research communications
MIn(HAsO4)2 (M = K, Rb, Cs): three new hydrogenarsenates adopting two different structure types
aInstitute for Chemical Technology and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, 1060 Vienna, Austria, and bMineralogisch-Petrographische Abteilung, Naturhistorisches Museum Wien, Burgring 7, 1010 Wien, and Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, 1090 Wien, Austria
*Correspondence e-mail: karolina.schwendtner@tuwien.ac.at
Potassium indium bis[hydrogen arsenate(V)], KIn(HAsO4)2, rubidium indium bis[hydrogen arsenate(V)], RbIn(HAsO4)2, and caesium indium bis[hydrogen arsenate(V)], CsIn(HAsO4)2, were grown under mild hydrothermal conditions (T = 493 K, 7–8 d). KIn(HAsO4)2 adopts the KSc(HAsO4)2 structure type (space group C2/c), while RbIn(HAsO4)2 and CsIn(HAsO4)2 crystallize in the R-3c and are the first arsenate representatives of the RbFe(HPO4)2 structure type. All three compounds have tetrahedral–octahedral framework topologies. The M+ cations, located in voids of the respective framework, are slightly disordered in RbIn(HAsO4)2. In KIn(HAsO4)2, there is a second K-atom position with a very low occupancy, which may suggest that the K atom can easily move in the channels extending along [101].
Keywords: crystal structure; KIn(HAsO4)2; RbIn(HAsO4)2; CsIn(HAsO4)2; arsenate.
1. Chemical context
Metal arsenates often form tetrahedral–octahedral framework structures that frequently show potentially interesting properties, such as ion conductivity, ion exchange and catalytic properties (Masquelier et al., 1990, 1994a,b, 1995, 1996, 1998; Mesa et al., 2000; Ouerfelli et al., 2007a,b, 2008; Pintard-Scrépel et al., 1983; Rousse et al., 2013). In the course of a detailed study of the system M+–M3+–As–O–(H) by hydrothermal syntheses, a large variety of new arsenate(V) compounds and structure types were found (Kolitsch, 2004; Schwendtner, 2006; Schwendtner & Kolitsch, 2004a,b, 2005, 2007a,b,c,d, 2017a,b,c).
The three new title compounds belong to the family of hydrogenarsenate compounds with the general formula M+M3+(HAsO4)2. Including the three compounds reported here, nine compounds with this general formula are known. They crystallize in four different structure types. KIn(HAsO4)2 is a further representative of the KSc(HAsO4)2 structure type (Schwendtner & Kolitsch, 2004a), which is also adopted by AgGa(HAsO4)2 and AgAl(HAsO4)2 (Schwendtner & Kolitsch, 2017c). The (H3O)Fe(HPO4)2 structure type (Vencato et al., 1989) is adopted by CsSc(HAsO4)2 (Schwendtner & Kolitsch, 2004b). Another modification of CsSc(HAsO4)2 crystallizes in the (NH4)Fe(HPO4)2 type (Yakubovich, 1993), in which also (NH4)Fe(HAsO4)2 crystallizes (Ouerfelli et al., 2014). The two new title compounds RbIn(HAsO4)2 and CsIn(HAsO4)2 adopt a structure type hitherto unknown among arsenates which is, however, known from the phosphates RbFe(HPO4)2 (Lii & Wu, 1994) and RbM3+(HPO4)2 (M = Al, Ga) (Lesage et al., 2007). All of these compounds consist of frameworks of singly protonated AsO4 tetrahedra and M3+O6 octahedra. The M+ cations occupy channels that extend along one or more directions in the framework.
A number of M+–In–arsenates have been reported in the literature. Among these are several diarsenates: NaInAs2O7 (Belam et al., 1997), KInAs2O7 (Schwendtner & Kolitsch, 2017b) and RbInAs2O7, TlInAs2O7 and (NH4)InAs2O7 (Schwendtner, 2006), furthermore Na3In2(AsO4)3 (Lii & Ye, 1997; Khorari et al., 1997) and KIn(H2O)(H1.5AsO4)2(H2AsO4) (Schwendtner & Kolitsch, 2007c). There also exist indexed X-ray powder diffraction data of Li3In2(AsO4)3 (Winand et al., 1990) and unindexed powder patterns of KIn(HAsO4)2·xH2O, RbIn(HAsO4)2·xH2O, CsIn(HAsO4)2·xH2O and CsInAs2O7 (Ezhova et al., 1977).
The hydrogenphosphates KIn(HPO4)2 and RbIn(HPO4)2 (Filaretov et al., 2002b), which are the phosphate analogues of two of the title compounds, crystallize in the (NH4)In(HPO4)2 structure type (P21/c; Filaretov et al., 2002a; Mao et al., 2002), for which no arsenate members were known prior to the present work. CsIn(HPO4)2 (Huang et al., 2004; Lesage et al., 2007) is known as two modifications, the (NH4)Fe(HPO4)2-type (P; Yakubovich, 1993) and the (H3O)Fe(HPO4)2-type (P21/c; Vencato et al., 1989). Both structure types are common among hydrogenphosphates, with eleven and seven members, respectively, and both have one arsenate representative each, viz. α- and β-CsSc(HAsO4)2 (Schwendtner & Kolitsch, 2004). The (NH4)Fe(HPO4)2-type CsIn(HPO4)2 is closely related to and basically a distorted variety of the RbFe(HPO4)2 type in which CsIn(HAsO4)2 crystallizes (see discussion in Lesage et al., 2007). According to Huang et al. (2004), a second variety of RbIn(HPO4)2 exists, which is also isotypic to (H3O)Fe(HPO4)2.
2. Structural commentary
KIn(HAsO4)2 crystallizes in C2/c and is isotypic to KSc(HAsO4)2 (Schwendtner & Kolitsch, 2004a), AgGa(HAsO4)2 and AgAl(HAsO4)2 (Schwendtner & Kolitsch, 2017c). The contains one K, one In, one As, one H and four O atoms (Fig. 1a). The slightly distorted InO6 octahedra share corners with six HAsO4 tetrahedra, thus forming a three-dimensional anionic framework with narrow channels parallel to [110] and [101] (Fig. 2a,b) which host the K atoms. There are two K-atom positions (K1 and K2), at a distance of 2.653 (15) Å from each other. The K1 position is located on an inversion centre and has a refined occupancy of 0.976 (2), while K2, which lies between two K1 positions, is located on a twofold axis (like the In atom) and has a refined occupancy of 0.024 (2). Both K-atom positions show a [4 + 4]-coordination with average K—O bond lengths of 2.949 and 3.016 Å for K1 and K2, respectively (Table 1). This is slightly longer than the reported average K—O bond length for [8]K atoms of 2.85 Å (Baur, 1981). However, bond-valence calculations after Gagné & Hawthorne (2015) show bond-valence sums (BVSs) of 0.99 valence units (v.u.) for K1 and 0.85 v.u. for K2, indicating an `underbonded' character of K2, and explaining the difference in site occupancies.
As expected, the protonated AsO4 tetrahedron is strongly distorted as three vertices connect to neighbouring InO6 octahedra, while O4 (OH) is a terminal vertex and only involved in a medium–strong hydrogen bond (Fig. 2b and 2c; Table 4).
Calculated BVSs (Gagné & Hawthorne, 2015) of the framework atoms amount to 3.06 v.u. for In, 5.07 v.u. for As and 2.11/1.83/1.96/1.20 v.u. for O1–O4, respectively. Although these sums appear slightly too high for In and As, the average In—O and As—O bond lengths fit very well to published averages: the average As—O bond length in KIn(HAsO4)2 is 1.682 Å and the As—OH bond length is 1.723 Å, very close to the average of 704 analyzed AsO4 groups in inorganic compounds [1.686 (10) Å; Schwendtner, 2008] and the average As—OH in 45 HAsO4 groups [1.72 (3) Å; Schwendtner, 2008], respectively. The average In—O bond length (2.132 Å) is slightly shorter than the published average of 2.141 Å for inorganic compounds (Baur, 1981).
RbIn(HAsO4)2 and CsIn(HAsO4)2 crystallize in the Rc and are isotypic to RbFe(HPO4)2 (Lii & Wu, 1994) and RbM3+(HPO4)2 (M = Al, Ga) (Lesage et al., 2007). The contains two M+, two In, one As, one H and four O positions and the structure is characterized by a long c axis in the hexagonal setting (Fig. 3). As in KIn(HAsO4)2, each InO6 octahedron shares six vertices with six HAsO4 tetrahedra, resulting in an InAs6O24 group. These groups are in turn connected via three corners to other InO6 octahedra. The protonated apices of the HAsO4 tetrahedra form a strong hydrogen bond (O—H⋯O = 2.62–2.63 Å) to the neighbouring InAs6O24 group. The InAs6O24 groups in RbIn(HAsO4)2 and CsIn(HAsO4)2 are arranged in layers normal to c, and the groups within these layers are interconnected by strong hydrogen bonds extending in directions [100] and [110] (Fig. 4a and 4b). The 12-coordinated Cs atoms are located in channels which extend along a and b. As in KIn(HAsO4)2, the average In—O bond lengths (2.138/2.131 and 2.139/2.133 Å for In1/In2 in the Rb and Cs compounds, respectively; Tables 2 and 3) are slightly smaller than the literature value (2.141 Å; Baur, 1981), while the average As—O bond lengths (1.683 and 1.687 Å) show good agreement with the literature value (see above). The calculated BVSs (Gagné & Hawthorne, 2015) amount to 1.05 (Rb1), 0.65 (Rb2), 3.02 (In1), 3.07 (In2), 5.07 (As) and 1.94/1.90/1.30/1.82 v.u. (O1–O4) for RbIn(HAsO4)2, and 0.92 (Cs1), 0.80 (Cs2), 3.02 (In1), 3.05 (In2), 5.01 (As) and 1.94/1.88/1.29/1.80 v.u. (O1–O4) for CsIn(HAsO4)2. These values are reasonably close to ideal valencies, although the fairly low value for Rb2 is noteworthy; apparently the Rb2-hosting cavity is too large for the Rb atom. In fact, both Rb atoms seem to `rattle' somewhat in their cavities and are characterized by rather large anisotropic displacement ellipsoids; therefore, they were modeled by split positions involving an additional, low-occupancy Rb position (Rb1B, Rb2B) in each case. The severely underbonded O3 atom is donor of the strong hydrogen bonds (Tables 5 and 6). As expected, the unit-cell volume of the isotypic phosphates is about 20% smaller than that of the arsenates. The stronger condensation due to the smaller stronger-bonded phosphate also leads to even stronger hydrogen bonds, with O—H⋯O distances ranging from 2.58 to 2.59 Å (Lii & Wu, 1994; Lesage et al., 2007).
|
|
3. Synthesis and crystallization
The compounds were grown by hydrothermal synthesis at 493 K (7–8 d, autogeneous pressure, slow furnace cooling) using Teflon-lined stainless steel autoclaves with an approximate filling volume of 2 cm3. Reagent-grade KOH/Rb2CO3/Cs2CO3, In2O3, α-Al2O3 (only in the case of the K–In–arsenate) and H3AsO4·0.5H2O were used as starting reagents in approximate volume ratios of M+:M3+:As of 1:1:2. In the synthesis of KIn(HAsO4)2, the In2O3:α-Al2O3 ratio was 1:1. The vessels were filled with distilled water to about 70% of their inner volumes which led to final pH values of < 1 for all synthesis batches except KIn(HAsO4)2 (initial pH 4.5, final pH 3). The reaction products were washed thoroughly with distilled water, filtered and dried at room temperature. They are stable in air.
KIn(HAsO4)2 formed prismatic-bipyramidal crystals (Fig. 5a) that were accompanied by cubic crystals of synthetic pharmacoalumite [KAl4(AsO4)3(OH)4·6.5H2O]. Thus, the Al and In present in the synthesis of these phases seemingly fractionate completely between the two phases KIn(HAsO4)2 and KAl4(AsO4)3(OH)4·6.5H2O. RbIn(HAsO4)2 and CsIn(HAsO4)2 formed pseudo-octahedral crystals and platelets with pseudohexagonal outline (Fig. 5b and 5c, respectively). RbIn(HAsO4)2 was accompanied by crystals of RbInAs2O7 (Schwendtner, 2006), while the X-ray powder diffraction pattern of CsIn(HAsO4)2 showed a few peaks of an unidentified impurity.
Measured X-ray powder diffraction diagrams of RbIn(HAsO4)2 and CsIn(HAsO4)2 were deposited at the International Centre for Diffraction Data under PDF number 56–1371 (Prem et al., 2005a) for RbIn(HAsO4)2 and 56–1372 (Prem et al., 2005b) for CsIn(HAsO4)2.
The chemical composition of the title compounds was checked by standard SEM–EDX analysis of several crystals of each compound; no impurities could be detected.
4. Refinement
Crystal data, data collection and structure .
details are summarized in Table 7
|
For all three refinements, the atomic coordinates of the first description of the respective structure types [KSc(HAsO4)2 (Schwendtner & Kolitsch, 2004a) and RbFe(HPO4)2 (Lii & Wu, 1994)] were used as initial parameters for better comparison. Hydrogen atoms and additional disordered positions were then located from difference-Fourier maps and added to the respective models.
The two K-atom positions in KIn(HAsO4)2 were restrained to give a total occupancy of one. Freely refined occupancies were 0.989 (4) (K1) and 0.029 (4) (K2), i.e. very close to the ideal bulk occupancy of 1.00. Also the anisotropic displacement parameters were restrained to the same values. The O—H bond lengths were restrained to 0.90 (4) (K compound) and 0.90 (2) Å (Rb and Cs compounds). Residual electron-density peaks of 1.02 and 1.03 e Å−3 were encountered close to the Rb1 and Rb2 positions. It seems that the Rb atoms, similarly to what was found for isotypic RbAl(HPO4)2 (Lesage et al., 2007), have irregular atomic displacement parameters; therefore, two further, low-occupancy Rb positions, Rb1B and Rb2B, were included in the to model this positional disorder. The occupancies were accordingly restrained to give a total occupancy of 1.00 for Rb1 and Rb2 [Rb1a = 0.949 (3), 3 × Rb1b = 0.0170 (9), Rb2a = 0.567 (3), 3 × Rb2b = 0.1442 (9)]. The refined Rb1A—R1B, Rb1B—R1B′, Rb2A—R2B′ and Rb2B—Rb2B distances are 0.44 (3), 0.76 (5), 0.249 (8) and 0.423 (14) Å, respectively. The anisotropic displacement parameters of Rb1a and Rb1b, as well as Rb2a and Rb2b, were restrained to give the same value.
The highest residual electron densities are 2.03 e Å−3 in CsIn(HAsO4)2. They are located about 1.65 Å from As at the same z coordinate value. At first, it seemed sensible that this position is a `flipped' As position centring an alternative location of the AsO4 tetrahedron. An unrestrained of this position led to occupancy factors of 0.984 (2) for As and 0.015 (2) for the second position and R1 decreased from 2.17 to 1.99%. However, the isotropic displacement parameter of the second position refined to zero, which suggested that this position may be an artifact. The position can be generated by a mirror plane in (110) (Fig. 6). Since application of appropriate twin matrices to the original model did not improve the and since O ligands for this second possible As position could not be detected, the position was omitted from the model.
The highest residual electron densities of RbIn(HAsO4)2 are at or below 1 e Å−3 and 1.43 Å from atom O4. The highest residual electron densities of KIn(HAsO4)2 are 1.18 e Å−3 and close to the As position.
