18) | −0.0048 (18) | 0.0039 (18) |
C15 | 0.039 (2) | 0.035 (2) | 0.038 (2) | 0.0002 (19) | −0.0012 (18) | 0.0013 (18) |
C16 | 0.031 (2) | 0.041 (3) | 0.042 (2) | 0.0029 (19) | 0.0038 (18) | 0.0035 (19) |
F1 | 0.0363 (14) | 0.0402 (15) | 0.097 (2) | 0.0058 (12) | −0.0057 (14) | −0.0023 (14) |
F2 | 0.0504 (16) | 0.094 (2) | 0.0383 (15) | −0.0251 (15) | 0.0026 (12) | 0.0056 (14) |
C17 | 0.037 (3) | 0.045 (3) | 0.014 (8) | −0.001 (2) | 0.006 (3) | 0.000 (3) |
F3 | 0.057 (5) | 0.061 (6) | 0.026 (6) | −0.017 (5) | 0.018 (4) | −0.006 (4) |
F4 | 0.045 (5) | 0.030 (5) | 0.056 (5) | −0.005 (3) | −0.006 (3) | 0.002 (3) |
C18 | 0.049 (9) | 0.059 (11) | 0.041 (8) | −0.031 (7) | 0.017 (6) | −0.022 (7) |
F5 | 0.034 (5) | 0.049 (4) | 0.185 (15) | 0.003 (3) | −0.011 (6) | 0.010 (7) |
F6 | 0.075 (9) | 0.211 (18) | 0.047 (5) | −0.084 (10) | −0.002 (5) | 0.002 (9) |
C19 | 0.036 (3) | 0.051 (3) | 0.052 (3) | −0.009 (2) | 0.010 (2) | 0.000 (2) |
F7 | 0.071 (7) | 0.129 (10) | 0.050 (4) | −0.052 (7) | −0.001 (4) | 0.020 (5) |
F8 | 0.049 (4) | 0.054 (4) | 0.208 (11) | 0.002 (3) | −0.002 (6) | −0.039 (6) |
C20 | 0.050 (7) | 0.054 (9) | 0.042 (6) | −0.012 (6) | 0.010 (5) | −0.020 (7) |
F9 | 0.093 (8) | 0.165 (11) | 0.032 (6) | −0.081 (8) | 0.019 (5) | −0.020 (6) |
F10 | 0.045 (4) | 0.081 (5) | 0.140 (7) | 0.006 (3) | −0.016 (4) | −0.024 (4) |
C21 | 0.047 (3) | 0.084 (5) | 0.062 (4) | −0.028 (3) | 0.006 (3) | −0.003 (4) |
F11 | 0.088 (6) | 0.070 (5) | 0.220 (12) | −0.031 (4) | 0.036 (7) | −0.028 (6) |
F12 | 0.058 (7) | 0.122 (11) | 0.086 (6) | −0.041 (6) | −0.008 (4) | −0.004 (6) |
F13 | 0.067 (8) | 0.211 (17) | 0.063 (5) | −0.073 (9) | 0.015 (5) | 0.000 (7) |
C17A | 0.037 (3) | 0.045 (3) | 0.014 (8) | −0.001 (2) | 0.006 (3) | 0.000 (3) |
F3A | 0.044 (7) | 0.064 (9) | 0.131 (18) | 0.006 (6) | 0.009 (10) | −0.042 (9) |
F4A | 0.068 (8) | 0.116 (12) | 0.034 (11) | −0.049 (7) | 0.006 (7) | 0.004 (6) |
C18A | 0.046 (9) | 0.022 (6) | 0.023 (8) | −0.004 (5) | −0.015 (6) | −0.003 (5) |
F5A | 0.033 (7) | 0.052 (7) | 0.085 (8) | 0.002 (5) | −0.019 (5) | 0.015 (5) |
F6A | 0.042 (5) | 0.094 (7) | 0.032 (5) | −0.014 (4) | 0.014 (4) | −0.017 (4) |
C19A | 0.036 (3) | 0.051 (3) | 0.052 (3) | −0.009 (2) | 0.010 (2) | 0.000 (2) |
F7A | 0.063 (6) | 0.106 (9) | 0.087 (8) | −0.035 (5) | 0.049 (6) | −0.060 (6) |
F8A | 0.055 (5) | 0.058 (5) | 0.084 (6) | −0.024 (4) | −0.010 (5) | 0.016 (5) |
C20A | 0.057 (9) | 0.060 (10) | 0.035 (8) | −0.020 (7) | 0.006 (6) | −0.026 (7) |
F9A | 0.077 (5) | 0.139 (9) | 0.103 (6) | −0.033 (6) | 0.032 (5) | −0.074 (6) |
F10A | 0.070 (9) | 0.135 (11) | 0.091 (13) | −0.054 (7) | −0.048 (7) | 0.055 (9) |
