research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

MIn(HAsO4)2 (M = K, Rb, Cs): three new hydrogen­arsenates adopting two different structure types

CROSSMARK_Color_square_no_text.svg

aInstitute for Chemical Technology and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, 1060 Vienna, Austria, and bMineralogisch-Petrographische Abteilung, Naturhistorisches Museum Wien, Burgring 7, 1010 Wien, and Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, 1090 Wien, Austria
*Correspondence e-mail: karolina.schwendtner@tuwien.ac.at

Edited by T. J. Prior, University of Hull, England (Received 12 September 2017; accepted 21 September 2017; online 29 September 2017)

Potassium indium bis­[hydrogen arsenate(V)], KIn(HAsO4)2, rubidium indium bis­[hydrogen arsenate(V)], RbIn(HAsO4)2, and caesium indium bis­[hydrogen arsenate(V)], CsIn(HAsO4)2, were grown under mild hydro­thermal conditions (T = 493 K, 7–8 d). KIn(HAsO4)2 adopts the KSc(HAsO4)2 structure type (space group C2/c), while RbIn(HAsO4)2 and CsIn(HAsO4)2 crystallize in the space group R-3c and are the first arsenate representatives of the RbFe(HPO4)2 structure type. All three compounds have tetra­hedral–octa­hedral framework topologies. The M+ cations, located in voids of the respective framework, are slightly disordered in RbIn(HAsO4)2. In KIn(HAsO4)2, there is a second K-atom position with a very low occupancy, which may suggest that the K atom can easily move in the channels extending along [101].

1. Chemical context

Metal arsenates often form tetra­hedral–octa­hedral framework structures that frequently show potentially inter­esting properties, such as ion conductivity, ion exchange and catalytic properties (Masquelier et al., 1990[Masquelier, C., d'Yvoire, F. & Rodier, N. (1990). Acta Cryst. C46, 1584-1587.], 1994a[Masquelier, C., d'Yvoire, F., Bretey, E., Berthet, P. & Peytour-Chansac, C. (1994a). Solid State Ionics, 67, 183-189.],b[Masquelier, C., d'Yvoire, F. & Collin, G. (1994b). Solid State Ionic Materials, Proceedings of the 4th Asian Conference on Solid State Ionics, Kuala Lumpur, Malaysia, 2-6 August 1994, edited by B. V. R. Chowdari, M. Yahaya, I. A. Talib & M. M. Salleh, pp. 167-172. Singapore: World Scientific.], 1995[Masquelier, C., d'Yvoire, F. & Collin, G. (1995). J. Solid State Chem. 118, 33-42.], 1996[Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the 37th Power Sources Conference, Cherry Hill, New Jersey, June 17-20, 1996, pp. 188-191. Fort Monmouth, NJ: US Army Research Laboratory.], 1998[Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. (1998). J. Solid State Chem. 135, 228-234.]; Mesa et al., 2000[Mesa, J. L., Goñi, A., Brandl, A. L., Moreno, N. O., Barberis, G. E. & Rojo, T. (2000). J. Mater. Chem. 10, 2779-2785.]; Ouerfelli et al., 2007a[Ouerfelli, N., Guesmi, A., Mazza, D., Madani, A., Zid, M. F. & Driss, A. (2007a). J. Solid State Chem. 180, 1224-1229.],b[Ouerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007b). J. Solid State Chem. 180, 2942-2949.], 2008[Ouerfelli, N., Guesmi, A., Mazza, D., Zid, M. F. & Driss, A. (2008). Acta Cryst. C64, i41-i44.]; Pintard-Scrépel et al., 1983[Pintard-Scrépel, M., d'Yvoire, F. & Durand, J. (1983). Acta Cryst. C39, 9-12.]; Rousse et al., 2013[Rousse, G., Rodríguez-Carvajal, J., Wurm, C. & Masquelier, C. (2013). Phys. Rev. B, 88, 214433214431-214433/214439.]). In the course of a detailed study of the system M+M3+–As–O–(H) by hydro­thermal syntheses, a large variety of new arsenate(V) compounds and structure types were found (Kolitsch, 2004[Kolitsch, U. (2004). Z. Kristallogr. New Cryst. Struct. 219, 207-208.]; Schwendtner, 2006[Schwendtner, K. (2006). J. Alloys Compd. 421, 57-63.]; Schwendtner & Kolitsch, 2004a[Schwendtner, K. & Kolitsch, U. (2004a). Acta Cryst. C60, i79-i83.],b[Schwendtner, K. & Kolitsch, U. (2004b). Acta Cryst. C60, i84-i88.], 2005[Schwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90-i93.], 2007a[Schwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205-215.],b[Schwendtner, K. & Kolitsch, U. (2007b). Acta Cryst. C63, i17-i20.],c[Schwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399-409.],d[Schwendtner, K. & Kolitsch, U. (2007d). Mineral. Mag. 71, 249-263.], 2017a[Schwendtner, K. & Kolitsch, U. (2017a). Acta Cryst. C73, 600-608.],b[Schwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 1294-1297.],c[Schwendtner, K. & Kolitsch, U. (2017c). Acta Cryst. E73, 785-790.]).