Supporting information
https://doi.org/10.1107/S205698901701355X/pj2047sup1.cif
contains datablocks KInHAsO42, RbInHAsO42, CsInHAsO42. DOI:Structure factors: contains datablock KInHAsO42. DOI: https://doi.org/10.1107/S205698901701355X/pj2047KInHAsO42sup2.hkl
Structure factors: contains datablock RbInHAsO42. DOI: https://doi.org/10.1107/S205698901701355X/pj2047RbInHAsO42sup3.hkl
Structure factors: contains datablock CsInHAsO42. DOI: https://doi.org/10.1107/S205698901701355X/pj2047CsInHAsO42sup4.hkl
For all structures, data collection: COLLECT (Nonius, 2003); cell
SCALEPACK (Otwinowski et al., 2003); data reduction: DENZO and SCALEPACK (Otwinowski et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).KIn(HAsO4)2 | F(000) = 800 |
Mr = 433.78 | Dx = 3.736 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.340 (2) Å | Cell parameters from 1474 reflections |
b = 10.657 (2) Å | θ = 3.4–32.6° |
c = 9.197 (2) Å | µ = 12.13 mm−1 |
β = 109.37 (3)° | T = 293 K |
V = 771.2 (3) Å3 | Small prisms, colourless |
Z = 4 | 0.19 × 0.02 × 0.02 mm |
Nonius KappaCCD single-crystal four-circle diffractometer | 1295 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.015 |
φ and ω scans | θmax = 32.6°, θmin = 3.4° |
Absorption correction: multi-scan (SCALEPACK; Otwinowski et al., 2003) | h = −12→12 |
Tmin = 0.207, Tmax = 0.794 | k = −16→16 |
2743 measured reflections | l = −13→13 |
1406 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.019 | All H-atom parameters refined |
wR(F2) = 0.046 | w = 1/[σ2(Fo2) + (0.0227P)2 + 1.2908P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.001 |
1406 reflections | Δρmax = 1.18 e Å−3 |
64 parameters | Δρmin = −1.00 e Å−3 |
1 restraint | Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00181 (17) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
K1 | 0.250000 | 0.250000 | 0.000000 | 0.0437 (3) | 0.976 (2) |
K2 | 0.000000 | 0.678 (5) | 0.250000 | 0.0437 (3) | 0.024 (2) |
In | 0.000000 | 0.13427 (2) | 0.250000 | 0.00852 (7) | |
As | 0.27607 (3) | 0.39725 (2) | 0.36013 (2) | 0.00952 (7) | |
O1 | 0.1914 (2) | 0.26806 (16) | 0.26523 (19) | 0.0186 (3) | |
O2 | 0.3114 (2) | 0.49181 (17) | 0.22827 (18) | 0.0177 (3) | |
O3 | 0.4522 (2) | 0.36289 (15) | 0.50672 (18) | 0.0139 (3) | |
O4 | 0.1329 (2) | 0.4729 (2) | 0.4285 (2) | 0.0254 (4) | |
H | 0.159 (6) | 0.473 (5) | 0.529 (2) | 0.076 (16)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
K1 | 0.0550 (7) | 0.0588 (7) | 0.0301 (5) | −0.0355 (6) | 0.0312 (5) | −0.0195 (5) |
K2 | 0.0550 (7) | 0.0588 (7) | 0.0301 (5) | −0.0355 (6) | 0.0312 (5) | −0.0195 (5) |
In | 0.00910 (10) | 0.00802 (11) | 0.00799 (10) | 0.000 | 0.00224 (7) | 0.000 |
As | 0.01099 (11) | 0.00995 (12) | 0.00731 (10) | −0.00206 (7) | 0.00262 (8) | −0.00008 (7) |
O1 | 0.0243 (9) | 0.0157 (8) | 0.0181 (8) | −0.0108 (7) | 0.0103 (7) | −0.0055 (6) |
O2 | 0.0199 (8) | 0.0178 (8) | 0.0114 (7) | −0.0096 (6) | −0.0003 (6) | 0.0062 (6) |
O3 | 0.0138 (7) | 0.0176 (8) | 0.0087 (7) | 0.0024 (6) | 0.0015 (6) | −0.0005 (5) |
O4 | 0.0192 (9) | 0.0402 (12) | 0.0152 (8) | 0.0122 (8) | 0.0035 (7) | −0.0053 (8) |
K1—O1i | 2.6488 (17) | K2—O3ix | 3.20 (3) |
K1—O1 | 2.6488 (17) | K2—O2 | 3.33 (3) |
K1—K2ii | 2.653 (15) | K2—O2viii | 3.33 (3) |
K1—K2iii | 2.653 (15) | K2—Asix | 3.35 (4) |
K1—O3iv | 2.7788 (17) | K2—Asx | 3.35 (4) |
K1—O3v | 2.7788 (17) | In—O1 | 2.1104 (17) |
K1—O4vi | 3.112 (2) | In—O1viii | 2.1104 (17) |
K1—O4vii | 3.112 (2) | In—O3iv | 2.1388 (16) |
K1—O2 | 3.2553 (19) | In—O3xi | 2.1388 (16) |
K1—O2i | 3.2553 (19) | In—O2xii | 2.1473 (16) |
K1—As | 3.6059 (7) | In—O2vii | 2.1473 (16) |
K1—Asi | 3.6059 (7) | As—O1 | 1.6574 (17) |
K2—O4 | 2.74 (4) | As—O3 | 1.6721 (17) |
K2—O4viii | 2.74 (4) | As—O2 | 1.6762 (16) |
K2—O1ix | 2.792 (18) | As—O4 | 1.7231 (19) |
K2—O1x | 2.792 (18) | O4—H | 0.876 (19) |
K2—O3x | 3.20 (3) | ||
O1i—K1—O1 | 180.0 | K1ix—K2—Asix | 72.8 (8) |
O1i—K1—K2ii | 63.6 (3) | K1x—K2—Asix | 83.9 (10) |
O1—K1—K2ii | 116.4 (3) | O4—K2—Asix | 125.63 (13) |
O1i—K1—K2iii | 116.4 (3) | O4viii—K2—Asix | 122.06 (11) |
O1—K1—K2iii | 63.6 (3) | O1ix—K2—Asix | 29.6 (4) |
K2ii—K1—K2iii | 180 (2) | O1x—K2—Asix | 113.1 (16) |
O1i—K1—O3iv | 115.35 (5) | O3x—K2—Asix | 90.8 (12) |
O1—K1—O3iv | 64.65 (5) | O3ix—K2—Asix | 29.5 (3) |
K2ii—K1—O3iv | 72.1 (6) | O2—K2—Asix | 82.73 (9) |
K2iii—K1—O3iv | 107.9 (6) | O2viii—K2—Asix | 163.5 (6) |
O1i—K1—O3v | 64.65 (5) | K1ix—K2—Asx | 83.9 (10) |
O1—K1—O3v | 115.35 (5) | K1x—K2—Asx | 72.8 (8) |
K2ii—K1—O3v | 107.9 (6) | O4—K2—Asx | 122.06 (11) |
K2iii—K1—O3v | 72.1 (6) | O4viii—K2—Asx | 125.63 (13) |
O3iv—K1—O3v | 180.00 (6) | O1ix—K2—Asx | 113.1 (16) |
O1i—K1—O4vi | 90.87 (5) | O1x—K2—Asx | 29.6 (4) |
O1—K1—O4vi | 89.13 (5) | O3x—K2—Asx | 29.5 (3) |
K2ii—K1—O4vi | 56.1 (11) | O3ix—K2—Asx | 90.8 (12) |
K2iii—K1—O4vi | 123.9 (11) | O2—K2—Asx | 163.5 (6) |
O3iv—K1—O4vi | 101.27 (5) | O2viii—K2—Asx | 82.73 (9) |
O3v—K1—O4vi | 78.73 (5) | Asix—K2—Asx | 91.7 (13) |
O1i—K1—O4vii | 89.13 (5) | O1—In—O1viii | 94.99 (10) |
O1—K1—O4vii | 90.87 (5) | O1—In—O3iv | 86.23 (7) |
K2ii—K1—O4vii | 123.9 (11) | O1viii—In—O3iv | 92.67 (7) |
K2iii—K1—O4vii | 56.1 (11) | O1—In—O3xi | 92.67 (7) |
O3iv—K1—O4vii | 78.73 (5) | O1viii—In—O3xi | 86.23 (7) |
O3v—K1—O4vii | 101.27 (5) | O3iv—In—O3xi | 178.38 (9) |
O4vi—K1—O4vii | 180.0 | O1—In—O2xii | 177.02 (7) |
O1i—K1—O2 | 127.87 (5) | O1viii—In—O2xii | 87.52 (7) |
O1—K1—O2 | 52.13 (5) | O3iv—In—O2xii | 92.07 (6) |
K2ii—K1—O2 | 104.0 (10) | O3xi—In—O2xii | 89.08 (7) |
K2iii—K1—O2 | 76.0 (10) | O1—In—O2vii | 87.52 (7) |
O3iv—K1—O2 | 106.19 (5) | O1viii—In—O2vii | 177.02 (7) |
O3v—K1—O2 | 73.81 (5) | O3iv—In—O2vii | 89.08 (7) |
O4vi—K1—O2 | 49.92 (5) | O3xi—In—O2vii | 92.07 (6) |
O4vii—K1—O2 | 130.08 (5) | O2xii—In—O2vii | 90.01 (10) |
O1i—K1—O2i | 52.13 (5) | O1—In—K1viii | 107.25 (5) |
O1—K1—O2i | 127.87 (5) | O1viii—In—K1viii | 42.55 (5) |
K2ii—K1—O2i | 76.0 (10) | O3iv—In—K1viii | 132.97 (5) |
K2iii—K1—O2i | 104.0 (10) | O3xi—In—K1viii | 46.31 (5) |
O3iv—K1—O2i | 73.80 (5) | O2xii—In—K1viii | 75.69 (5) |
O3v—K1—O2i | 106.20 (5) | O2vii—In—K1viii | 135.06 (5) |
O4vi—K1—O2i | 130.08 (5) | O1—In—K1 | 42.55 (5) |
O4vii—K1—O2i | 49.92 (5) | O1viii—In—K1 | 107.25 (5) |
O2—K1—O2i | 180.0 | O3iv—In—K1 | 46.31 (5) |
O1i—K1—As | 154.71 (4) | O3xi—In—K1 | 132.97 (5) |
O1—K1—As | 25.29 (4) | O2xii—In—K1 | 135.06 (5) |
K2ii—K1—As | 117.5 (7) | O2vii—In—K1 | 75.69 (5) |
K2iii—K1—As | 62.5 (7) | K1viii—In—K1 | 141.977 (12) |
O3iv—K1—As | 87.14 (4) | O1—In—K2iii | 36.3 (7) |
O3v—K1—As | 92.86 (4) | O1viii—In—K2iii | 130.9 (7) |
O4vi—K1—As | 72.55 (4) | O3iv—In—K2iii | 80.73 (5) |
O4vii—K1—As | 107.45 (4) | O3xi—In—K2iii | 99.09 (6) |
O2—K1—As | 27.68 (3) | O2xii—In—K2iii | 140.9 (7) |
O2i—K1—As | 152.32 (3) | O2vii—In—K2iii | 51.8 (7) |
O1i—K1—Asi | 25.29 (4) | K1viii—In—K2iii | 135.3 (4) |
O1—K1—Asi | 154.71 (4) | K1—In—K2iii | 38.4 (3) |
K2ii—K1—Asi | 62.5 (7) | O1—In—K2xii | 130.9 (7) |
K2iii—K1—Asi | 117.5 (7) | O1viii—In—K2xii | 36.3 (7) |
O3iv—K1—Asi | 92.86 (4) | O3iv—In—K2xii | 99.09 (6) |
O3v—K1—Asi | 87.14 (4) | O3xi—In—K2xii | 80.73 (5) |
O4vi—K1—Asi | 107.45 (4) | O2xii—In—K2xii | 51.8 (7) |
O4vii—K1—Asi | 72.55 (4) | O2vii—In—K2xii | 140.9 (7) |
O2—K1—Asi | 152.32 (3) | K1viii—In—K2xii | 38.4 (3) |
O2i—K1—Asi | 27.68 (3) | K1—In—K2xii | 135.3 (4) |
As—K1—Asi | 180.0 | K2iii—In—K2xii | 167.1 (14) |
K1ix—K2—K1x | 147 (2) | O1—As—O3 | 110.45 (9) |
K1ix—K2—O4 | 70.4 (4) | O1—As—O2 | 105.35 (8) |
K1x—K2—O4 | 142.6 (17) | O3—As—O2 | 113.38 (8) |
K1ix—K2—O4viii | 142.6 (17) | O1—As—O4 | 110.80 (10) |
K1x—K2—O4viii | 70.4 (4) | O3—As—O4 | 109.76 (8) |
O4—K2—O4viii | 73.9 (13) | O2—As—O4 | 106.99 (10) |
K1ix—K2—O1ix | 58.2 (4) | O1—As—K2iii | 56.3 (5) |
K1x—K2—O1ix | 109.3 (10) | O3—As—K2iii | 70.26 (6) |
O4—K2—O1ix | 96.2 (5) | O2—As—K2iii | 87.2 (6) |
O4viii—K2—O1ix | 116.1 (8) | O4—As—K2iii | 163.7 (7) |
K1ix—K2—O1x | 109.3 (10) | O1—As—K1 | 43.06 (6) |
K1x—K2—O1x | 58.2 (4) | O3—As—K1 | 114.49 (6) |
O4—K2—O1x | 116.1 (8) | O2—As—K1 | 64.44 (6) |
O4viii—K2—O1x | 96.2 (5) | O4—As—K1 | 134.49 (6) |
O1ix—K2—O1x | 140 (2) | K2iii—As—K1 | 44.66 (8) |
K1ix—K2—O3x | 55.8 (6) | O1—As—K2 | 114.2 (5) |
K1x—K2—O3x | 102.0 (12) | O3—As—K2 | 134.2 (4) |
O4—K2—O3x | 100.01 (14) | O2—As—K2 | 63.8 (2) |
O4viii—K2—O3x | 144.0 (5) | O4—As—K2 | 43.88 (15) |