C21A | 0.047 (3) | 0.084 (5) | 0.062 (4) | −0.028 (3) | 0.006 (3) | −0.003 (4) |
F11A | 0.037 (4) | 0.149 (9) | 0.178 (11) | −0.014 (5) | 0.029 (5) | −0.058 (8) |
F12A | 0.066 (9) | 0.145 (12) | 0.100 (10) | −0.057 (8) | −0.005 (6) | 0.049 (9) |
F13A | 0.075 (11) | 0.140 (14) | 0.073 (6) | −0.058 (8) | −0.002 (6) | −0.022 (7) |
O1S | 0.059 (2) | 0.061 (2) | 0.060 (2) | −0.001 (2) | 0.0160 (18) | 0.0056 (18) |
C1S | 0.075 (4) | 0.058 (3) | 0.072 (4) | 0.006 (3) | 0.012 (3) | 0.010 (3) |
O2S | 0.065 (2) | 0.070 (3) | 0.063 (2) | −0.013 (2) | −0.0062 (19) | 0.023 (2) |
C2S | 0.065 (4) | 0.086 (4) | 0.065 (4) | −0.006 (3) | −0.001 (3) | 0.008 (3) |
Br1—C10 | 1.908 (4) | C17—C18 | 1.576 (9) |
Br2—C12 | 1.900 (4) | C18—F6 | 1.325 (7) |
O1—C11 | 1.274 (5) | C18—F5 | 1.326 (7) |
N1—C5 | 1.344 (5) | C18—C19 | 1.579 (9) |
N1—C1 | 1.350 (5) | C19—F7 | 1.328 (7) |
N1—C14 | 1.484 (5) | C19—F8 | 1.331 (7) |
C1—C2 | 1.365 (6) | C19—C20 | 1.573 (9) |
C1—H1 | 0.9500 | C20—F9 | 1.323 (7) |
C2—C3 | 1.393 (6) | C20—F10 | 1.327 (7) |
C2—H2 | 0.9500 | C20—C21 | 1.566 (9) |
C3—C4 | 1.400 (6) | C21—F13 | 1.313 (7) |
C3—C6 | 1.459 (5) | C21—F11 | 1.314 (7) |
C4—C5 | 1.375 (6) | C21—F12 | 1.319 (7) |
C4—H4 | 0.9500 | C17A—F3A | 1.331 (7) |
C5—H5 | 0.9500 | C17A—F4A | 1.331 (7) |
C6—C7 | 1.337 (6) | C17A—C18A | 1.513 (8) |
C6—H6 | 0.9500 | C18A—F6A | 1.325 (7) |
C7—C8 | 1.450 (5) | C18A—F5A | 1.326 (7) |
C7—H7 | 0.9500 | C18A—C19A | 1.509 (9) |
C8—C13 | 1.401 (6) | C19A—F7A | 1.322 (7) |
C8—C9 | 1.404 (6) | C19A—F8A | 1.328 (7) |
C9—C10 | 1.368 (5) | C19A—C20A | 1.506 (9) |
C9—H9 | 0.9500 | C20A—F10A | 1.318 (7) |
C10—C11 | 1.436 (6) | C20A—F9A | 1.321 (7) |
C11—C12 | 1.423 (6) | C20A—C21A | 1.500 (9) |
C12—C13 | 1.373 (6) | C21A—F12A | 1.314 (7) |
C13—H13 | 0.9500 | C21A—F11A | 1.319 (7) |
C14—C15 | 1.526 (6) | C21A—F13A | 1.319 (7) |
C14—H14A | 0.9900 | O1S—C1S | 1.411 (6) |
C14—H14B | 0.9900 | O1S—H1S | 0.845 (11) |
C15—C16 | 1.501 (5) | C1S—H1S1 | 0.9800 |
C15—H15A | 0.9900 | C1S—H1S2 | 0.9800 |
C15—H15B | 0.9900 | C1S—H1S3 | 0.9800 |
C16—F1 | 1.342 (4) | O2S—C2S | 1.374 (6) |
C16—F2 | 1.348 (4) | O2S—H2S | 0.838 (11) |
C16—C17A | 1.515 (8) | C2S—H2S1 | 0.9800 |
C16—C17 | 1.578 (9) | C2S—H2S2 | 0.9800 |
C17—F4 | 1.329 (6) | C2S—H2S3 | 0.9800 |
C17—F3 | 1.330 (6) | ||
C5—N1—C1 | 119.4 (3) | F6—C18—F5 | 107.6 (7) |
C5—N1—C14 | 119.6 (4) | F6—C18—C17 | 116.8 (14) |
C1—N1—C14 | 120.9 (4) | F5—C18—C17 | 114.8 (13) |
N1—C1—C2 | 121.0 (4) | F6—C18—C19 | 102.9 (11) |
N1—C1—H1 | 119.5 | F5—C18—C19 | 102.9 (10) |
C2—C1—H1 | 119.5 | C17—C18—C19 | 110.3 (11) |