The three new title compounds belong to the family of hydrogenarsenate compounds with the general formula M+M3+(HAsO4)2. Including the three compounds reported here, nine compounds with this general formula are known. They crystallize in four different structure types. KIn(HAsO4)2 is a further representative of the KSc(HAsO4)2 structure type (Schwendtner & Kolitsch, 2004a[Schwendtner, K. & Kolitsch, U. (2004a). Acta Cryst. C60, i79-i83.]), which is also adopted by AgGa(HAsO4)2 and AgAl(HAsO4)2 (Schwendtner & Kolitsch, 2017c[Schwendtner, K. & Kolitsch, U. (2017c). Acta Cryst. E73, 785-790.]). The (H3O)Fe(HPO4)2 structure type (Vencato et al., 1989[Vencato, I., Mattievich, E., Moreira, L. F. & Mascarenhas, Y. P. (1989). Acta Cryst. C45, 367-371.]) is adopted by CsSc(HAsO4)2 (Schwendtner & Kolitsch, 2004[Kolitsch, U. (2004). Z. Kristallogr. New Cryst. Struct. 219, 207-208.]b). Another modification of CsSc(HAsO4)2 crystallizes in the (NH4)Fe(HPO4)2 type (Yakubovich, 1993[Yakubovich, O. V. (1993). Kristallografiya, 38, 43-48.]), in which also (NH4)Fe(HAsO4)2 crystallizes (Ouerfelli et al., 2014[Ouerfelli, N., Souilem, A., Zid, M. F. & Driss, A. (2014). Acta Cryst. E70, i21-i22.]). The two new title compounds RbIn(HAsO4)2 and CsIn(HAsO4)2 adopt a structure type hitherto unknown among arsenates which is, however, known from the phosphates RbFe(HPO4)2 (Lii & Wu, 1994[Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577-1580.]) and RbM3+(HPO4)2 (M = Al, Ga) (Lesage et al., 2007[Lesage, J., Adam, L., Guesdon, A. & Raveau, B. (2007). J. Solid State Chem. 180, 1799-1808.]). All of these compounds consist of frameworks of singly protonated AsO4 tetra­hedra and M3+O6 octa­hedra. The M+ cations occupy channels that extend along one or more directions in the framework.

A number of M+–In–arsenates have been reported in the literature. Among these are several diarsenates: NaInAs2O7 (Belam et al., 1997[Belam, W., Driss, A. & Jouini, T. (1997). Acta Cryst. C53, 5-7.]), KInAs2O7 (Schwendtner & Kolitsch, 2017b[Schwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 1294-1297.]) and RbInAs2O7, TlInAs2O7 and (NH4)InAs2O7 (Schwendtner, 2006[Schwendtner, K. (2006). J. Alloys Compd. 421, 57-63.]), furthermore Na3In2(AsO4)3 (Lii & Ye, 1997[Lii, K.-H. & Ye, J. (1997). J. Solid State Chem. 131, 131-137.]; Khorari et al., 1997[Khorari, S., Rulmont, A. & Tarte, P. (1997). J. Solid State Chem. 134, 31-37.]) and KIn(H2O)(H1.5AsO4)2(H2AsO4) (Schwendtner & Kolitsch, 2007c[Schwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399-409.]). There also exist indexed X-ray powder diffraction data of Li3In2(AsO4)3 (Winand et al., 1990[Winand, J. M., Rulmont, A. & Tarte, P. (1990). J. Solid State Chem. 87, 83-94.]) and unindexed powder patterns of KIn(HAsO4)2·xH2O, RbIn(HAsO4)2·xH2O, CsIn(HAsO4)2·xH2O and CsInAs2O7 (Ezhova et al., 1977[Ezhova, Z. A., Deichman, E. N. & Tananaev, I. V. (1977). Zh. Neorg. Khim. 22, 2696-2703.]).