O1ix—K2—O3x | 99.8 (12) | K2iii—As—K2 | 146.9 (3) |
O1x—K2—O3x | 53.8 (5) | K1—As—K2 | 104.94 (19) |
K1ix—K2—O3ix | 102.0 (12) | As—O1—In | 140.97 (10) |
K1x—K2—O3ix | 55.8 (6) | As—O1—K1 | 111.65 (8) |
O4—K2—O3ix | 144.0 (5) | In—O1—K1 | 104.85 (7) |
O4viii—K2—O3ix | 100.01 (14) | As—O1—K2iii | 94.1 (9) |
O1ix—K2—O3ix | 53.8 (5) | In—O1—K2iii | 117.1 (10) |
O1x—K2—O3ix | 99.8 (12) | K1—O1—K2iii | 58.29 (14) |
O3x—K2—O3ix | 104.1 (15) | As—O2—Inxiii | 131.05 (9) |
K1ix—K2—O2 | 79.6 (4) | As—O2—K1 | 87.88 (7) |
K1x—K2—O2 | 121.6 (6) | Inxiii—O2—K1 | 124.98 (7) |
O4—K2—O2 | 52.4 (7) | As—O2—K2 | 89.3 (6) |
O4viii—K2—O2 | 69.8 (10) | Inxiii—O2—K2 | 97.7 (7) |
O1ix—K2—O2 | 56.7 (3) | K1—O2—K2 | 123.5 (5) |
O1x—K2—O2 | 163.3 (17) | As—O3—Inxi | 130.50 (9) |
O3x—K2—O2 | 134.62 (5) | As—O3—K1v | 129.02 (8) |
O3ix—K2—O2 | 91.84 (5) | Inxi—O3—K1v | 99.88 (6) |
K1ix—K2—O2viii | 121.6 (6) | As—O3—K2iii | 80.2 (3) |
K1x—K2—O2viii | 79.6 (4) | Inxi—O3—K2iii | 139.1 (7) |
O4—K2—O2viii | 69.8 (10) | K1v—O3—K2iii | 52.13 (8) |
O4viii—K2—O2viii | 52.4 (7) | As—O4—K2 | 110.3 (2) |
O1ix—K2—O2viii | 163.3 (17) | As—O4—K1ix | 108.30 (10) |
O1x—K2—O2viii | 56.7 (3) | K2—O4—K1ix | 53.4 (7) |
O3x—K2—O2viii | 91.84 (5) | As—O4—H | 115 (3) |
O3ix—K2—O2viii | 134.62 (5) | K2—O4—H | 123 (3) |
O2—K2—O2viii | 106.6 (15) | K1ix—O4—H | 80 (3) |
Symmetry codes: (i) −x+1/2, −y+1/2, −z; (ii) −x, −y+1, −z; (iii) x+1/2, y−1/2, z; (iv) x−1/2, −y+1/2, z−1/2; (v) −x+1, y, −z+1/2; (vi) x, −y+1, z−1/2; (vii) −x+1/2, y−1/2, −z+1/2; (viii) −x, y, −z+1/2; (ix) −x+1/2, y+1/2, −z+1/2; (x) x−1/2, y+1/2, z; (xi) −x+1/2, −y+1/2, −z+1; (xii) x−1/2, y−1/2, z; (xiii) x+1/2, y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H···O2xiv | 0.88 (2) | 1.89 (3) | 2.690 (3) | 151 (4) |
Symmetry code: (xiv) x, −y+1, z+1/2. |
RbIn(HAsO4)2 | Dx = 4.053 Mg m−3 |
Mr = 480.15 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3c:H | Cell parameters from 2882 reflections |
a = 8.512 (1) Å | θ = 2.9–32.6° |
c = 56.434 (11) Å | µ = 17.50 mm−1 |
V = 3541.1 (11) Å3 | T = 293 K |
Z = 18 | Small hexagonal platelets, colourless |
F(000) = 3924 | 0.05 × 0.05 × 0.02 mm |
Nonius KappaCCD single-crystal four-circle diffractometer | 1255 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.024 |
φ and ω scans | θmax = 32.6°, θmin = 2.9° |
Absorption correction: multi-scan (SCALEPACK; Otwinowski et al., 2003) | h = −12→12 |
Tmin = 0.475, Tmax = 0.779 | k = −10→10 |
5262 measured reflections | l = −85→85 |
1443 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.018 | All H-atom parameters refined |
wR(F2) = 0.041 | w = 1/[σ2(Fo2) + (0.014P)2 + 16.3085P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max = 0.006 |
1443 reflections | Δρmax = 1.00 e Å−3 |
69 parameters | Δρmin = −0.86 e Å−3 |
3 restraints | Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.000313 (12) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Rb1A | 0.000000 | 0.000000 | 0.750000 | 0.0236 (2) | 0.949 (3) |
Rb1B | 0.000000 | −0.051 (4) | 0.750000 | 0.0236 (2) | 0.0170 (9) |
Rb2A | 0.000000 | 0.000000 | 0.66882 (10) | 0.0423 (6) | 0.567 (3) |
Rb2B | −0.0304 (11) | −0.0266 (11) | 0.66795 (15) | 0.0423 (6) | 0.1442 (9) |
In1 | 0.333333 | 0.666667 | 0.75297 (2) | 0.01028 (7) | |
In2 | 0.333333 | 0.666667 | 0.666667 | 0.01217 (8) | |
As | −0.39741 (3) | −0.36940 (3) | 0.71279 (2) | 0.01097 (7) | |
O1 | 0.5235 (3) | −0.3776 (3) | 0.68584 (3) | 0.0298 (5) | |
O2 | −0.4271 (2) | −0.2389 (2) | 0.73221 (3) | 0.0171 (3) | |
O3 | −0.1635 (2) | −0.2654 (3) | 0.70899 (3) | 0.0201 (4) | |
O4 | 0.4679 (2) | −0.1119 (2) | 0.77738 (3) | 0.0155 (3) | |
H | −0.131 (6) | −0.339 (5) | 0.7128 (7) | 0.051 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rb1A | 0.0267 (3) | 0.0267 (3) | 0.0175 (3) | 0.01335 (15) | 0.000 | 0.000 |
Rb1B | 0.0267 (3) | 0.0267 (3) | 0.0175 (3) | 0.01335 (15) | 0.000 | 0.000 |
Rb2A | 0.0509 (8) | 0.0509 (8) | 0.0250 (4) | 0.0254 (4) | 0.000 | 0.000 |
Rb2B | 0.0509 (8) | 0.0509 (8) | 0.0250 (4) | 0.0254 (4) | 0.000 | 0.000 |
In1 | 0.01052 (8) | 0.01052 (8) | 0.00981 (12) | 0.00526 (4) | 0.000 | 0.000 |
In2 | 0.01472 (11) | 0.01472 (11) | 0.00707 (16) | 0.00736 (6) | 0.000 | 0.000 |
As | 0.01290 (11) | 0.01207 (11) | 0.01030 (10) | 0.00802 (9) | 0.00056 (8) | 0.00086 (8) |
O1 | 0.0399 (12) | 0.0513 (14) | 0.0129 (8) | 0.0337 (12) | −0.0062 (8) | −0.0002 (8) |
O2 | 0.0170 (8) | 0.0122 (8) | 0.0203 (8) | 0.0060 (7) | 0.0076 (7) | −0.0012 (6) |
O3 | 0.0145 (8) | 0.0163 (9) | 0.0308 (10) | 0.0087 (7) | 0.0061 (7) | 0.0072 (7) |
O4 | 0.0137 (8) | 0.0133 (8) | 0.0217 (8) | 0.0084 (6) | −0.0038 (6) | −0.0056 (6) |
Rb1A—Rb1Bi | 0.44 (3) | Rb2A—O1vi | 3.462 (3) |
Rb1A—Rb1Bii | 0.44 (3) | Rb2A—O1vii | 3.462 (3) |
Rb1A—O3iii | 3.042 (2) | Rb2A—O1viii | 3.462 (3) |
Rb1A—O3i | 3.042 (2) | Rb2A—O4ix | 3.668 (5) |
Rb1A—O3iv | 3.042 (2) | Rb2A—O4x | 3.668 (5) |
Rb1A—O3v | 3.042 (2) | Rb2A—O4xi | 3.668 (5) |
Rb1A—O3ii | 3.042 (2) | Rb2A—O1xii | 3.830 (3) |
Rb1A—O3 | 3.042 (2) | Rb2A—O1xiii | 3.830 (3) |
Rb1A—O2 | 3.3114 (19) | Rb2A—O1xiv | 3.830 (3) |
Rb1A—O2v | 3.3115 (19) | Rb2A—O3xv | 3.888 (4) |
Rb1A—O2iv | 3.3114 (19) | Rb2B—Rb2Bi | 0.423 (14) |
Rb1A—O2ii | 3.3114 (19) | Rb2B—Rb2Bii | 0.423 (14) |
Rb1A—O2iii | 3.3114 (18) | Rb2B—O3 | 2.911 (9) |
Rb1A—O2i | 3.3114 (18) | Rb2B—O3ii | 3.056 (9) |
Rb1A—Asiii | 3.8862 (5) | Rb2B—O3i | 3.185 (8) |
Rb1A—H | 3.28 (4) | Rb2B—O1viii | 3.259 (8) |
Rb1A—Hi | 3.28 (4) | Rb2B—O1vi | 3.436 (9) |
Rb1A—Hii | 3.28 (4) | Rb2B—O4x | 3.525 (8) |
Rb1A—Hiv | 3.28 (4) | Rb2B—O1xiii | 3.608 (9) |
Rb1A—Hiii | 3.28 (4) | Rb2B—Asxvi | 3.781 (8) |
Rb1A—Hv | 3.28 (4) | Rb2B—Asxv | 3.869 (8) |
Rb1B—Rb1Bi | 0.76 (6) | Rb2B—As | 3.945 (9) |
Rb1B—Rb1Bii | 0.76 (5) | In1—O2xvii | 2.1306 (17) |
Rb1B—O3v | 2.842 (12) | In1—O2ii | 2.1306 (17) |
Rb1B—O3 | 2.842 (12) | In1—O2xviii | 2.1306 (17) |
Rb1B—O2iv | 2.98 (2) | In1—O4xix | 2.1457 (17) |
Rb1B—O2i | 2.98 (2) | In1—O4i | 2.1457 (16) |
Rb1B—O3iv | 3.035 (3) | In1—O4xii | 2.1457 (16) |
Rb1B—O3i | 3.035 (3) | In2—O1vii | 2.1312 (19) |
Rb1B—O2 | 3.312 (3) | In2—O1xvi | 2.131 (2) |
Rb1B—O2v | 3.312 (3) | In2—O1i | 2.1312 (19) |
Rb1B—O3iii | 3.32 (2) | In2—O1xii | 2.131 (2) |
Rb1B—O3ii | 3.32 (2) | In2—O1xix | 2.1312 (19) |
Rb1B—H | 2.99 (4) | In2—O1xx | 2.1312 (19) |
Rb1B—Hv | 2.99 (4) | As—O1xiii | 1.6508 (18) |
Rb2A—Rb2Bii | 0.249 (8) | As—O2 | 1.6668 (17) |
Rb2A—Rb2Bi | 0.249 (8) | As—O4v | 1.6736 (17) |
Rb2A—O3 | 3.006 (5) | As—O3 | 1.7409 (19) |
Rb2A—O3i | 3.006 (5) | O3—H | 0.83 (3) |
Rb2A—O3ii | 3.006 (5) | ||
Rb1Bi—Rb1A—Rb1Bii | 120.00 (12) | O3—Rb2A—O1xiv | 76.69 (8) |
Rb1Bi—Rb1A—O3iii | 59.08 (4) | O3i—Rb2A—O1xiv | 44.11 (5) |
Rb1Bii—Rb1A—O3iii | 85.05 (9) | O3ii—Rb2A—O1xiv | 112.37 (15) |
Rb1Bi—Rb1A—O3i | 59.08 (4) | O1vi—Rb2A—O1xiv | 45.46 (6) |
Rb1Bii—Rb1A—O3i | 126.88 (5) | O1vii—Rb2A—O1xiv | 95.29 (5) |
O3iii—Rb1A—O3i | 118.16 (8) | O1viii—Rb2A—O1xiv | 150.55 (6) |
Rb1Bi—Rb1A—O3iv | 126.88 (4) | O4ix—Rb2A—O1xiv | 78.40 (6) |
Rb1Bii—Rb1A—O3iv | 59.08 (7) | O4x—Rb2A—O1xiv | 120.81 (10) |
O3iii—Rb1A—O3iv | 68.39 (6) | O4xi—Rb2A—O1xiv | 111.19 (9) |
O3i—Rb1A—O3iv | 170.10 (7) | O1xii—Rb2A—O1xiv | 113.93 (7) |
Rb1Bi—Rb1A—O3v | 85.05 (4) | O1xiii—Rb2A—O1xiv | 113.93 (7) |
Rb1Bii—Rb1A—O3v | 126.88 (5) | Rb2Bii—Rb2A—O3xv | 126 (3) |
O3iii—Rb1A—O3v | 68.39 (6) | Rb2Bi—Rb2A—O3xv | 74 (3) |
O3i—Rb1A—O3v | 106.24 (7) | O3—Rb2A—O3xv | 89.86 (5) |
O3iv—Rb1A—O3v | 68.39 (6) | O3i—Rb2A—O3xv | 129.48 (6) |
Rb1Bi—Rb1A—O3ii | 85.05 (4) | O3ii—Rb2A—O3xv | 145.79 (7) |
Rb1Bii—Rb1A—O3ii | 59.08 (7) | O1vi—Rb2A—O3xv | 42.24 (6) |
O3iii—Rb1A—O3ii | 106.24 (7) | O1vii—Rb2A—O3xv | 117.63 (15) |
O3i—Rb1A—O3ii | 68.39 (6) | O1viii—Rb2A—O3xv | 66.65 (8) |
O3iv—Rb1A—O3ii | 118.16 (7) | O4ix—Rb2A—O3xv | 42.47 (6) |
O3v—Rb1A—O3ii | 170.10 (8) | O4x—Rb2A—O3xv | 40.66 (6) |
Rb1Bi—Rb1A—O3 | 126.88 (4) | O4xi—Rb2A—O3xv | 76.43 (11) |
Rb1Bii—Rb1A—O3 | 85.05 (9) | O1xii—Rb2A—O3xv | 151.71 (14) |
O3iii—Rb1A—O3 | 170.10 (7) | O1xiii—Rb2A—O3xv | 69.64 (5) |
O3i—Rb1A—O3 | 68.38 (6) | O1xiv—Rb2A—O3xv | 87.30 (5) |
O3iv—Rb1A—O3 | 106.24 (7) | Rb2Bi—Rb2B—Rb2Bii | 60.00 (6) |
O3v—Rb1A—O3 | 118.16 (7) | Rb2Bi—Rb2B—O3 | 106.1 (12) |
O3ii—Rb1A—O3 | 68.38 (6) | Rb2Bii—Rb2B—O3 | 127.22 (14) |
Rb1Bi—Rb1A—O2 | 148.87 (3) | Rb2Bi—Rb2B—O3ii | 104.1 (12) |