C1—C2—C3 | 121.0 (4) | F7—C19—F8 | 106.9 (7) |
C1—C2—H2 | 119.5 | F7—C19—C20 | 102.9 (9) |
C3—C2—H2 | 119.5 | F8—C19—C20 | 104.9 (8) |
C2—C3—C4 | 117.0 (4) | F7—C19—C18 | 111.6 (9) |
C2—C3—C6 | 120.5 (4) | F8—C19—C18 | 112.9 (9) |
C4—C3—C6 | 122.5 (4) | C20—C19—C18 | 116.7 (9) |
C5—C4—C3 | 119.7 (4) | F9—C20—F10 | 107.3 (7) |
C5—C4—H4 | 120.2 | F9—C20—C21 | 105.0 (10) |
C3—C4—H4 | 120.2 | F10—C20—C21 | 106.0 (7) |
N1—C5—C4 | 121.8 (4) | F9—C20—C19 | 110.5 (10) |
N1—C5—H5 | 119.1 | F10—C20—C19 | 110.2 (7) |
C4—C5—H5 | 119.1 | C21—C20—C19 | 117.2 (9) |
C7—C6—C3 | 124.6 (4) | F13—C21—F11 | 108.8 (7) |
C7—C6—H6 | 117.7 | F13—C21—F12 | 107.8 (7) |
C3—C6—H6 | 117.7 | F11—C21—F12 | 108.2 (7) |
C6—C7—C8 | 127.5 (4) | F13—C21—C20 | 111.3 (9) |
C6—C7—H7 | 116.3 | F11—C21—C20 | 111.3 (7) |
C8—C7—H7 | 116.3 | F12—C21—C20 | 109.4 (10) |
C13—C8—C9 | 116.9 (4) | F3A—C17A—F4A | 107.1 (7) |
C13—C8—C7 | 119.0 (4) | F3A—C17A—C18A | 100.4 (15) |
C9—C8—C7 | 124.1 (4) | F4A—C17A—C18A | 108.8 (18) |
C10—C9—C8 | 120.7 (4) | F3A—C17A—C16 | 109.8 (16) |
C10—C9—H9 | 119.6 | F4A—C17A—C16 | 100 (2) |
C8—C9—H9 | 119.6 | C18A—C17A—C16 | 129.3 (15) |
C9—C10—C11 | 124.9 (4) | F6A—C18A—F5A | 107.3 (7) |
C9—C10—Br1 | 118.6 (3) | F6A—C18A—C19A | 112.8 (11) |
C11—C10—Br1 | 116.5 (3) | F5A—C18A—C19A | 114.0 (11) |
O1—C11—C12 | 124.8 (4) | F6A—C18A—C17A | 99.2 (15) |
O1—C11—C10 | 123.5 (4) | F5A—C18A—C17A | 100.1 (13) |
C12—C11—C10 | 111.7 (3) | C19A—C18A—C17A | 121.5 (13) |
C13—C12—C11 | 124.5 (4) | F7A—C19A—F8A | 106.9 (7) |
C13—C12—Br2 | 118.6 (3) | F7A—C19A—C20A | 111.8 (9) |
C11—C12—Br2 | 116.9 (3) | F8A—C19A—C20A | 112.1 (10) |
C12—C13—C8 | 121.3 (4) | F7A—C19A—C18A | 105.9 (10) |
C12—C13—H13 | 119.4 | F8A—C19A—C18A | 106.3 (9) |
C8—C13—H13 | 119.4 | C20A—C19A—C18A | 113.4 (10) |
N1—C14—C15 | 109.6 (3) | F10A—C20A—F9A | 108.9 (7) |
N1—C14—H14A | 109.7 | F10A—C20A—C21A | 109.4 (13) |
C15—C14—H14A | 109.7 | F9A—C20A—C21A | 108.1 (8) |
N1—C14—H14B | 109.7 | F10A—C20A—C19A | 109.7 (11) |
C15—C14—H14B | 109.7 | F9A—C20A—C19A | 106.8 (9) |
H14A—C14—H14B | 108.2 | C21A—C20A—C19A | 113.8 (10) |
C16—C15—C14 | 111.9 (3) | F12A—C21A—F11A | 108.6 (7) |
C16—C15—H15A | 109.2 | F12A—C21A—F13A | 107.9 (7) |
C14—C15—H15A | 109.2 | F11A—C21A—F13A | 107.7 (7) |
C16—C15—H15B | 109.2 | F12A—C21A—C20A | 108.7 (10) |
C14—C15—H15B | 109.2 | F11A—C21A—C20A | 113.0 (9) |
H15A—C15—H15B | 107.9 | F13A—C21A—C20A | 110.8 (11) |
F1—C16—F2 | 106.9 (3) | C1S—O1S—H1S | 100 (5) |
F1—C16—C15 | 110.9 (3) | O1S—C1S—H1S1 | 109.5 |
F2—C16—C15 | 110.9 (3) | O1S—C1S—H1S2 | 109.5 |
F1—C16—C17A | 108.4 (9) | H1S1—C1S—H1S2 | 109.5 |