The hydrogenphosphates KIn(HPO4)2 and RbIn(HPO4)2 (Filaretov et al., 2002b[Filaretov, A. A., Zhizhin, M. G., Olenev, A. V., Gurkin, A. A., Bobylev, A. P., Lazoryak, B. I., Danilov, V. P. & Komissarova, L. N. (2002b). Zh. Neorg. Khim. 47, 1930-1946.]), which are the phosphate analogues of two of the title compounds, crystallize in the (NH4)In(HPO4)2 structure type (P21/c; Filaretov et al., 2002a[Filaretov, A. A., Zhizhin, M. G., Komissarova, L. N., Danilov, V. P., Chernyshev, V. V. & Lazoryak, B. I. (2002a). J. Solid State Chem. 166, 362-368.]; Mao et al., 2002[Mao, S.-Y., Li, M.-R., Mi, J.-X., Chen, H.-H., Deng, J.-F. & Zhao, J.-T. (2002). Z. Kristallogr. New Cryst. Struct. 217, 311-312.]), for which no arsenate members were known prior to the present work. CsIn(HPO4)2 (Huang et al., 2004[Huang, Y.-X., Li, M.-R., Mi, J.-X., Mao, S.-Y., Chen, H.-H. & Zhao, J.-T. (2004). Wuji Huaxue Xuebao, 20, 1191-1196.]; Lesage et al., 2007[Lesage, J., Adam, L., Guesdon, A. & Raveau, B. (2007). J. Solid State Chem. 180, 1799-1808.]) is known as two modifications, the (NH4)Fe(HPO4)2-type (P[\overline{1}]; Yakubovich, 1993[Yakubovich, O. V. (1993). Kristallografiya, 38, 43-48.]) and the (H3O)Fe(HPO4)2-type (P21/c; Vencato et al., 1989[Vencato, I., Mattievich, E., Moreira, L. F. & Mascarenhas, Y. P. (1989). Acta Cryst. C45, 367-371.]). Both structure types are common among hydrogenphosphates, with eleven and seven members, respectively, and both have one arsenate representative each, viz. α- and β-CsSc(HAsO4)2 (Schwendtner & Kolitsch, 2004[Kolitsch, U. (2004). Z. Kristallogr. New Cryst. Struct. 219, 207-208.]). The (NH4)Fe(HPO4)2-type CsIn(HPO4)2 is closely related to and basically a distorted variety of the RbFe(HPO4)2 type in which CsIn(HAsO4)2 crystallizes (see discussion in Lesage et al., 2007[Lesage, J., Adam, L., Guesdon, A. & Raveau, B. (2007). J. Solid State Chem. 180, 1799-1808.]). According to Huang et al. (2004[Huang, Y.-X., Li, M.-R., Mi, J.-X., Mao, S.-Y., Chen, H.-H. & Zhao, J.-T. (2004). Wuji Huaxue Xuebao, 20, 1191-1196.]), a second variety of RbIn(HPO4)2 exists, which is also isotypic to (H3O)Fe(HPO4)2.

2. Structural commentary

KIn(HAsO4)2 crystallizes in space group C2/c and is isotypic to KSc(HAsO4)2 (Schwendtner & Kolitsch, 2004[Kolitsch, U. (2004). Z. Kristallogr. New Cryst. Struct. 219, 207-208.]a), AgGa(HAsO4)2 and AgAl(HAsO4)2 (Schwendtner & Kolitsch, 2017c[Schwendtner, K. & Kolitsch, U. (2017c). Acta Cryst. E73, 785-790.]). The asymmetric unit contains one K, one In, one As, one H and four O atoms (Fig. 1[link]a). The slightly distorted InO6 octa­hedra share corners with six HAsO4 tetra­hedra, thus forming a three-dimensional anionic framework with narrow channels parallel to [110] and [101] (Fig. 2[link]a,b) which host the K atoms. There are two K-atom positions (K1 and K2), at a distance of 2.653 (15) Å from each other. The K1 position is located on an inversion centre and has a refined occupancy of 0.976 (2), while K2, which lies between two K1 positions, is located on a twofold axis (like the In atom) and has a refined occupancy of 0.024 (2). Both K-atom positions show a [4 + 4]-coordination with average K—O bond lengths of 2.949 and 3.016 Å for K1 and K2, respectively (Table 1[link]). This is slightly longer than the reported average K—O bond length for [8]K atoms of 2.85 Å (Baur, 1981[Baur, W. H. (1981). Structure and Bonding in Crystals, edited by M. O'Keeffe & A. Navrotsky, pp. 31-52. New York: Academic Press.]). However, bond-valence calculations after Gagné & Hawthorne (2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]) show bond-valence sums (BVSs) of 0.99 valence units (v.u.) for K1 and 0.85 v.u. for K2, indicating an `underbonded' character of K2, and explaining the difference in site occupancies.