Rb1Bii—Rb1A—O2 | 37.75 (11) | Rb2Bii—Rb2B—O3ii | 66.3 (12) |
O3iii—Rb1A—O2 | 120.30 (5) | O3—Rb2B—O3ii | 69.9 (2) |
O3i—Rb1A—O2 | 112.03 (5) | Rb2Bi—Rb2B—O3i | 46.66 (16) |
O3iv—Rb1A—O2 | 67.27 (5) | Rb2Bii—Rb2B—O3i | 68.5 (12) |
O3v—Rb1A—O2 | 125.02 (5) | O3—Rb2B—O3i | 68.05 (19) |
O3ii—Rb1A—O2 | 64.77 (5) | O3ii—Rb2B—O3i | 66.39 (17) |
O3—Rb1A—O2 | 50.13 (4) | Rb2Bi—Rb2B—O1viii | 158.2 (7) |
Rb1Bi—Rb1A—O2v | 37.75 (3) | Rb2Bii—Rb2B—O1viii | 111 (2) |
Rb1Bii—Rb1A—O2v | 148.87 (10) | O3—Rb2B—O1viii | 94.9 (2) |
O3iii—Rb1A—O2v | 64.77 (5) | O3ii—Rb2B—O1viii | 88.5 (2) |
O3i—Rb1A—O2v | 67.27 (5) | O3i—Rb2B—O1viii | 153.0 (3) |
O3iv—Rb1A—O2v | 112.03 (5) | Rb2Bi—Rb2B—O1vi | 62.0 (19) |
O3v—Rb1A—O2v | 50.13 (5) | Rb2Bii—Rb2B—O1vi | 118.2 (19) |
O3ii—Rb1A—O2v | 120.30 (5) | O3—Rb2B—O1vi | 87.5 (2) |
O3—Rb1A—O2v | 125.02 (5) | O3ii—Rb2B—O1vi | 149.7 (3) |
O2—Rb1A—O2v | 172.51 (6) | O3i—Rb2B—O1vi | 86.8 (2) |
Rb1Bi—Rb1A—O2iv | 148.87 (3) | O1viii—Rb2B—O1vi | 114.2 (2) |
Rb1Bii—Rb1A—O2iv | 86.26 (12) | Rb2Bi—Rb2B—O4x | 113.2 (3) |
O3iii—Rb1A—O2iv | 112.03 (5) | Rb2Bii—Rb2B—O4x | 105.2 (7) |
O3i—Rb1A—O2iv | 120.30 (5) | O3—Rb2B—O4x | 125.4 (3) |
O3iv—Rb1A—O2iv | 50.13 (4) | O3ii—Rb2B—O4x | 130.1 (3) |
O3v—Rb1A—O2iv | 64.77 (5) | O3i—Rb2B—O4x | 159.7 (3) |
O3ii—Rb1A—O2iv | 125.02 (5) | O1viii—Rb2B—O4x | 47.08 (11) |
O3—Rb1A—O2iv | 67.27 (5) | O1vi—Rb2B—O4x | 79.33 (17) |
O2—Rb1A—O2iv | 62.27 (6) | Rb2Bi—Rb2B—O1xiii | 150.5 (18) |
O2v—Rb1A—O2iv | 111.23 (3) | Rb2Bii—Rb2B—O1xiii | 141.8 (19) |
Rb1Bi—Rb1A—O2ii | 37.75 (3) | O3—Rb2B—O1xiii | 47.02 (14) |
Rb1Bii—Rb1A—O2ii | 86.26 (12) | O3ii—Rb2B—O1xiii | 79.7 (2) |
O3iii—Rb1A—O2ii | 67.27 (5) | O3i—Rb2B—O1xiii | 113.9 (3) |
O3i—Rb1A—O2ii | 64.77 (5) | O1viii—Rb2B—O1xiii | 48.49 (13) |
O3iv—Rb1A—O2ii | 125.02 (5) | O1vi—Rb2B—O1xiii | 99.9 (2) |
O3v—Rb1A—O2ii | 120.30 (5) | O4x—Rb2B—O1xiii | 83.29 (17) |
O3ii—Rb1A—O2ii | 50.13 (5) | Rb2Bi—Rb2B—Asxvi | 132.4 (6) |
O3—Rb1A—O2ii | 112.03 (5) | Rb2Bii—Rb2B—Asxvi | 98.8 (15) |
O2—Rb1A—O2ii | 111.23 (3) | O3—Rb2B—Asxvi | 119.4 (2) |
O2v—Rb1A—O2ii | 75.50 (6) | O3ii—Rb2B—Asxvi | 104.1 (2) |
O2iv—Rb1A—O2ii | 172.51 (6) | O3i—Rb2B—Asxvi | 166.2 (3) |
Rb1Bi—Rb1A—O2iii | 86.26 (3) | O1viii—Rb2B—Asxvi | 25.78 (7) |
Rb1Bii—Rb1A—O2iii | 37.75 (11) | O1vi—Rb2B—Asxvi | 104.6 (2) |
O3iii—Rb1A—O2iii | 50.13 (4) | O4x—Rb2B—Asxvi | 26.18 (6) |
O3i—Rb1A—O2iii | 125.02 (5) | O1xiii—Rb2B—Asxvi | 72.35 (15) |
O3iv—Rb1A—O2iii | 64.77 (5) | Rb2Bi—Rb2B—Asxv | 75.0 (15) |
O3v—Rb1A—O2iii | 112.03 (5) | Rb2Bii—Rb2B—Asxv | 117.0 (13) |
O3ii—Rb1A—O2iii | 67.27 (5) | O3—Rb2B—Asxv | 105.0 (2) |
O3—Rb1A—O2iii | 120.30 (5) | O3ii—Rb2B—Asxv | 174.4 (3) |
O2—Rb1A—O2iii | 75.50 (6) | O3i—Rb2B—Asxv | 110.1 (2) |
O2v—Rb1A—O2iii | 111.23 (3) | O1viii—Rb2B—Asxv | 94.17 (18) |
O2iv—Rb1A—O2iii | 111.23 (3) | O1vi—Rb2B—Asxv | 25.24 (7) |
O2ii—Rb1A—O2iii | 62.27 (6) | O4x—Rb2B—Asxv | 54.35 (12) |
Rb1Bi—Rb1A—O2i | 86.26 (3) | O1xiii—Rb2B—Asxv | 98.42 (18) |
Rb1Bii—Rb1A—O2i | 148.87 (11) | Asxvi—Rb2B—Asxv | 80.12 (15) |
O3iii—Rb1A—O2i | 125.02 (5) | Rb2Bi—Rb2B—As | 129.9 (12) |
O3i—Rb1A—O2i | 50.13 (4) | Rb2Bii—Rb2B—As | 133.2 (10) |
O3iv—Rb1A—O2i | 120.30 (5) | O3—Rb2B—As | 23.86 (9) |
O3v—Rb1A—O2i | 67.27 (5) | O3ii—Rb2B—As | 67.16 (17) |
O3ii—Rb1A—O2i | 112.03 (5) | O3i—Rb2B—As | 89.1 (2) |
O3—Rb1A—O2i | 64.77 (5) | O1viii—Rb2B—As | 71.31 (17) |
O2—Rb1A—O2i | 111.23 (3) | O1vi—Rb2B—As | 100.0 (2) |
O2v—Rb1A—O2i | 62.27 (6) | O4x—Rb2B—As | 107.7 (2) |
O2iv—Rb1A—O2i | 75.50 (6) | O1xiii—Rb2B—As | 24.73 (7) |
O2ii—Rb1A—O2i | 111.23 (3) | Asxvi—Rb2B—As | 96.34 (18) |
O2iii—Rb1A—O2i | 172.51 (7) | Asxv—Rb2B—As | 109.1 (2) |
Rb1Bi—Rb1A—Asiii | 68.045 (6) | O2xvii—In1—O2ii | 92.65 (7) |
Rb1Bii—Rb1A—Asiii | 62.23 (10) | O2xvii—In1—O2xviii | 92.65 (7) |
O3iii—Rb1A—Asiii | 25.58 (3) | O2ii—In1—O2xviii | 92.65 (7) |
O3i—Rb1A—Asiii | 121.18 (4) | O2xvii—In1—O4xix | 91.95 (7) |
O3iv—Rb1A—Asiii | 68.11 (4) | O2ii—In1—O4xix | 173.42 (7) |
O3v—Rb1A—Asiii | 92.38 (4) | O2xviii—In1—O4xix | 91.82 (7) |
O3ii—Rb1A—Asiii | 83.92 (4) | O2xvii—In1—O4i | 91.82 (7) |
O3—Rb1A—Asiii | 145.24 (3) | O2ii—In1—O4i | 91.95 (7) |
O2—Rb1A—Asiii | 99.68 (3) | O2xviii—In1—O4i | 173.42 (7) |
O2v—Rb1A—Asiii | 86.65 (3) | O4xix—In1—O4i | 83.21 (7) |
O2iv—Rb1A—Asiii | 118.16 (3) | O2xvii—In1—O4xii | 173.42 (7) |
O2ii—Rb1A—Asiii | 57.81 (3) | O2ii—In1—O4xii | 91.82 (7) |
O2iii—Rb1A—Asiii | 25.19 (3) | O2xviii—In1—O4xii | 91.95 (7) |
O2i—Rb1A—Asiii | 148.88 (3) | O4xix—In1—O4xii | 83.21 (7) |
Rb1Bi—Rb1A—H | 127.6 (7) | O4i—In1—O4xii | 83.21 (7) |
Rb1Bii—Rb1A—H | 95.7 (8) | O2xvii—In1—Rb2Axxi | 123.37 (5) |
O3iii—Rb1A—H | 170.2 (6) | O2ii—In1—Rb2Axxi | 123.36 (5) |
O3i—Rb1A—H | 69.0 (7) | O2xviii—In1—Rb2Axxi | 123.36 (5) |
O3iv—Rb1A—H | 103.6 (7) | O4xix—In1—Rb2Axxi | 50.06 (5) |
O3v—Rb1A—H | 103.8 (6) | O4i—In1—Rb2Axxi | 50.06 (5) |
O3ii—Rb1A—H | 82.3 (6) | O4xii—In1—Rb2Axxi | 50.06 (5) |
O3—Rb1A—H | 14.5 (6) | O2xvii—In1—Rb1Axix | 32.08 (5) |
O2—Rb1A—H | 58.6 (7) | O2ii—In1—Rb1Axix | 107.92 (5) |
O2v—Rb1A—H | 115.4 (7) | O2xviii—In1—Rb1Axix | 118.90 (5) |
O2iv—Rb1A—H | 58.4 (6) | O4xix—In1—Rb1Axix | 73.96 (4) |
O2ii—Rb1A—H | 122.5 (6) | O4i—In1—Rb1Axix | 63.88 (4) |
O2iii—Rb1A—H | 132.7 (7) | O4xii—In1—Rb1Axix | 141.47 (5) |
O2i—Rb1A—H | 53.3 (7) | Rb2Axxi—In1—Rb1Axix | 91.955 (3) |
Asiii—Rb1A—H | 157.8 (7) | O2xvii—In1—Rb1A | 118.90 (5) |
Rb1Bi—Rb1A—Hi | 44.8 (6) | O2ii—In1—Rb1A | 32.08 (5) |
Rb1Bii—Rb1A—Hi | 127.6 (8) | O2xviii—In1—Rb1A | 107.92 (5) |
O3iii—Rb1A—Hi | 103.8 (6) | O4xix—In1—Rb1A | 141.47 (5) |
O3i—Rb1A—Hi | 14.5 (6) | O4i—In1—Rb1A | 73.96 (4) |
O3iv—Rb1A—Hi | 170.2 (6) | O4xii—In1—Rb1A | 63.88 (5) |
O3v—Rb1A—Hi | 103.6 (7) | Rb2Axxi—In1—Rb1A | 91.954 (3) |
O3ii—Rb1A—Hi | 69.0 (7) | Rb1Axix—In1—Rb1A | 119.9 |
O3—Rb1A—Hi | 82.3 (6) | O2xvii—In1—Rb1Axviii | 107.92 (5) |
O2—Rb1A—Hi | 122.5 (6) | O2ii—In1—Rb1Axviii | 118.90 (5) |
O2v—Rb1A—Hi | 58.4 (6) | O2xviii—In1—Rb1Axviii | 32.08 (5) |
O2iv—Rb1A—Hi | 132.7 (7) | O4xix—In1—Rb1Axviii | 63.88 (5) |
O2ii—Rb1A—Hi | 53.3 (7) | O4i—In1—Rb1Axviii | 141.47 (5) |
O2iii—Rb1A—Hi | 115.4 (7) | O4xii—In1—Rb1Axviii | 73.96 (5) |
O2i—Rb1A—Hi | 58.6 (7) | Rb2Axxi—In1—Rb1Axviii | 91.954 (3) |
Asiii—Rb1A—Hi | 107.6 (7) | Rb1Axix—In1—Rb1Axviii | 119.9 |
H—Rb1A—Hi | 83.5 (9) | Rb1A—In1—Rb1Axviii | 119.9 |
Rb1Bi—Rb1A—Hii | 95.7 (7) | O1vii—In2—O1xvi | 96.52 (7) |
Rb1Bii—Rb1A—Hii | 44.8 (6) | O1vii—In2—O1i | 180.0 |
O3iii—Rb1A—Hii | 103.6 (7) | O1xvi—In2—O1i | 83.48 (7) |
O3i—Rb1A—Hii | 82.3 (6) | O1vii—In2—O1xii | 83.48 (7) |
O3iv—Rb1A—Hii | 103.8 (6) | O1xvi—In2—O1xii | 180.0 |
O3v—Rb1A—Hii | 170.2 (6) | O1i—In2—O1xii | 96.52 (7) |
O3ii—Rb1A—Hii | 14.5 (6) | O1vii—In2—O1xix | 83.48 (7) |
O3—Rb1A—Hii | 69.0 (7) | O1xvi—In2—O1xix | 83.48 (7) |
O2—Rb1A—Hii | 53.3 (7) | O1i—In2—O1xix | 96.52 (7) |
O2v—Rb1A—Hii | 132.7 (7) | O1xii—In2—O1xix | 96.52 (7) |
O2iv—Rb1A—Hii | 115.4 (8) | O1vii—In2—O1xx | 96.52 (7) |
O2ii—Rb1A—Hii | 58.6 (7) | O1xvi—In2—O1xx | 96.52 (7) |
O2iii—Rb1A—Hii | 58.4 (6) | O1i—In2—O1xx | 83.48 (7) |
O2i—Rb1A—Hii | 122.5 (6) | O1xii—In2—O1xx | 83.48 (7) |
Asiii—Rb1A—Hii | 78.9 (7) | O1xix—In2—O1xx | 180.0 |
H—Rb1A—Hii | 83.5 (9) | O1vii—In2—Rb2Axx | 47.93 (8) |
Hi—Rb1A—Hii | 83.5 (9) | O1xvi—In2—Rb2Axx | 80.47 (7) |
Rb1Bi—Rb1A—Hiv | 127.6 (7) | O1i—In2—Rb2Axx | 132.07 (8) |
Rb1Bii—Rb1A—Hiv | 44.8 (6) | O1xii—In2—Rb2Axx | 99.53 (7) |
O3iii—Rb1A—Hiv | 69.0 (7) | O1xix—In2—Rb2Axx | 37.05 (8) |
O3i—Rb1A—Hiv | 170.2 (6) | O1xx—In2—Rb2Axx | 142.95 (8) |
O3iv—Rb1A—Hiv | 14.5 (6) | O1vii—In2—Rb2Axix | 132.07 (8) |
O3v—Rb1A—Hiv | 82.3 (6) | O1xvi—In2—Rb2Axix | 99.53 (7) |
O3ii—Rb1A—Hiv | 103.8 (6) | O1i—In2—Rb2Axix | 47.93 (8) |
O3—Rb1A—Hiv | 103.6 (7) | O1xii—In2—Rb2Axix | 80.47 (7) |
O2—Rb1A—Hiv | 58.4 (6) | O1xix—In2—Rb2Axix | 142.95 (8) |
O2v—Rb1A—Hiv | 122.5 (6) | O1xx—In2—Rb2Axix | 37.05 (8) |
O2iv—Rb1A—Hiv | 58.6 (7) | Rb2Axx—In2—Rb2Axix | 180.0 |
O2ii—Rb1A—Hiv | 115.4 (7) | O1vii—In2—Rb2A | 37.05 (8) |
O2iii—Rb1A—Hiv | 53.3 (7) | O1xvi—In2—Rb2A | 132.07 (8) |
O2i—Rb1A—Hiv | 132.7 (7) | O1i—In2—Rb2A | 142.95 (8) |
Asiii—Rb1A—Hiv | 62.0 (7) | O1xii—In2—Rb2A | 47.93 (8) |
H—Rb1A—Hiv | 104.8 (15) | O1xix—In2—Rb2A | 80.47 (7) |
Hi—Rb1A—Hiv | 168.6 (14) | O1xx—In2—Rb2A | 99.53 (7) |
Hii—Rb1A—Hiv | 89.6 (11) | Rb2Axx—In2—Rb2A | 60.060 (6) |
Rb1Bi—Rb1A—Hiii | 44.8 (6) | Rb2Axix—In2—Rb2A | 119.940 (6) |