F2—C16—C17A | 102.4 (11) | O1S—C1S—H1S3 | 109.5 |
C15—C16—C17A | 116.7 (8) | H1S1—C1S—H1S3 | 109.5 |
F1—C16—C17 | 107.7 (8) | H1S2—C1S—H1S3 | 109.5 |
F2—C16—C17 | 112.0 (9) | C2S—O2S—H2S | 121 (5) |
C15—C16—C17 | 108.4 (6) | O2S—C2S—H2S1 | 109.5 |
F4—C17—F3 | 107.5 (6) | O2S—C2S—H2S2 | 109.5 |
F4—C17—C18 | 114.9 (14) | H2S1—C2S—H2S2 | 109.5 |
F3—C17—C18 | 107.2 (15) | O2S—C2S—H2S3 | 109.5 |
F4—C17—C16 | 107.8 (12) | H2S1—C2S—H2S3 | 109.5 |
F3—C17—C16 | 113.0 (17) | H2S2—C2S—H2S3 | 109.5 |
C18—C17—C16 | 106.5 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1S—H1S···O2S | 0.85 (1) | 1.83 (1) | 2.674 (5) | 176 (7) |
O2S—H2S···O1 | 0.84 (1) | 1.85 (2) | 2.675 (4) | 167 (6) |
Acknowledgements
The authors are grateful to Marco Kreidl for technical assistance.
References
Chandran, S. K., Nath, N. K., Roy, S. & Nangia, A. (2008). Cryst. Growth Des. 8, 140–154. CSD CrossRef CAS
Chiverton, A. C., Fortier, S., Bovenkamp, J. W., Thoraval, D., Buchanan, G. W. & Dawson, B. A. (1991). Can. J. Chem. 69, 1298–1305. CSD CrossRef CAS
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals
Eriksson, J. & Eriksson, L. (2001). Acta Cryst. C57, 1308–1312. Web of Science CSD CrossRef CAS IUCr Journals
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals
Fournier, J. A., Bohn, R. K., Montgomery, J. A. & Onda, M. (2010). J. Phys. Chem. A, 114, 1118–1122. Web of Science CrossRef CAS PubMed
Hoang, K. C. & Mecozzi, S. (2004). Langmuir, 20, 7347–7350. CrossRef PubMed CAS
Hünig, S. & Rosenthal, O. (1955). Justus Liebigs Ann. Chem. 592, 161–179.
Kedia, N., Sarkar, A., Purkayastha, P. & Bagchi, S. (2014). Spectrochim. Acta Part A, 131, 398–406. CrossRef CAS
Laus, G., Schottenberger, H., Wurst, K., Schütz, J., Ongania, K.-H., Horvath, U. E. I. & Schwärzler, A. (2003). Org. Biomol. Chem. 1, 1409–1418. CSD CrossRef PubMed CAS
Lehmler, H.-J. & Parkin, S. (2005). Acta Cryst. E61, o2828–o2830. CSD CrossRef IUCr Journals
Lu, D., Chai, H., Ling, X., Chen, J. & Wang, J. (2011). Acta Cryst. E67, o3263–o3264. CSD CrossRef IUCr Journals
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals
Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Stock, R. I., Nandi, L. G., Nicoleti, C. R., Schramm, A. D. S., Meller, S. L., Heying, R. S., Coimbra, D. F., Andriani, K. F., Caramori, G. F., Bortoluzzi, A. J. & Machado, V. G. (2015). J. Org. Chem. 80, 7971–7983. CSD CrossRef CAS PubMed
Wagner, O., Thota, B. N. S., Schade, B., Neumann, F., Cuellar, J. L., Böttcher, C. & Haag, R. (2016). Polym. Chem. 7, 2222–2229. CrossRef CAS
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.