Table 1
Selected bond lengths (Å) for KIn(HAsO4)

K1—O1i 2.6488 (17) K2—O3vii 3.20 (3)
K1—O1 2.6488 (17) K2—O2 3.33 (3)
K1—O3ii 2.7788 (17) K2—O2vi 3.33 (3)
K1—O3iii 2.7788 (17) In—O1 2.1104 (17)
K1—O4iv 3.112 (2) In—O1vi 2.1104 (17)
K1—O4v 3.112 (2) In—O3ii 2.1388 (16)
K1—O2 3.2553 (19) In—O3ix 2.1388 (16)
K1—O2i 3.2553 (19) In—O2x 2.1473 (16)
K2—O4 2.74 (4) In—O2v 2.1473 (16)
K2—O4vi 2.74 (4) As—O1 1.6574 (17)
K2—O1vii 2.792 (18) As—O3 1.6721 (17)
K2—O1viii 2.792 (18) As—O2 1.6762 (16)
K2—O3viii 3.20 (3) As—O4 1.7231 (19)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y, -z+{\script{1\over 2}}]; (iv) [x, -y+1, z-{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x, y, -z+{\script{1\over 2}}]; (vii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (viii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ix) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (x) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 1]
Figure 1
The principal building units of (a) KIn(HAsO4)2 and (b) CsIn(HAsO4)2, shown as displacement ellipsoids at the 70% probability level. Symmetry codes: KIn(HAsO4)2: (i) −x + [{1\over 2}], −y + [{1\over 2}], −z; (ii) −x, −y + 1, −z; (iii) x + [{1\over 2}], y − [{1\over 2}], z; (iv) x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (v) −x + 1, y, −z + [{1\over 2}]; (vi) x, −y + 1, z − [{1\over 2}]; (vii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (viii) −x, y, −z + [{1\over 2}]; (ix) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (x) x − [{1\over 2}], y + [{1\over 2}], z; CsIn(HAsO4)2: (ii) −x, −x + y, −z + [{3\over 2}]; (iii) −x + y, −x, z; (iv) −y, x − y, z; (vii) y + [{2\over 3}], −x + y + [{4\over 3}], −z + [{4\over 3}]; (xi) x − y[{1\over 3}], x + [{1\over 3}], −z + 4/3; (xv) −y, x − y + 1, z; (xvi) x + 1, y + 1, z; (xvii) x, y + 1, z; (xviii) −x + y+1, −x + 1, z; (xix) −x + [{2\over 3}], −y + [{1\over 3}], −z + [{4\over 3}]; (xx) x − 1, y, z.
[Figure 2]
Figure 2
The framework structure of KIn(HAsO4)2 in views parallel to (a) [101], (b) [110] and (c) [100]. The K atoms are located in channels of the framework (note that the K2 position has an occupancy of only 0.024 (2). Hydrogen bonds (dashed lines) reinforce the framework and extend roughly along c.

As expected, the protonated AsO4 tetra­hedron is strongly distorted as three vertices connect to neighbouring InO6 octa­hedra, while O4 (OH) is a terminal vertex and only involved in a medium–strong hydrogen bond (Fig. 2[link]b and 2c; Table 4[link]).

Table 4
Hydrogen-bond geometry (Å, °) for KIn(HAsO4)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H⋯O2xi 0.88 (2) 1.89 (3) 2.690 (3) 151 (4)
Symmetry code: (xi) [x, -y+1, z+{\script{1\over 2}}].

Calculated BVSs (Gagné & Hawthorne, 2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]) of the framework atoms amount to 3.06 v.u. for In, 5.07 v.u. for As and 2.11/1.83/1.96/1.20 v.u. for O1–O4, respectively. Although these sums appear slightly too high for In and As, the average In—O and As—O bond lengths fit very well to published averages: the average As—O bond length in KIn(HAsO4)2 is 1.682 Å and the As—OH bond length is 1.723 Å, very close to the average of 704 analyzed AsO4 groups in inorganic compounds [1.686 (10) Å; Schwendtner, 2008[Schwendtner, K. (2008). PhD thesis, Universität Wien, Austria.]] and the average As—OH in 45 HAsO4 groups [1.72 (3) Å; Schwendtner, 2008[Schwendtner, K. (2008). PhD thesis, Universität Wien, Austria.]], respectively. The average In—O bond length (2.132 Å) is slightly shorter than the published average of 2.141 Å for inorganic compounds (Baur, 1981[Baur, W. H. (1981). Structure and Bonding in Crystals, edited by M. O'Keeffe & A. Navrotsky, pp. 31-52. New York: Academic Press.]).