Rb1Bii—Rb1A—Hiii | 95.7 (8) | O1vii—In2—Rb2Axviii | 99.53 (7) |
O3iii—Rb1A—Hiii | 14.5 (6) | O1xvi—In2—Rb2Axviii | 37.05 (8) |
O3i—Rb1A—Hiii | 103.8 (6) | O1i—In2—Rb2Axviii | 80.47 (7) |
O3iv—Rb1A—Hiii | 82.3 (6) | O1xii—In2—Rb2Axviii | 142.95 (8) |
O3v—Rb1A—Hiii | 69.0 (7) | O1xix—In2—Rb2Axviii | 47.93 (8) |
O3ii—Rb1A—Hiii | 103.6 (7) | O1xx—In2—Rb2Axviii | 132.07 (8) |
O3—Rb1A—Hiii | 170.2 (6) | Rb2Axx—In2—Rb2Axviii | 60.060 (6) |
O2—Rb1A—Hiii | 132.7 (7) | Rb2Axix—In2—Rb2Axviii | 119.940 (7) |
O2v—Rb1A—Hiii | 53.3 (7) | Rb2A—In2—Rb2Axviii | 119.940 (6) |
O2iv—Rb1A—Hiii | 122.5 (6) | O1vii—In2—Rb2Axxii | 80.47 (7) |
O2ii—Rb1A—Hiii | 58.4 (6) | O1xvi—In2—Rb2Axxii | 142.95 (8) |
O2iii—Rb1A—Hiii | 58.6 (7) | O1i—In2—Rb2Axxii | 99.53 (7) |
O2i—Rb1A—Hiii | 115.4 (7) | O1xii—In2—Rb2Axxii | 37.05 (8) |
Asiii—Rb1A—Hiii | 33.5 (7) | O1xix—In2—Rb2Axxii | 132.07 (8) |
H—Rb1A—Hiii | 168.6 (14) | O1xx—In2—Rb2Axxii | 47.93 (8) |
Hi—Rb1A—Hiii | 89.6 (12) | Rb2Axx—In2—Rb2Axxii | 119.940 (6) |
Hii—Rb1A—Hiii | 104.8 (15) | Rb2Axix—In2—Rb2Axxii | 60.060 (6) |
Hiv—Rb1A—Hiii | 83.5 (9) | Rb2A—In2—Rb2Axxii | 60.061 (6) |
Rb1Bi—Rb1A—Hv | 95.7 (7) | Rb2Axviii—In2—Rb2Axxii | 180.0 |
Rb1Bii—Rb1A—Hv | 127.6 (8) | O1vii—In2—Rb2Axxiii | 142.95 (8) |
O3iii—Rb1A—Hv | 82.3 (6) | O1xvi—In2—Rb2Axxiii | 47.93 (8) |
O3i—Rb1A—Hv | 103.6 (7) | O1i—In2—Rb2Axxiii | 37.05 (8) |
O3iv—Rb1A—Hv | 69.0 (7) | O1xii—In2—Rb2Axxiii | 132.07 (8) |
O3v—Rb1A—Hv | 14.5 (6) | O1xix—In2—Rb2Axxiii | 99.53 (7) |
O3ii—Rb1A—Hv | 170.2 (6) | O1xx—In2—Rb2Axxiii | 80.47 (7) |
O3—Rb1A—Hv | 103.8 (6) | Rb2Axx—In2—Rb2Axxiii | 119.940 (7) |
O2—Rb1A—Hv | 115.4 (8) | Rb2Axix—In2—Rb2Axxiii | 60.060 (6) |
O2v—Rb1A—Hv | 58.6 (7) | Rb2A—In2—Rb2Axxiii | 180.0 |
O2iv—Rb1A—Hv | 53.3 (7) | Rb2Axviii—In2—Rb2Axxiii | 60.061 (6) |
O2ii—Rb1A—Hv | 132.7 (7) | Rb2Axxii—In2—Rb2Axxiii | 119.939 (6) |
O2iii—Rb1A—Hv | 122.5 (6) | O1xiii—As—O2 | 116.08 (10) |
O2i—Rb1A—Hv | 58.4 (6) | O1xiii—As—O4v | 109.85 (10) |
Asiii—Rb1A—Hv | 105.4 (6) | O2—As—O4v | 113.73 (8) |
H—Rb1A—Hv | 89.6 (11) | O1xiii—As—O3 | 104.27 (10) |
Hi—Rb1A—Hv | 104.8 (14) | O2—As—O3 | 104.94 (9) |
Hii—Rb1A—Hv | 168.6 (15) | O4v—As—O3 | 106.99 (8) |
Hiv—Rb1A—Hv | 83.5 (9) | O1xiii—As—Rb1Bii | 133.87 (15) |
Hiii—Rb1A—Hv | 83.5 (9) | O2—As—Rb1Bii | 51.9 (5) |
Rb1Bi—Rb1B—Rb1Bii | 60.00 (3) | O4v—As—Rb1Bii | 115.4 (2) |
Rb1Bi—Rb1B—O3v | 97.5 (5) | O3—As—Rb1Bii | 54.3 (4) |
Rb1Bii—Rb1B—O3v | 123.7 (5) | O1xiii—As—Rb1B | 138.5 (3) |
Rb1Bi—Rb1B—O3 | 123.7 (5) | O2—As—Rb1B | 62.1 (4) |
Rb1Bii—Rb1B—O3 | 97.5 (6) | O4v—As—Rb1B | 107.4 (4) |
O3v—Rb1B—O3 | 133.3 (11) | O3—As—Rb1B | 46.49 (19) |
Rb1Bi—Rb1B—O2iv | 158.5 (3) | Rb1Bii—As—Rb1B | 11.6 (9) |
Rb1Bii—Rb1B—O2iv | 109.8 (5) | O1xiii—As—Rb2Bxxiv | 59.16 (16) |
O3v—Rb1B—O2iv | 71.7 (5) | O2—As—Rb2Bxxiv | 175.06 (16) |
O3—Rb1B—O2iv | 74.5 (5) | O4v—As—Rb2Bxxiv | 68.35 (14) |
Rb1Bi—Rb1B—O2i | 109.8 (4) | O3—As—Rb2Bxxiv | 78.23 (14) |
Rb1Bii—Rb1B—O2i | 158.5 (3) | Rb1Bii—As—Rb2Bxxiv | 131.9 (5) |
O3v—Rb1B—O2i | 74.5 (5) | Rb1B—As—Rb2Bxxiv | 122.0 (3) |
O3—Rb1B—O2i | 71.7 (5) | O1xiii—As—Rb2Bxv | 62.57 (15) |
O2iv—Rb1B—O2i | 85.8 (8) | O2—As—Rb2Bxv | 175.80 (17) |
Rb1Bi—Rb1B—O3iv | 105.8 (5) | O4v—As—Rb2Bxv | 70.24 (15) |
Rb1Bii—Rb1B—O3iv | 68.2 (6) | O3—As—Rb2Bxv | 72.08 (14) |
O3v—Rb1B—O3iv | 71.05 (15) | Rb1Bii—As—Rb2Bxv | 125.7 (4) |
O3—Rb1B—O3iv | 111.7 (3) | Rb1B—As—Rb2Bxv | 115.9 (3) |
O2iv—Rb1B—O3iv | 53.4 (2) | Rb2Bxxiv—As—Rb2Bxv | 6.2 (2) |
O2i—Rb1B—O3iv | 132.8 (9) | O1xiii—As—Rb1A | 134.73 (9) |
Rb1Bi—Rb1B—O3i | 68.2 (5) | O2—As—Rb1A | 57.74 (6) |
Rb1Bii—Rb1B—O3i | 105.8 (5) | O4v—As—Rb1A | 112.84 (6) |
O3v—Rb1B—O3i | 111.7 (3) | O3—As—Rb1A | 48.98 (7) |
O3—Rb1B—O3i | 71.04 (15) | Rb1Bii—As—Rb1A | 6.0 (4) |
O2iv—Rb1B—O3i | 132.8 (9) | Rb1B—As—Rb1A | 6.2 (5) |
O2i—Rb1B—O3i | 53.4 (2) | Rb2Bxxiv—As—Rb1A | 126.16 (13) |
O3iv—Rb1B—O3i | 173.4 (12) | Rb2Bxv—As—Rb1A | 119.97 (12) |
Rb1Bi—Rb1B—O2 | 114.7 (5) | O1xiii—As—Rb2Axv | 61.31 (9) |
Rb1Bii—Rb1B—O2 | 57.8 (6) | O2—As—Rb2Axv | 177.30 (9) |
O3v—Rb1B—O2 | 132.6 (4) | O4v—As—Rb2Axv | 68.43 (8) |
O3—Rb1B—O2 | 51.41 (7) | O3—As—Rb2Axv | 75.58 (7) |
O2iv—Rb1B—O2 | 65.7 (2) | Rb1Bii—As—Rb2Axv | 129.1 (4) |
O2i—Rb1B—O2 | 120.6 (6) | Rb1B—As—Rb2Axv | 119.2 (3) |
O3iv—Rb1B—O2 | 67.34 (7) | Rb2Bxxiv—As—Rb2Axv | 2.88 (15) |
O3i—Rb1B—O2 | 112.19 (11) | Rb2Bxv—As—Rb2Axv | 3.52 (13) |
Rb1Bi—Rb1B—O2v | 57.8 (5) | Rb1A—As—Rb2Axv | 123.340 (18) |
Rb1Bii—Rb1B—O2v | 114.7 (4) | O1xiii—As—Rb2B | 66.15 (14) |
O3v—Rb1B—O2v | 51.41 (7) | O2—As—Rb2B | 104.87 (14) |
O3—Rb1B—O2v | 132.6 (4) | O4v—As—Rb2B | 137.04 (14) |
O2iv—Rb1B—O2v | 120.6 (6) | O3—As—Rb2B | 42.56 (14) |
O2i—Rb1B—O2v | 65.7 (2) | Rb1Bii—As—Rb2B | 74.7 (2) |
O3iv—Rb1B—O2v | 112.19 (11) | Rb1B—As—Rb2B | 74.33 (18) |
O3i—Rb1B—O2v | 67.34 (7) | Rb2Bxxiv—As—Rb2B | 74.78 (3) |
O2—Rb1B—O2v | 172.4 (11) | Rb2Bxv—As—Rb2B | 70.9 (2) |
Rb1Bi—Rb1B—O3iii | 45.4 (3) | Rb1A—As—Rb2B | 72.61 (11) |
Rb1Bii—Rb1B—O3iii | 61.5 (3) | Rb2Axv—As—Rb2B | 73.66 (14) |
O3v—Rb1B—O3iii | 66.84 (19) | O1xiii—As—Rb2Bxxv | 63.55 (13) |
O3—Rb1B—O3iii | 158.9 (9) | O2—As—Rb2Bxxv | 178.70 (16) |
O2iv—Rb1B—O3iii | 113.43 (5) | O4v—As—Rb2Bxxv | 65.54 (13) |
O2i—Rb1B—O3iii | 126.87 (6) | O3—As—Rb2Bxxv | 76.36 (14) |
O3iv—Rb1B—O3iii | 64.9 (3) | Rb1Bii—As—Rb2Bxxv | 129.3 (5) |
O3i—Rb1B—O3iii | 110.3 (6) | Rb1B—As—Rb2Bxxv | 119.0 (4) |
O2—Rb1B—O3iii | 112.4 (6) | Rb2Bxxiv—As—Rb2Bxxv | 4.39 (15) |
O2v—Rb1B—O3iii | 61.9 (2) | Rb2Bxv—As—Rb2Bxxv | 5.30 (19) |
Rb1Bi—Rb1B—O3ii | 61.5 (3) | Rb1A—As—Rb2Bxxv | 123.48 (12) |
Rb1Bii—Rb1B—O3ii | 45.4 (3) | Rb2Axv—As—Rb2Bxxv | 2.94 (15) |
O3v—Rb1B—O3ii | 158.9 (9) | Rb2B—As—Rb2Bxxv | 76.18 (18) |
O3—Rb1B—O3ii | 66.84 (19) | Asxxvi—O1—In2xxvii | 142.20 (12) |
O2iv—Rb1B—O3ii | 126.87 (6) | Asxxvi—O1—Rb2Bxxviii | 95.06 (18) |
O2i—Rb1B—O3ii | 113.43 (5) | In2xxvii—O1—Rb2Bxxviii | 119.53 (18) |
O3iv—Rb1B—O3ii | 110.3 (6) | Asxxvi—O1—Rb2Bvi | 92.19 (16) |
O3i—Rb1B—O3ii | 64.9 (3) | In2xxvii—O1—Rb2Bvi | 123.76 (15) |
O2—Rb1B—O3ii | 61.9 (2) | Rb2Bxxviii—O1—Rb2Bvi | 6.6 (3) |
O2v—Rb1B—O3ii | 112.4 (6) | Asxxvi—O1—Rb2Avi | 93.97 (12) |
O3iii—Rb1B—O3ii | 94.2 (8) | In2xxvii—O1—Rb2Avi | 121.16 (11) |
Rb1Bi—Rb1B—H | 135.3 (8) | Rb2Bxxviii—O1—Rb2Avi | 2.47 (17) |
Rb1Bii—Rb1B—H | 112.7 (9) | Rb2Bvi—O1—Rb2Avi | 4.12 (14) |
O3v—Rb1B—H | 117.3 (12) | Asxxvi—O1—Rb2Bxxvi | 89.12 (16) |
O3—Rb1B—H | 16.1 (6) | In2xxvii—O1—Rb2Bxxvi | 106.82 (16) |
O2iv—Rb1B—H | 65.2 (9) | Rb2Bxxviii—O1—Rb2Bxxvi | 86.07 (7) |
O2i—Rb1B—H | 59.4 (9) | Rb2Bvi—O1—Rb2Bxxvi | 80.1 (2) |
O3iv—Rb1B—H | 111.3 (10) | Rb2Avi—O1—Rb2Bxxvi | 83.83 (15) |
O3i—Rb1B—H | 73.1 (8) | Asxxvi—O1—Rb2Axxvi | 87.55 (12) |
O2—Rb1B—H | 61.4 (8) | In2xxvii—O1—Rb2Axxvi | 107.67 (9) |
O2v—Rb1B—H | 124.3 (10) | Rb2Bxxviii—O1—Rb2Axxvi | 86.97 (17) |
O3iii—Rb1B—H | 173.7 (9) | Rb2Bvi—O1—Rb2Axxvi | 80.92 (17) |
O3ii—Rb1B—H | 82.4 (6) | Rb2Avi—O1—Rb2Axxvi | 84.71 (5) |
Rb1Bi—Rb1B—Hv | 112.7 (9) | Rb2Bxxvi—O1—Rb2Axxvi | 1.7 (2) |
Rb1Bii—Rb1B—Hv | 135.3 (7) | Asxxvi—O1—Rb2Axxvii | 110.41 (11) |
O3v—Rb1B—Hv | 16.1 (6) | In2xxvii—O1—Rb2Axxvii | 74.80 (7) |
O3—Rb1B—Hv | 117.3 (12) | Rb2Bxxviii—O1—Rb2Axxvii | 65.58 (17) |
O2iv—Rb1B—Hv | 59.4 (9) | Rb2Bvi—O1—Rb2Axxvii | 72.13 (14) |
O2i—Rb1B—Hv | 65.2 (9) | Rb2Avi—O1—Rb2Axxvii | 68.03 (4) |
O3iv—Rb1B—Hv | 73.1 (8) | Rb2Bxxvi—O1—Rb2Axxvii | 146.21 (11) |
O3i—Rb1B—Hv | 111.3 (9) | Rb2Axxvi—O1—Rb2Axxvii | 147.76 (12) |
O2—Rb1B—Hv | 124.3 (11) | As—O2—In1xxix | 123.06 (9) |
O2v—Rb1B—Hv | 61.4 (8) | As—O2—Rb1Bii | 102.0 (4) |
O3iii—Rb1B—Hv | 82.4 (6) | In1xxix—O2—Rb1Bii | 124.8 (3) |
O3ii—Rb1B—Hv | 173.7 (10) | As—O2—Rb1A | 97.07 (7) |
H—Rb1B—Hv | 101.4 (15) | In1xxix—O2—Rb1A | 127.94 (7) |
Rb2Bii—Rb2A—Rb2Bi | 116 (2) | Rb1Bii—O2—Rb1A | 5.1 (4) |
Rb2Bii—Rb2A—O3 | 134 (3) | As—O2—Rb1B | 91.5 (4) |
Rb2Bi—Rb2A—O3 | 99 (3) | In1xxix—O2—Rb1B | 128.91 (9) |
Rb2Bii—Rb2A—O3i | 99 (3) | Rb1Bii—O2—Rb1B | 12.4 (9) |
Rb2Bi—Rb2A—O3i | 65 (3) | Rb1A—O2—Rb1B | 7.5 (5) |
O3—Rb2A—O3i | 69.31 (13) | As—O2—Rb2A | 56.91 (5) |
Rb2Bii—Rb2A—O3ii | 65 (3) | In1xxix—O2—Rb2A | 162.73 (8) |
Rb2Bi—Rb2A—O3ii | 134 (3) | Rb1Bii—O2—Rb2A | 68.43 (19) |
O3—Rb2A—O3ii | 69.31 (13) | Rb1A—O2—Rb2A | 66.24 (6) |
O3i—Rb2A—O3ii | 69.31 (13) | Rb1B—O2—Rb2A | 66.61 (7) |
Rb2Bii—Rb2A—O1vi | 140 (3) | As—O3—Rb1B | 107.13 (15) |
Rb2Bi—Rb2A—O1vi | 34 (2) | As—O3—Rb2B | 113.58 (18) |