RbIn(HAsO4)2 and CsIn(HAsO4)2 crystallize in the space group R[\overline{3}]c and are isotypic to RbFe(HPO4)2 (Lii & Wu, 1994[Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577-1580.]) and RbM3+(HPO4)2 (M = Al, Ga) (Lesage et al., 2007[Lesage, J., Adam, L., Guesdon, A. & Raveau, B. (2007). J. Solid State Chem. 180, 1799-1808.]). The asymmetric unit contains two M+, two In, one As, one H and four O positions and the structure is characterized by a long c axis in the hexa­gonal setting (Fig. 3[link]). As in KIn(HAsO4)2, each InO6 octa­hedron shares six vertices with six HAsO4 tetra­hedra, resulting in an InAs6O24 group. These groups are in turn connected via three corners to other InO6 octa­hedra. The protonated apices of the HAsO4 tetra­hedra form a strong hydrogen bond (O—H⋯O = 2.62–2.63 Å) to the neighbouring InAs6O24 group. The InAs6O24 groups in RbIn(HAsO4)2 and CsIn(HAsO4)2 are arranged in layers normal to c, and the groups within these layers are inter­connected by strong hydrogen bonds extending in directions [100] and [110] (Fig. 4[link]a and 4b). The 12-coordinated Cs atoms are located in channels which extend along a and b. As in KIn(HAsO4)2, the average In—O bond lengths (2.138/2.131 and 2.139/2.133 Å for In1/In2 in the Rb and Cs compounds, respectively; Tables 2[link] and 3[link]) are slightly smaller than the literature value (2.141 Å; Baur, 1981[Baur, W. H. (1981). Structure and Bonding in Crystals, edited by M. O'Keeffe & A. Navrotsky, pp. 31-52. New York: Academic Press.]), while the average As—O bond lengths (1.683 and 1.687 Å) show good agreement with the literature value (see above). The calculated BVSs (Gagné & Hawthorne, 2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]) amount to 1.05 (Rb1), 0.65 (Rb2), 3.02 (In1), 3.07 (In2), 5.07 (As) and 1.94/1.90/1.30/1.82 v.u. (O1–O4) for RbIn(HAsO4)2, and 0.92 (Cs1), 0.80 (Cs2), 3.02 (In1), 3.05 (In2), 5.01 (As) and 1.94/1.88/1.29/1.80 v.u. (O1–O4) for CsIn(HAsO4)2. These values are reasonably close to ideal valencies, although the fairly low value for Rb2 is noteworthy; apparently the Rb2-hosting cavity is too large for the Rb atom. In fact, both Rb atoms seem to `rattle' somewhat in their cavities and are characterized by rather large anisotropic displacement ellipsoids; therefore, they were modeled by split positions involving an additional, low-occupancy Rb position (Rb1B, Rb2B) in each case. The severely underbonded O3 atom is donor of the strong hydrogen bonds (Tables 5[link] and 6[link]). As expected, the unit-cell volume of the isotypic phosphates is about 20% smaller than that of the arsenates. The stronger condensation due to the smaller stronger-bonded phosphate also leads to even stronger hydrogen bonds, with O—H⋯O distances ranging from 2.58 to 2.59 Å (Lii & Wu, 1994[Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577-1580.]; Lesage et al., 2007[Lesage, J., Adam, L., Guesdon, A. & Raveau, B. (2007). J. Solid State Chem. 180, 1799-1808.]).

Table 2
Selected bond lengths (Å) for RbIn(HAsO4)

Rb1A—O3i 3.042 (2) Rb2A—O4xi 3.668 (5)
Rb1A—O3ii 3.042 (2) Rb2A—O1xii 3.830 (3)
Rb1A—O3iii 3.042 (2) Rb2A—O1xiii 3.830 (3)
Rb1A—O3iv 3.042 (2) Rb2A—O1xiv 3.830 (3)
Rb1A—O3v 3.042 (2) In1—O2xv 2.1306 (17)
Rb1A—O3 3.042 (2) In1—O2v 2.1306 (17)
Rb1A—O2 3.3114 (19) In1—O2xvi 2.1306 (17)
Rb1A—O2iv 3.3115 (19) In1—O4xvii 2.1457 (17)
Rb1A—O2iii 3.3114 (19) In1—O4ii 2.1457 (16)
Rb1A—O2v 3.3114 (19) In1—O4xii 2.1457 (16)
Rb1A—O2i 3.3114 (18) In2—O1vii 2.1312 (19)
Rb1A—O2ii 3.3114 (18) In2—O1xviii 2.131 (2)
Rb2A—O3 3.006 (5) In2—O1ii 2.1312 (19)
Rb2A—O3ii 3.006 (5) In2—O1xii 2.131 (2)
Rb2A—O3v 3.006 (5) In2—O1xvii 2.1312 (19)
Rb2A—O1vi 3.462 (3) In2—O1xix 2.1312 (19)
Rb2A—O1vii 3.462 (3) As—O1xiii 1.6508 (18)
Rb2A—O1viii 3.462 (3) As—O2 1.6668 (17)
Rb2A—O4ix 3.668 (5) As—O4iv 1.6736 (17)
Rb2A—O4x 3.668 (5) As—O3 1.7409 (19)
Symmetry codes: (i) [x-y, -y, -z+{\script{3\over 2}}]; (ii) -y, x-y, z; (iii) [y, x, -z+{\script{3\over 2}}]; (iv) [-x, -x+y, -z+{\script{3\over 2}}]; (v) -x+y, -x, z; (vi) [-x+{\script{2\over 3}}, -y-{\script{2\over 3}}, -z+{\script{4\over 3}}]; (vii) [y+{\script{2\over 3}}, -x+y+{\script{4\over 3}}, -z+{\script{4\over 3}}]; (viii) [x-y-{\script{4\over 3}}, x-{\script{2\over 3}}, -z+{\script{4\over 3}}]; (ix) [x-{\script{1\over 3}}, x-y-{\script{2\over 3}}, z-{\script{1\over 6}}]; (x) [-y-{\script{1\over 3}}, -x+{\script{1\over 3}}, z-{\script{1\over 6}}]; (xi) [-x+y+{\script{2\over 3}}, y+{\script{1\over 3}}, z-{\script{1\over 6}}]; (xii) -x+y+1, -x+1, z; (xiii) x-1, y, z; (xiv) -y, x-y-1, z; (xv) -y, x-y+1, z; (xvi) x+1, y+1, z; (xvii) x, y+1, z; (xviii) [x-y-{\script{1\over 3}}, x+{\script{1\over 3}}, -z+{\script{4\over 3}}]; (xix) [-x+{\script{2\over 3}}, -y+{\script{1\over 3}}, -z+{\script{4\over 3}}].

Table 3
Selected bond lengths (Å) for CsIn(HAsO4)

Cs1—O3 3.280 (3) Cs2—O3xi 3.698 (3)
Cs1—O3i 3.280 (3) Cs2—O4xii 3.703 (2)
Cs1—O3ii 3.280 (3) Cs2—O4xiii 3.703 (2)
Cs1—O3iii 3.280 (3) Cs2—O4xiv 3.703 (2)
Cs1—O3iv 3.280 (3) In1—O2xv 2.127 (2)
Cs1—O3v 3.280 (3) In1—O2iii 2.127 (2)
Cs1—O2 3.434 (2) In1—O2xvi 2.127 (2)
Cs1—O2ii 3.434 (2) In1—O4xvii 2.150 (2)
Cs1—O2v 3.434 (2) In1—O4iv 2.150 (2)
Cs1—O2iii 3.434 (2) In1—O4xviii 2.150 (2)
Cs1—O2i 3.434 (2) In2—O1vii 2.133 (2)
Cs1—O2iv 3.434 (2) In2—O1xi 2.133 (3)
Cs2—O3iv 3.121 (3) In2—O1xix 2.133 (2)
Cs2—O3iii 3.121 (2) In2—O1iv 2.133 (2)
Cs2—O3 3.121 (3) In2—O1xviii 2.133 (3)
Cs2—O1vi 3.419 (3) In2—O1xvii 2.133 (2)
Cs2—O1vii 3.419 (3) As—O1xx 1.655 (2)
Cs2—O1viii 3.419 (3) As—O2 1.671 (2)
Cs2—O3ix 3.698 (3) As—O4ii 1.679 (2)
Cs2—O3x 3.698 (3) As—O3 1.743 (3)
Symmetry codes: (i) [x-y, -y, -z+{\script{3\over 2}}]; (ii) [-x, -x+y, -z+{\script{3\over 2}}]; (iii) -x+y, -x, z; (iv) -y, x-y, z; (v) [y, x, -z+{\script{3\over 2}}]; (vi) [-x+{\script{2\over 3}}, -y-{\script{2\over 3}}, -z+{\script{4\over 3}}]; (vii) [y+{\script{2\over 3}}, -x+y+{\script{4\over 3}}, -z+{\script{4\over 3}}]; (viii) [x-y-{\script{4\over 3}}, x-{\script{2\over 3}}, -z+{\script{4\over 3}}]; (ix) [-x-{\script{1\over 3}}, -y-{\script{2\over 3}}, -z+{\script{4\over 3}}]; (x) [y+{\script{2\over 3}}, -x+y+{\script{1\over 3}}, -z+{\script{4\over 3}}]; (xi) [x-y-{\script{1\over 3}}, x+{\script{1\over 3}}, -z+{\script{4\over 3}}]; (xii) [x-{\script{1\over 3}}, x-y-{\script{2\over 3}}, z-{\script{1\over 6}}]; (xiii) [-y-{\script{1\over 3}}, -x+{\script{1\over 3}}, z-{\script{1\over 6}}]; (xiv) [-x+y+{\script{2\over 3}}, y+{\script{1\over 3}}, z-{\script{1\over 6}}]; (xv) -y, x-y+1, z; (xvi) x+1, y+1, z; (xvii) x, y+1, z; (xviii) -x+y+1, -x+1, z; (xix) [-x+{\script{2\over 3}}, -y+{\script{1\over 3}}, -z+{\script{4\over 3}}]; (xx) x-1, y, z.