O3—Rb2A—O1vi | 85.60 (6) | Rb1B—O3—Rb2B | 107.8 (5) |
O3i—Rb2A—O1vi | 89.21 (6) | As—O3—Rb2A | 117.21 (9) |
O3ii—Rb2A—O1vi | 151.25 (17) | Rb1B—O3—Rb2A | 103.8 (4) |
Rb2Bii—Rb2A—O1vii | 34 (2) | Rb2B—O3—Rb2A | 4.46 (18) |
Rb2Bi—Rb2A—O1vii | 82 (2) | As—O3—Rb1Bii | 98.0 (5) |
O3—Rb2A—O1vii | 151.25 (17) | Rb1B—O3—Rb1Bii | 14.3 (10) |
O3i—Rb2A—O1vii | 85.60 (6) | Rb2B—O3—Rb1Bii | 102.66 (17) |
O3ii—Rb2A—O1vii | 89.21 (6) | Rb2A—O3—Rb1Bii | 99.24 (11) |
O1vi—Rb2A—O1vii | 108.60 (10) | As—O3—Rb1A | 105.44 (8) |
Rb2Bii—Rb2A—O1viii | 82 (2) | Rb1B—O3—Rb1A | 7.6 (6) |
Rb2Bi—Rb2A—O1viii | 140 (3) | Rb2B—O3—Rb1A | 102.30 (16) |
O3—Rb2A—O1viii | 89.21 (6) | Rb2A—O3—Rb1A | 98.50 (9) |
O3i—Rb2A—O1viii | 151.25 (17) | Rb1Bii—O3—Rb1A | 8.2 (6) |
O3ii—Rb2A—O1viii | 85.60 (6) | As—O3—Rb2Bi | 121.23 (19) |
O1vi—Rb2A—O1viii | 108.60 (10) | Rb1B—O3—Rb2Bi | 103.8 (4) |
O1vii—Rb2A—O1viii | 108.59 (10) | Rb2B—O3—Rb2Bi | 7.6 (3) |
Rb2Bii—Rb2A—O4ix | 98 (3) | Rb2A—O3—Rb2Bi | 4.62 (15) |
Rb2Bi—Rb2A—O4ix | 53 (3) | Rb1Bii—O3—Rb2Bi | 100.4 (2) |
O3—Rb2A—O4ix | 126.63 (6) | Rb1A—O3—Rb2Bi | 99.01 (18) |
O3i—Rb2A—O4ix | 117.83 (6) | As—O3—Rb2Bii | 115.94 (17) |
O3ii—Rb2A—O4ix | 163.52 (11) | Rb1B—O3—Rb2Bii | 101.7 (5) |
O1vi—Rb2A—O4ix | 44.75 (6) | Rb2B—O3—Rb2Bii | 6.1 (2) |
O1vii—Rb2A—O4ix | 77.05 (10) | Rb2A—O3—Rb2Bii | 3.2 (2) |
O1viii—Rb2A—O4ix | 90.14 (12) | Rb1Bii—O3—Rb2Bii | 96.67 (18) |
Rb2Bii—Rb2A—O4x | 86 (3) | Rb1A—O3—Rb2Bii | 96.23 (18) |
Rb2Bi—Rb2A—O4x | 98 (3) | Rb2Bi—O3—Rb2Bii | 7.4 (2) |
O3—Rb2A—O4x | 117.83 (6) | As—O3—Rb1Bi | 110.6 (3) |
O3i—Rb2A—O4x | 163.52 (11) | Rb1B—O3—Rb1Bi | 10.9 (8) |
O3ii—Rb2A—O4x | 126.63 (6) | Rb2B—O3—Rb1Bi | 97.1 (4) |
O1vi—Rb2A—O4x | 77.05 (10) | Rb2A—O3—Rb1Bi | 93.2 (4) |
O1vii—Rb2A—O4x | 90.14 (12) | Rb1Bii—O3—Rb1Bi | 12.6 (9) |
O1viii—Rb2A—O4x | 44.75 (6) | Rb1A—O3—Rb1Bi | 6.0 (4) |
O4ix—Rb2A—O4x | 45.71 (8) | Rb2Bi—O3—Rb1Bi | 93.5 (4) |
Rb2Bii—Rb2A—O4xi | 53 (3) | Rb2Bii—O3—Rb1Bi | 91.0 (4) |
Rb2Bi—Rb2A—O4xi | 86 (3) | As—O3—Rb2Axv | 78.72 (7) |
O3—Rb2A—O4xi | 163.52 (11) | Rb1B—O3—Rb2Axv | 159.5 (6) |
O3i—Rb2A—O4xi | 126.63 (6) | Rb2B—O3—Rb2Axv | 86.8 (2) |
O3ii—Rb2A—O4xi | 117.83 (6) | Rb2A—O3—Rb2Axv | 90.14 (5) |
O1vi—Rb2A—O4xi | 90.14 (12) | Rb1Bii—O3—Rb2Axv | 170.52 (10) |
O1vii—Rb2A—O4xi | 44.75 (6) | Rb1A—O3—Rb2Axv | 167.05 (8) |
O1viii—Rb2A—O4xi | 77.05 (10) | Rb2Bi—O3—Rb2Axv | 88.8 (2) |
O4ix—Rb2A—O4xi | 45.71 (8) | Rb2Bii—O3—Rb2Axv | 92.8 (2) |
O4x—Rb2A—O4xi | 45.71 (8) | Rb1Bi—O3—Rb2Axv | 167.03 (11) |
Rb2Bii—Rb2A—O1xii | 26 (3) | As—O3—H | 108 (3) |
Rb2Bi—Rb2A—O1xii | 117 (2) | Rb1B—O3—H | 92 (3) |
O3—Rb2A—O1xii | 112.37 (15) | Rb2B—O3—H | 125 (3) |
O3i—Rb2A—O1xii | 76.69 (8) | Rb2A—O3—H | 124 (3) |
O3ii—Rb2A—O1xii | 44.11 (5) | Rb1Bii—O3—H | 105 (3) |
O1vi—Rb2A—O1xii | 150.55 (6) | Rb1A—O3—H | 99 (3) |
O1vii—Rb2A—O1xii | 45.46 (6) | Rb2Bi—O3—H | 120 (3) |
O1viii—Rb2A—O1xii | 95.29 (5) | Rb2Bii—O3—H | 127 (3) |
O4ix—Rb2A—O1xii | 120.81 (10) | Rb1Bi—O3—H | 100 (3) |
O4x—Rb2A—O1xii | 111.19 (9) | Rb2Axv—O3—H | 68 (3) |
O4xi—Rb2A—O1xii | 78.40 (6) | Asv—O4—In1xxvii | 127.87 (9) |
Rb2Bii—Rb2A—O1xiii | 117 (2) | Asv—O4—Rb2Bxxx | 85.47 (16) |
Rb2Bi—Rb2A—O1xiii | 126 (2) | In1xxvii—O4—Rb2Bxxx | 106.35 (17) |
O3—Rb2A—O1xiii | 44.11 (5) | Asv—O4—Rb2Axxx | 86.47 (7) |
O3i—Rb2A—O1xiii | 112.37 (15) | In1xxvii—O4—Rb2Axxx | 103.30 (7) |
O3ii—Rb2A—O1xiii | 76.69 (8) | Rb2Bxxx—O4—Rb2Axxx | 3.25 (18) |
O1vi—Rb2A—O1xiii | 95.29 (5) | Asv—O4—Rb1Axxvi | 131.05 (7) |
O1vii—Rb2A—O1xiii | 150.54 (6) | In1xxvii—O4—Rb1Axxvi | 90.25 (5) |
O1viii—Rb2A—O1xiii | 45.46 (6) | Rb2Bxxx—O4—Rb1Axxvi | 115.02 (15) |
O4ix—Rb2A—O1xiii | 111.19 (9) | Rb2Axxx—O4—Rb1Axxvi | 116.54 (4) |
O4x—Rb2A—O1xiii | 78.40 (6) | Asv—O4—Rb1A | 48.38 (5) |
O4xi—Rb2A—O1xiii | 120.81 (10) | In1xxvii—O4—Rb1A | 80.54 (5) |
O1xii—Rb2A—O1xiii | 113.93 (7) | Rb2Bxxx—O4—Rb1A | 109.65 (15) |
Rb2Bii—Rb2A—O1xiv | 126 (2) | Rb2Axxx—O4—Rb1A | 108.26 (4) |
Rb2Bi—Rb2A—O1xiv | 26 (3) | Rb1Axxvi—O4—Rb1A | 135.18 (4) |
Symmetry codes: (i) −y, x−y, z; (ii) −x+y, −x, z; (iii) x−y, −y, −z+3/2; (iv) y, x, −z+3/2; (v) −x, −x+y, −z+3/2; (vi) −x+2/3, −y−2/3, −z+4/3; (vii) y+2/3, −x+y+4/3, −z+4/3; (viii) x−y−4/3, x−2/3, −z+4/3; (ix) x−1/3, x−y−2/3, z−1/6; (x) −y−1/3, −x+1/3, z−1/6; (xi) −x+y+2/3, y+1/3, z−1/6; (xii) −x+y+1, −x+1, z; (xiii) x−1, y, z; (xiv) −y, x−y−1, z; (xv) −x−1/3, −y−2/3, −z+4/3; (xvi) x−y−1/3, x+1/3, −z+4/3; (xvii) −y, x−y+1, z; (xviii) x+1, y+1, z; (xix) x, y+1, z; (xx) −x+2/3, −y+1/3, −z+4/3; (xxi) −y+1/3, −x+2/3, z+1/6; (xxii) −x−1/3, −y+1/3, −z+4/3; (xxiii) −x+2/3, −y+4/3, −z+4/3; (xxiv) y−1/3, −x+y−2/3, −z+4/3; (xxv) x−y−1/3, x−2/3, −z+4/3; (xxvi) x+1, y, z; (xxvii) x, y−1, z; (xxviii) y+2/3, −x+y−2/3, −z+4/3; (xxix) x−1, y−1, z; (xxx) −y+1/3, −x−1/3, z+1/6. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H···O4xxxi | 0.83 (3) | 1.82 (3) | 2.634 (2) | 168 (4) |
Symmetry code: (xxxi) y, x−1, −z+3/2. |
CsIn(HAsO4)2 | Dx = 4.291 Mg m−3 |
Mr = 527.59 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3c:H | Cell parameters from 2985 reflections |
a = 8.629 (1) Å | θ = 3.1–30.0° |
c = 56.986 (11) Å | µ = 15.34 mm−1 |
V = 3674.7 (11) Å3 | T = 293 K |
Z = 18 | Small pseudooctahedra, colourless |
F(000) = 4248 | 0.06 × 0.06 × 0.04 mm |
Nonius KappaCCD single-crystal four-circle diffractometer | 1039 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.019 |
φ and ω scans | θmax = 30.0°, θmin = 3.1° |
Absorption correction: multi-scan (SCALEPACK; Otwinowski et al., 2003) | h = −12→12 |
Tmin = 0.460, Tmax = 0.579 | k = −9→9 |
4350 measured reflections | l = −79→79 |
1199 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | All H-atom parameters refined |
wR(F2) = 0.052 | w = 1/[σ2(Fo2) + (0.0234P)2 + 28.1228P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.004 |
1199 reflections | Δρmax = 2.09 e Å−3 |
61 parameters | Δρmin = −0.86 e Å−3 |
1 restraint | Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.000028 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cs1 | 0.000000 | 0.000000 | 0.750000 | 0.02557 (14) | |
Cs2 | 0.000000 | 0.000000 | 0.66740 (2) | 0.02940 (12) | |
In1 | 0.333333 | 0.666667 | 0.75230 (2) | 0.00967 (10) | |
In2 | 0.333333 | 0.666667 | 0.666667 | 0.01033 (12) | |
As | −0.41576 (4) | −0.38822 (4) | 0.71249 (2) | 0.01182 (10) | |
O1 | 0.4878 (4) | −0.4176 (4) | 0.68649 (4) | 0.0247 (6) | |
O2 | −0.4350 (3) | −0.2496 (3) | 0.73117 (4) | 0.0154 (5) | |
O3 | −0.1870 (3) | −0.2856 (3) | 0.70680 (5) | 0.0217 (5) | |
O4 | 0.4768 (3) | −0.1133 (3) | 0.77606 (4) | 0.0147 (5) | |
H | −0.152 (5) | −0.354 (4) | 0.7115 (6) | 0.013 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cs1 | 0.0283 (2) | 0.0283 (2) | 0.0201 (3) | 0.01415 (10) | 0.000 | 0.000 |
Cs2 | 0.03461 (17) | 0.03461 (17) | 0.0190 (2) | 0.01730 (8) | 0.000 | 0.000 |
In1 | 0.01027 (13) | 0.01027 (13) | 0.00848 (17) | 0.00513 (6) | 0.000 | 0.000 |
In2 | 0.01173 (16) | 0.01173 (16) | 0.0075 (2) | 0.00587 (8) | 0.000 | 0.000 |
As | 0.01466 (17) | 0.01309 (17) | 0.01022 (15) | 0.00882 (14) | 0.00082 (12) | 0.00125 (11) |
O1 | 0.0366 (15) | 0.0361 (15) | 0.0126 (11) | 0.0265 (13) | −0.0067 (11) | −0.0014 (10) |
O2 | 0.0155 (11) | 0.0154 (11) | 0.0157 (11) | 0.0079 (9) | 0.0056 (9) | −0.0020 (9) |
O3 | 0.0174 (12) | 0.0216 (13) | 0.0290 (13) | 0.0120 (11) | 0.0083 (10) | 0.0115 (11) |
O4 | 0.0154 (11) | 0.0126 (11) | 0.0183 (11) | 0.0086 (9) | −0.0032 (9) | −0.0057 (9) |
Cs1—O3 | 3.280 (3) | Cs2—O4xii | 3.703 (2) |
Cs1—O3i | 3.280 (3) | Cs2—O4xiii | 3.703 (2) |
Cs1—O3ii | 3.280 (3) | Cs2—O4xiv | 3.703 (2) |
Cs1—O3iii | 3.280 (3) | Cs2—Asxi | 3.8762 (6) |
Cs1—O3iv | 3.280 (3) | Cs2—Asix | 3.8762 (6) |
Cs1—O3v | 3.280 (3) | Cs2—Asx | 3.8762 (6) |
Cs1—O2 | 3.434 (2) | In1—O2xv | 2.127 (2) |
Cs1—O2ii | 3.434 (2) | In1—O2iii | 2.127 (2) |
Cs1—O2v | 3.434 (2) | In1—O2xvi | 2.127 (2) |
Cs1—O2iii | 3.434 (2) | In1—O4xvii | 2.150 (2) |
Cs1—O2i | 3.434 (2) | In1—O4iv | 2.150 (2) |
Cs1—O2iv | 3.434 (2) | In1—O4xviii | 2.150 (2) |
Cs1—H | 3.44 (4) | In2—O1vii | 2.133 (2) |
Cs1—Hiv | 3.44 (4) | In2—O1xi | 2.133 (3) |
Cs1—Hiii | 3.44 (4) | In2—O1xix | 2.133 (2) |
Cs2—O3iv | 3.121 (3) | In2—O1iv | 2.133 (2) |
Cs2—O3iii | 3.121 (2) | In2—O1xviii | 2.133 (3) |
Cs2—O3 | 3.121 (3) | In2—O1xvii | 2.133 (2) |
Cs2—O1vi | 3.419 (3) | As—O1xx | 1.655 (2) |