Table 5
Hydrogen-bond geometry (Å, °) for RbIn(HAsO4)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H⋯O4xx 0.83 (3) 1.82 (3) 2.634 (2) 168 (4)
Symmetry code: (xx) [y, x-1, -z+{\script{3\over 2}}].

Table 6
Hydrogen-bond geometry (Å, °) for CsIn(HAsO4)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H⋯O4xxi 0.83 (3) 1.80 (3) 2.621 (3) 170 (4)
Symmetry code: (xxi) [y, x-1, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
The framework structure of CsIn(HAsO4)2 in a view parallel to b. The unit cell (outlined) is characterized by a long c axis. Cs atoms occupy channels extending parallel to a and b. Hydrogen bonds are shown as dashed lines.
[Figure 4]
Figure 4
View along c of the two different layers involving the two different Cs atoms positions in the framework structure of CsIn(HAsO4)2. These layers are stacked along c (cf. Fig. 3[link]). Hydrogen bonds are shown as dashed lines.

3. Synthesis and crystallization

The compounds were grown by hydro­thermal synthesis at 493 K (7–8 d, autogeneous pressure, slow furnace cooling) using Teflon-lined stainless steel autoclaves with an approximate filling volume of 2 cm3. Reagent-grade KOH/Rb2CO3/Cs2CO3, In2O3, α-Al2O3 (only in the case of the K–In–arsenate) and H3AsO4·0.5H2O were used as starting reagents in approximate volume ratios of M+:M3+:As of 1:1:2. In the synthesis of KIn(HAsO4)2, the In2O3:α-Al2O3 ratio was 1:1. The vessels were filled with distilled water to about 70% of their inner volumes which led to final pH values of < 1 for all synthesis batches except KIn(HAsO4)2 (initial pH 4.5, final pH 3). The reaction products were washed thoroughly with distilled water, filtered and dried at room temperature. They are stable in air.

KIn(HAsO4)2 formed prismatic-bipyramidal crystals (Fig. 5[link]a) that were accompanied by cubic crystals of synthetic pharmacoalumite [KAl4(AsO4)3(OH)4·6.5H2O]. Thus, the Al and In present in the synthesis of these phases seemingly fractionate completely between the two phases KIn(HAsO4)2 and KAl4(AsO4)3(OH)4·6.5H2O. RbIn(HAsO4)2 and CsIn(HAsO4)2 formed pseudo-octa­hedral crystals and platelets with pseudohexa­gonal outline (Fig. 5[link]b and 5c, respectively). RbIn(HAsO4)2 was accompanied by crystals of RbInAs2O7 (Schwendtner, 2006[Schwendtner, K. (2006). J. Alloys Compd. 421, 57-63.]), while the X-ray powder diffraction pattern of CsIn(HAsO4)2 showed a few peaks of an unidentified impurity.

[Figure 5]
Figure 5
SEM micrographs of hydro­thermally synthesized crystals of (a) KIn(HAsO4)2, (b) RbIn(HAsO4)2 and (c) CsIn(HAsO4)2.