Cs2—O1vii | 3.419 (3) | As—O2 | 1.671 (2) |
Cs2—O1viii | 3.419 (3) | As—O4ii | 1.679 (2) |
Cs2—O3ix | 3.698 (3) | As—O3 | 1.743 (3) |
Cs2—O3x | 3.698 (3) | O3—H | 0.83 (3) |
Cs2—O3xi | 3.698 (3) | ||
O3—Cs1—O3i | 166.65 (9) | O1vi—Cs2—Asxi | 102.94 (4) |
O3—Cs1—O3ii | 119.30 (9) | O1vii—Cs2—Asxi | 88.69 (5) |
O3i—Cs1—O3ii | 69.82 (7) | O1viii—Cs2—Asxi | 25.24 (4) |
O3—Cs1—O3iii | 69.82 (7) | O3ix—Cs2—Asxi | 61.32 (4) |
O3i—Cs1—O3iii | 103.15 (9) | O3x—Cs2—Asxi | 94.72 (4) |
O3ii—Cs1—O3iii | 166.65 (10) | O3xi—Cs2—Asxi | 26.48 (4) |
O3—Cs1—O3iv | 69.82 (7) | O4xii—Cs2—Asxi | 70.49 (4) |
O3i—Cs1—O3iv | 119.30 (10) | O4xiii—Cs2—Asxi | 25.47 (3) |
O3ii—Cs1—O3iv | 103.15 (9) | O4xiv—Cs2—Asxi | 53.44 (4) |
O3iii—Cs1—O3iv | 69.82 (7) | O3iv—Cs2—Asix | 107.26 (5) |
O3—Cs1—O3v | 103.15 (9) | O3iii—Cs2—Asix | 174.10 (5) |
O3i—Cs1—O3v | 69.82 (7) | O3—Cs2—Asix | 100.69 (5) |
O3ii—Cs1—O3v | 69.82 (7) | O1vi—Cs2—Asix | 25.24 (4) |
O3iii—Cs1—O3v | 119.30 (9) | O1vii—Cs2—Asix | 102.94 (4) |
O3iv—Cs1—O3v | 166.65 (9) | O1viii—Cs2—Asix | 88.69 (5) |
O3—Cs1—O2 | 47.28 (6) | O3ix—Cs2—Asix | 26.48 (4) |
O3i—Cs1—O2 | 119.81 (6) | O3x—Cs2—Asix | 61.32 (4) |
O3ii—Cs1—O2 | 126.64 (6) | O3xi—Cs2—Asix | 94.72 (4) |
O3iii—Cs1—O2 | 66.62 (6) | O4xii—Cs2—Asix | 25.47 (3) |
O3iv—Cs1—O2 | 111.83 (6) | O4xiii—Cs2—Asix | 53.44 (4) |
O3v—Cs1—O2 | 67.00 (6) | O4xiv—Cs2—Asix | 70.49 (4) |
O3—Cs1—O2ii | 126.65 (6) | Asxi—Cs2—Asix | 78.314 (13) |
O3i—Cs1—O2ii | 66.61 (6) | O3iv—Cs2—Asx | 100.69 (5) |
O3ii—Cs1—O2ii | 47.28 (6) | O3iii—Cs2—Asx | 107.26 (5) |
O3iii—Cs1—O2ii | 119.81 (6) | O3—Cs2—Asx | 174.10 (5) |
O3iv—Cs1—O2ii | 67.01 (6) | O1vi—Cs2—Asx | 88.69 (5) |
O3v—Cs1—O2ii | 111.83 (6) | O1vii—Cs2—Asx | 25.24 (4) |
O2—Cs1—O2ii | 170.75 (8) | O1viii—Cs2—Asx | 102.94 (4) |
O3—Cs1—O2v | 67.01 (6) | O3ix—Cs2—Asx | 94.72 (4) |
O3i—Cs1—O2v | 111.83 (6) | O3x—Cs2—Asx | 26.48 (4) |
O3ii—Cs1—O2v | 66.61 (6) | O3xi—Cs2—Asx | 61.32 (4) |
O3iii—Cs1—O2v | 126.65 (6) | O4xii—Cs2—Asx | 53.44 (4) |
O3iv—Cs1—O2v | 119.81 (6) | O4xiii—Cs2—Asx | 70.49 (4) |
O3v—Cs1—O2v | 47.28 (6) | O4xiv—Cs2—Asx | 25.47 (4) |
O2—Cs1—O2v | 61.36 (8) | Asxi—Cs2—Asx | 78.314 (13) |
O2ii—Cs1—O2v | 110.71 (3) | Asix—Cs2—Asx | 78.314 (13) |
O3—Cs1—O2iii | 111.83 (6) | O2xv—In1—O2iii | 91.11 (9) |
O3i—Cs1—O2iii | 67.01 (6) | O2xv—In1—O2xvi | 91.11 (9) |
O3ii—Cs1—O2iii | 119.81 (6) | O2iii—In1—O2xvi | 91.11 (9) |
O3iii—Cs1—O2iii | 47.28 (6) | O2xv—In1—O4xvii | 92.57 (9) |
O3iv—Cs1—O2iii | 66.61 (6) | O2iii—In1—O4xvii | 175.38 (9) |
O3v—Cs1—O2iii | 126.65 (6) | O2xvi—In1—O4xvii | 91.61 (9) |
O2—Cs1—O2iii | 110.71 (3) | O2xv—In1—O4iv | 91.61 (8) |
O2ii—Cs1—O2iii | 77.59 (7) | O2iii—In1—O4iv | 92.57 (9) |
O2v—Cs1—O2iii | 170.75 (8) | O2xvi—In1—O4iv | 175.38 (9) |
O3—Cs1—O2i | 119.82 (6) | O4xvii—In1—O4iv | 84.54 (9) |
O3i—Cs1—O2i | 47.28 (6) | O2xv—In1—O4xviii | 175.38 (9) |
O3ii—Cs1—O2i | 111.83 (6) | O2iii—In1—O4xviii | 91.61 (9) |
O3iii—Cs1—O2i | 67.01 (6) | O2xvi—In1—O4xviii | 92.57 (9) |
O3iv—Cs1—O2i | 126.65 (6) | O4xvii—In1—O4xviii | 84.54 (9) |
O3v—Cs1—O2i | 66.61 (6) | O4iv—In1—O4xviii | 84.54 (9) |
O2—Cs1—O2i | 77.59 (7) | O2xv—In1—Cs2xxi | 124.48 (6) |
O2ii—Cs1—O2i | 110.71 (3) | O2iii—In1—Cs2xxi | 124.48 (6) |
O2v—Cs1—O2i | 110.71 (3) | O2xvi—In1—Cs2xxi | 124.48 (6) |
O2iii—Cs1—O2i | 61.36 (8) | O4xvii—In1—Cs2xxi | 50.96 (6) |
O3—Cs1—O2iv | 66.61 (6) | O4iv—In1—Cs2xxi | 50.96 (6) |
O3i—Cs1—O2iv | 126.65 (6) | O4xviii—In1—Cs2xxi | 50.96 (6) |
O3ii—Cs1—O2iv | 67.01 (6) | O1vii—In2—O1xi | 94.56 (9) |
O3iii—Cs1—O2iv | 111.83 (6) | O1vii—In2—O1xix | 94.55 (9) |
O3iv—Cs1—O2iv | 47.28 (6) | O1xi—In2—O1xix | 94.55 (9) |
O3v—Cs1—O2iv | 119.81 (6) | O1vii—In2—O1iv | 180.0 |
O2—Cs1—O2iv | 110.71 (3) | O1xi—In2—O1iv | 85.45 (9) |
O2ii—Cs1—O2iv | 61.36 (8) | O1xix—In2—O1iv | 85.45 (9) |
O2v—Cs1—O2iv | 77.59 (7) | O1vii—In2—O1xviii | 85.45 (9) |
O2iii—Cs1—O2iv | 110.71 (3) | O1xi—In2—O1xviii | 180.0 |
O2i—Cs1—O2iv | 170.75 (8) | O1xix—In2—O1xviii | 85.45 (9) |
O3—Cs1—H | 13.9 (5) | O1iv—In2—O1xviii | 94.55 (9) |
O3i—Cs1—H | 170.1 (7) | O1vii—In2—O1xvii | 85.45 (9) |
O3ii—Cs1—H | 105.5 (5) | O1xi—In2—O1xvii | 85.45 (9) |
O3iii—Cs1—H | 83.1 (5) | O1xix—In2—O1xvii | 180.0 |
O3iv—Cs1—H | 69.8 (6) | O1iv—In2—O1xvii | 94.55 (9) |
O3v—Cs1—H | 100.5 (7) | O1xviii—In2—O1xvii | 94.55 (9) |
O2—Cs1—H | 55.4 (6) | O1vii—In2—Cs2xix | 56.94 (8) |
O2ii—Cs1—H | 117.1 (6) | O1xi—In2—Cs2xix | 72.56 (8) |
O2v—Cs1—H | 58.5 (6) | O1xix—In2—Cs2xix | 146.29 (7) |
O2iii—Cs1—H | 122.2 (6) | O1iv—In2—Cs2xix | 123.06 (8) |
O2i—Cs1—H | 131.7 (6) | O1xviii—In2—Cs2xix | 107.44 (8) |
O2iv—Cs1—H | 55.8 (6) | O1xvii—In2—Cs2xix | 33.71 (7) |
O3—Cs1—Hiv | 83.1 (5) | O1vii—In2—Cs2xvii | 123.06 (8) |
O3i—Cs1—Hiv | 105.5 (6) | O1xi—In2—Cs2xvii | 107.44 (8) |
O3ii—Cs1—Hiv | 100.5 (6) | O1xix—In2—Cs2xvii | 33.71 (7) |
O3iii—Cs1—Hiv | 69.8 (6) | O1iv—In2—Cs2xvii | 56.94 (8) |
O3iv—Cs1—Hiv | 13.9 (5) | O1xviii—In2—Cs2xvii | 72.56 (8) |
O3v—Cs1—Hiv | 170.2 (6) | O1xvii—In2—Cs2xvii | 146.29 (7) |
O2—Cs1—Hiv | 122.2 (6) | Cs2xix—In2—Cs2xvii | 180.0 |
O2ii—Cs1—Hiv | 58.5 (6) | O1vii—In2—Cs2 | 33.71 (7) |
O2v—Cs1—Hiv | 131.7 (6) | O1xi—In2—Cs2 | 123.06 (8) |
O2iii—Cs1—Hiv | 55.8 (6) | O1xix—In2—Cs2 | 107.44 (8) |
O2i—Cs1—Hiv | 117.1 (6) | O1iv—In2—Cs2 | 146.29 (7) |
O2iv—Cs1—Hiv | 55.4 (6) | O1xviii—In2—Cs2 | 56.94 (8) |
H—Cs1—Hiv | 83.7 (8) | O1xvii—In2—Cs2 | 72.56 (8) |
O3—Cs1—Hiii | 69.8 (6) | Cs2xix—In2—Cs2 | 60.0 |
O3i—Cs1—Hiii | 100.5 (6) | Cs2xvii—In2—Cs2 | 120.0 |
O3ii—Cs1—Hiii | 170.2 (6) | O1vii—In2—Cs2xvi | 107.44 (8) |
O3iii—Cs1—Hiii | 13.9 (5) | O1xi—In2—Cs2xvi | 33.71 (7) |
O3iv—Cs1—Hiii | 83.1 (5) | O1xix—In2—Cs2xvi | 123.06 (8) |
O3v—Cs1—Hiii | 105.5 (5) | O1iv—In2—Cs2xvi | 72.56 (8) |
O2—Cs1—Hiii | 55.8 (6) | O1xviii—In2—Cs2xvi | 146.29 (7) |
O2ii—Cs1—Hiii | 131.7 (6) | O1xvii—In2—Cs2xvi | 56.94 (8) |
O2v—Cs1—Hiii | 117.1 (7) | Cs2xix—In2—Cs2xvi | 60.0 |
O2iii—Cs1—Hiii | 55.4 (6) | Cs2xvii—In2—Cs2xvi | 120.0 |
O2i—Cs1—Hiii | 58.5 (6) | Cs2—In2—Cs2xvi | 120.0 |
O2iv—Cs1—Hiii | 122.2 (6) | O1vii—In2—Cs2xxii | 72.56 (8) |
H—Cs1—Hiii | 83.7 (8) | O1xi—In2—Cs2xxii | 146.29 (7) |
Hiv—Cs1—Hiii | 83.7 (8) | O1xix—In2—Cs2xxii | 56.94 (8) |
O3iv—Cs2—O3iii | 73.97 (8) | O1iv—In2—Cs2xxii | 107.44 (8) |
O3iv—Cs2—O3 | 73.97 (8) | O1xviii—In2—Cs2xxii | 33.71 (7) |
O3iii—Cs2—O3 | 73.97 (8) | O1xvii—In2—Cs2xxii | 123.06 (8) |
O3iv—Cs2—O1vi | 82.81 (6) | Cs2xix—In2—Cs2xxii | 120.0 |
O3iii—Cs2—O1vi | 153.75 (6) | Cs2xvii—In2—Cs2xxii | 60.0 |
O3—Cs2—O1vi | 88.16 (7) | Cs2—In2—Cs2xxii | 60.0 |
O3iv—Cs2—O1vii | 88.16 (7) | Cs2xvi—In2—Cs2xxii | 180.0 |
O3iii—Cs2—O1vii | 82.80 (7) | O1vii—In2—Cs2xxiii | 146.29 (7) |
O3—Cs2—O1vii | 153.75 (7) | O1xi—In2—Cs2xxiii | 56.94 (8) |
O1vi—Cs2—O1vii | 108.90 (4) | O1xix—In2—Cs2xxiii | 72.56 (8) |
O3iv—Cs2—O1viii | 153.75 (7) | O1iv—In2—Cs2xxiii | 33.71 (7) |
O3iii—Cs2—O1viii | 88.16 (7) | O1xviii—In2—Cs2xxiii | 123.06 (8) |
O3—Cs2—O1viii | 82.81 (6) | O1xvii—In2—Cs2xxiii | 107.44 (8) |
O1vi—Cs2—O1viii | 108.90 (4) | Cs2xix—In2—Cs2xxiii | 120.0 |
O1vii—Cs2—O1viii | 108.90 (4) | Cs2xvii—In2—Cs2xxiii | 60.0 |
O3iv—Cs2—O3ix | 124.57 (9) | Cs2—In2—Cs2xxiii | 180.0 |
O3iii—Cs2—O3ix | 148.48 (9) | Cs2xvi—In2—Cs2xxiii | 60.0 |
O3—Cs2—O3ix | 86.50 (7) | Cs2xxii—In2—Cs2xxiii | 120.0 |
O1vi—Cs2—O3ix | 44.45 (6) | O1xx—As—O2 | 117.25 (12) |
O1vii—Cs2—O3ix | 119.69 (6) | O1xx—As—O4ii | 108.41 (12) |
O1viii—Cs2—O3ix | 64.61 (6) | O2—As—O4ii | 113.77 (11) |
O3iv—Cs2—O3x | 86.50 (7) | O1xx—As—O3 | 105.44 (13) |
O3iii—Cs2—O3x | 124.56 (9) | O2—As—O3 | 104.33 (12) |
O3—Cs2—O3x | 148.48 (8) | O4ii—As—O3 | 106.72 (11) |
O1vi—Cs2—O3x | 64.61 (6) | O1xx—As—Cs2ix | 61.74 (9) |
O1vii—Cs2—O3x | 44.45 (6) | O2—As—Cs2ix | 174.14 (8) |
O1viii—Cs2—O3x | 119.69 (6) | O4ii—As—Cs2ix | 71.50 (8) |
O3ix—Cs2—O3x | 84.57 (6) | O3—As—Cs2ix | 71.06 (9) |
O3iv—Cs2—O3xi | 148.48 (9) | O1xx—As—Cs1 | 139.73 (11) |
O3iii—Cs2—O3xi | 86.50 (7) | O2—As—Cs1 | 55.91 (8) |
O3—Cs2—O3xi | 124.57 (9) | O4ii—As—Cs1 | 109.82 (8) |
O1vi—Cs2—O3xi | 119.69 (6) | O3—As—Cs1 | 51.15 (9) |
O1vii—Cs2—O3xi | 64.61 (6) | Cs2ix—As—Cs1 | 120.598 (10) |
O1viii—Cs2—O3xi | 44.45 (6) | O1xx—As—Cs2 | 75.26 (11) |
O3ix—Cs2—O3xi | 84.57 (6) | O2—As—Cs2 | 99.50 (8) |
O3x—Cs2—O3xi | 84.57 (6) | O4ii—As—Cs2 | 138.02 (8) |
O3iv—Cs2—O4xii | 113.69 (6) | O3—As—Cs2 | 37.36 (8) |
O3iii—Cs2—O4xii | 159.43 (6) | Cs2ix—As—Cs2 | 74.638 (9) |
O3—Cs2—O4xii | 126.02 (6) | Cs1—As—Cs2 | 68.078 (14) |
O1vi—Cs2—O4xii | 44.41 (5) | Asxxiv—O1—In2xxv | 140.67 (15) |
O1vii—Cs2—O4xii | 78.54 (5) | Asxxiv—O1—Cs2vi | 93.02 (10) |
O1viii—Cs2—O4xii | 89.74 (5) | In2xxv—O1—Cs2vi | 126.03 (9) |
O3ix—Cs2—O4xii | 43.56 (5) | Asxxiv—O1—Cs2xxiv | 82.42 (10) |
O3x—Cs2—O4xii | 41.47 (5) | In2xxv—O1—Cs2xxiv | 97.96 (9) |
O3xi—Cs2—O4xii | 77.76 (5) | Cs2vi—O1—Cs2xxiv | 80.74 (5) |
O3iv—Cs2—O4xiii | 159.43 (6) | Asxxiv—O1—Cs2xxv | 118.31 (12) |
O3iii—Cs2—O4xiii | 126.02 (6) | In2xxv—O1—Cs2xxv | 82.33 (8) |
O3—Cs2—O4xiii | 113.70 (7) | Cs2vi—O1—Cs2xxv | 72.50 (5) |
O1vi—Cs2—O4xiii | 78.54 (5) | Cs2xxiv—O1—Cs2xxv | 146.39 (6) |
O1vii—Cs2—O4xiii | 89.74 (6) | As—O2—In1xxvi | 122.05 (12) |
O1viii—Cs2—O4xiii | 44.41 (5) | As—O2—Cs1 | 100.33 (9) |
O3ix—Cs2—O4xiii | 41.47 (5) | In1xxvi—O2—Cs1 | 125.68 (9) |
O3x—Cs2—O4xiii | 77.76 (5) | As—O2—Cs2 | 60.78 (7) |
O3xi—Cs2—O4xiii | 43.56 (5) | In1xxvi—O2—Cs2 | 162.87 (9) |
O4xii—Cs2—O4xiii | 45.97 (6) | Cs1—O2—Cs2 | 66.29 (4) |
O3iv—Cs2—O4xiv | 126.02 (6) | As—O3—Cs2 | 122.83 (12) |
O3iii—Cs2—O4xiv | 113.69 (6) | As—O3—Cs1 | 104.40 (11) |
O3—Cs2—O4xiv | 159.43 (6) | Cs2—O3—Cs1 | 94.64 (7) |
O1vi—Cs2—O4xiv | 89.74 (5) | As—O3—Cs2ix | 82.46 (10) |
O1vii—Cs2—O4xiv | 44.41 (5) | Cs2—O3—Cs2ix | 93.50 (7) |
O1viii—Cs2—O4xiv | 78.53 (5) | Cs1—O3—Cs2ix | 164.05 (8) |
O3ix—Cs2—O4xiv | 77.76 (5) | As—O3—H | 107 (3) |
O3x—Cs2—O4xiv | 43.56 (5) | Cs2—O3—H | 124 (3) |
O3xi—Cs2—O4xiv | 41.47 (5) | Cs1—O3—H | 94 (3) |
O4xii—Cs2—O4xiv | 45.97 (6) | Cs2ix—O3—H | 70 (3) |
O4xiii—Cs2—O4xiv | 45.97 (6) | Asii—O4—In1xxv | 129.32 (12) |
O3iv—Cs2—Asxi | 174.10 (5) | Asii—O4—Cs2xxvii | 83.03 (8) |
O3iii—Cs2—Asxi | 100.69 (5) | In1xxv—O4—Cs2xxvii | 102.24 (8) |
O3—Cs2—Asxi | 107.26 (5) |
Symmetry codes: (i) x−y, −y, −z+3/2; (ii) −x, −x+y, −z+3/2; (iii) −x+y, −x, z; (iv) −y, x−y, z; (v) y, x, −z+3/2; (vi) −x+2/3, −y−2/3, −z+4/3; (vii) y+2/3, −x+y+4/3, −z+4/3; (viii) x−y−4/3, x−2/3, −z+4/3; (ix) −x−1/3, −y−2/3, −z+4/3; (x) y+2/3, −x+y+1/3, −z+4/3; (xi) x−y−1/3, x+1/3, −z+4/3; (xii) x−1/3, x−y−2/3, z−1/6; (xiii) −y−1/3, −x+1/3, z−1/6; (xiv) −x+y+2/3, y+1/3, z−1/6; (xv) −y, x−y+1, z; (xvi) x+1, y+1, z; (xvii) x, y+1, z; (xviii) −x+y+1, −x+1, z; (xix) −x+2/3, −y+1/3, −z+4/3; (xx) x−1, y, z; (xxi) −y+1/3, −x+2/3, z+1/6; (xxii) −x−1/3, −y+1/3, −z+4/3; (xxiii) −x+2/3, −y+4/3, −z+4/3; (xxiv) x+1, y, z; (xxv) x, y−1, z; (xxvi) x−1, y−1, z; (xxvii) −y+1/3, −x−1/3, z+1/6. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H···O4xxviii | 0.83 (3) | 1.80 (3) | 2.621 (3) | 170 (4) |
Symmetry code: (xxviii) y, x−1, −z+3/2. |
Acknowledgements
The authors acknowledge the TU Wien University Library for financial support through its Open Access Funding Program.
Funding information
Funding for this research was provided by: Austrian Academy of Sciences, Doc-fForte Fellowship to K. Schwendtner.
References
Baur, W. H. (1981). Structure and Bonding in Crystals, edited by M. O'Keeffe & A. Navrotsky, pp. 31–52. New York: Academic Press.
Belam, W., Driss, A. & Jouini, T. (1997). Acta Cryst. C53, 5–7. CrossRef CAS Web of Science IUCr Journals
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Ezhova, Z. A., Deichman, E. N. & Tananaev, I. V. (1977). Zh. Neorg. Khim. 22, 2696–2703. CAS
Filaretov, A. A., Zhizhin, M. G., Komissarova, L. N., Danilov, V. P., Chernyshev, V. V. & Lazoryak, B. I. (2002a). J. Solid State Chem. 166, 362–368. CrossRef CAS
Filaretov, A. A., Zhizhin, M. G., Olenev, A. V., Gurkin, A. A., Bobylev, A. P., Lazoryak, B. I., Danilov, V. P. & Komissarova, L. N. (2002b). Zh. Neorg. Khim. 47, 1930–1946. CAS
Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578. Web of Science CrossRef IUCr Journals
Huang, Y.-X., Li, M.-R., Mi, J.-X., Mao, S.-Y., Chen, H.-H. & Zhao, J.-T. (2004). Wuji Huaxue Xuebao, 20, 1191–1196. CAS
Khorari, S., Rulmont, A. & Tarte, P. (1997). J. Solid State Chem. 134, 31–37. Web of Science CrossRef CAS
Kolitsch, U. (2004). Z. Kristallogr. New Cryst. Struct. 219, 207–208. CAS
Lesage, J., Adam, L., Guesdon, A. & Raveau, B. (2007). J. Solid State Chem. 180, 1799–1808. Web of Science CrossRef CAS
Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577–1580.
Lii, K.-H. & Ye, J. (1997). J. Solid State Chem. 131, 131–137. CrossRef CAS Web of Science
Mao, S.-Y., Li, M.-R., Mi, J.-X., Chen, H.-H., Deng, J.-F. & Zhao, J.-T. (2002). Z. Kristallogr. New Cryst. Struct. 217, 311–312. CAS
Masquelier, C., d'Yvoire, F., Bretey, E., Berthet, P. & Peytour-Chansac, C. (1994a). Solid State Ionics, 67, 183–189. CrossRef CAS Web of Science
Masquelier, C., d'Yvoire, F. & Collin, G. (1994b). Solid State Ionic Materials, Proceedings of the 4th Asian Conference on Solid State Ionics, Kuala Lumpur, Malaysia, 2–6 August 1994, edited by B. V. R. Chowdari, M. Yahaya, I. A. Talib & M. M. Salleh, pp. 167–172. Singapore: World Scientific.
Masquelier, C., d'Yvoire, F. & Collin, G. (1995). J. Solid State Chem. 118, 33–42. CrossRef CAS Web of Science
Masquelier, C., d'Yvoire, F. & Rodier, N. (1990). Acta Cryst. C46, 1584–1587. CrossRef CAS Web of Science IUCr Journals
Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. (1998). J. Solid State Chem. 135, 228–234. Web of Science CrossRef CAS
Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the 37th Power Sources Conference, Cherry Hill, New Jersey, June 17–20, 1996, pp. 188–191. Fort Monmouth, NJ: US Army Research Laboratory.
Mesa, J. L., Goñi, A., Brandl, A. L., Moreno, N. O., Barberis, G. E. & Rojo, T. (2000). J. Mater. Chem. 10, 2779–2785. Web of Science CrossRef CAS
Nonius (2003). KappaCCD Server Software and COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234. Web of Science CrossRef CAS IUCr Journals
Ouerfelli, N., Guesmi, A., Mazza, D., Madani, A., Zid, M. F. & Driss, A. (2007a). J. Solid State Chem. 180, 1224–1229. Web of Science CrossRef CAS
Ouerfelli, N., Guesmi, A., Mazza, D., Zid, M. F. & Driss, A. (2008). Acta Cryst. C64, i41–i44. Web of Science CrossRef IUCr Journals
Ouerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007b). J. Solid State Chem. 180, 2942–2949. Web of Science CrossRef CAS
Ouerfelli, N., Souilem, A., Zid, M. F. & Driss, A. (2014). Acta Cryst. E70, i21–i22. CSD CrossRef IUCr Journals
Pintard-Scrépel, M., d'Yvoire, F. & Durand, J. (1983). Acta Cryst. C39, 9–12. CrossRef IUCr Journals
Prem, M., Lengauer, C. & Tillmanns, E. (2005a). University of Vienna, Austria. ICDD Grant-in-Aid.
Prem, M., Lengauer, C. & Tillmanns, E. (2005b). University of Vienna, Austria. ICDD Grant-in-Aid.
Rousse, G., Rodríguez-Carvajal, J., Wurm, C. & Masquelier, C. (2013). Phys. Rev. B, 88, 214433214431–214433/214439. CrossRef
Schwendtner, K. (2006). J. Alloys Compd. 421, 57–63. Web of Science CrossRef CAS
Schwendtner, K. (2008). PhD thesis, Universität Wien, Austria.
Schwendtner, K. & Kolitsch, U. (2004a). Acta Cryst. C60, i79–i83. Web of Science CrossRef CAS IUCr Journals
Schwendtner, K. & Kolitsch, U. (2004b). Acta Cryst. C60, i84–i88. Web of Science CrossRef CAS IUCr Journals
Schwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90–i93. Web of Science CrossRef CAS IUCr Journals
Schwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205–215. Web of Science CrossRef IUCr Journals
Schwendtner, K. & Kolitsch, U. (2007b). Acta Cryst. C63, i17–i20. Web of Science CrossRef IUCr Journals
Schwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399–409. Web of Science CrossRef CAS
Schwendtner, K. & Kolitsch, U. (2007d). Mineral. Mag. 71, 249–263. Web of Science CrossRef CAS
Schwendtner, K. & Kolitsch, U. (2017a). Acta Cryst. C73, 600–608. Web of Science CSD CrossRef IUCr Journals
Schwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 1294–1297. CrossRef IUCr Journals
Schwendtner, K. & Kolitsch, U. (2017c). Acta Cryst. E73, 785–790. CrossRef IUCr Journals
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Vencato, I., Mattievich, E., Moreira, L. F. & Mascarenhas, Y. P. (1989). Acta Cryst. C45, 367–371. CrossRef CAS IUCr Journals
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals
Winand, J. M., Rulmont, A. & Tarte, P. (1990). J. Solid State Chem. 87, 83–94. CrossRef CAS
Yakubovich, O. V. (1993). Kristallografiya, 38, 43–48. CAS
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.