Measured X-ray powder diffraction diagrams of RbIn(HAsO4)2 and CsIn(HAsO4)2 were deposited at the Inter­national Centre for Diffraction Data under PDF number 56–1371 (Prem et al., 2005a[Prem, M., Lengauer, C. & Tillmanns, E. (2005a). University of Vienna, Austria. ICDD Grant-in-Aid.]) for RbIn(HAsO4)2 and 56–1372 (Prem et al., 2005b[Prem, M., Lengauer, C. & Tillmanns, E. (2005b). University of Vienna, Austria. ICDD Grant-in-Aid.]) for CsIn(HAsO4)2.

The chemical composition of the title compounds was checked by standard SEM–EDX analysis of several crystals of each compound; no impurities could be detected.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link].

Table 7
Experimental details

  KIn(HAsO4)2 RbIn(HAsO4)2 CsIn(HAsO4)2
Crystal data
Mr 433.78 480.15 527.59
Crystal system, space group Monoclinic, C2/c Trigonal, R[\overline{3}]c:H Trigonal, R[\overline{3}]c:H
Temperature (K) 293 293 293
a, b, c (Å) 8.340 (2), 10.657 (2), 9.197 (2) 8.512 (1), 8.512 (1), 56.434 (11) 8.629 (1), 8.629 (1), 56.986 (11)
α, β, γ (°) 90, 109.37 (3), 90 90, 90, 120 90, 90, 120
V3) 771.2 (3) 3541.1 (11) 3674.7 (11)
Z 4 18 18
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 12.13 17.50 15.34
Crystal size (mm) 0.19 × 0.02 × 0.02 0.05 × 0.05 × 0.02 0.06 × 0.06 × 0.04
 
Data collection
Diffractometer Nonius KappaCCD single-crystal four-circle Nonius KappaCCD single-crystal four-circle Nonius KappaCCD single-crystal four-circle
Absorption correction Multi-scan (SCALEPACK; Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]) Multi-scan (SCALEPACK; Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]) Multi-scan (SCALEPACK; Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.])
Tmin, Tmax 0.207, 0.794 0.475, 0.779 0.460, 0.579
No. of measured, independent and observed [I > 2σ(I)] reflections 2743, 1406, 1295 5262, 1443, 1255 4350, 1199, 1039
Rint 0.015 0.024 0.019
(sin θ/λ)max−1) 0.758 0.757 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.046, 1.09 0.018, 0.041, 1.12 0.022, 0.052, 1.07
No. of reflections 1406 1443 1199
No. of parameters 64 69 61
No. of restraints 1 3 1
H-atom treatment All H-atom parameters refined All H-atom parameters refined All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 1.18, −1.00 1.00, −0.86 2.09, −0.86
Computer programs: COLLECT (Nonius, 2003[Nonius (2003). KappaCCD Server Software and COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO and SCALEPACK (Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

For all three refinements, the atomic coordinates of the first description of the respective structure types [KSc(HAsO4)2 (Schwendtner & Kolitsch, 2004a[Schwendtner, K. & Kolitsch, U. (2004a). Acta Cryst. C60, i79-i83.]) and RbFe(HPO4)2 (Lii & Wu, 1994[Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577-1580.])] were used as initial parameters for better comparison. Hydrogen atoms and additional disordered positions were then located from difference-Fourier maps and added to the respective models.

The two K-atom positions in KIn(HAsO4)2 were restrained to give a total occupancy of one. Freely refined occupancies were 0.989 (4) (K1) and 0.029 (4) (K2), i.e. very close to the ideal bulk occupancy of 1.00. Also the anisotropic displacement parameters were restrained to the same values. The O—H bond lengths were restrained to 0.90 (4) (K compound) and 0.90 (2) Å (Rb and Cs compounds). Residual electron-density peaks of 1.02 and 1.03 e Å−3 were encountered close to the Rb1 and Rb2 positions. It seems that the Rb atoms, similarly to what was found for isotypic RbAl(HPO4)2 (Lesage et al., 2007[Lesage, J., Adam, L., Guesdon, A. & Raveau, B. (2007). J. Solid State Chem. 180, 1799-1808.]), have irregular atomic displacement parameters; therefore, two further, low-occupancy Rb positions, Rb1B and Rb2B, were included in the refinement to model this positional disorder. The occupancies were accordingly restrained to give a total occupancy of 1.00 for Rb1 and Rb2 [Rb1a = 0.949 (3), 3 × Rb1b = 0.0170 (9), Rb2a = 0.567 (3), 3 × Rb2b = 0.1442 (9)]. The refined Rb1A—R1B, Rb1B—R1B′, Rb2A—R2B′ and Rb2B—Rb2B distances are 0.44 (3), 0.76 (5), 0.249 (8) and 0.423 (14) Å, respectively. The anisotropic displacement parameters of Rb1a and Rb1b, as well as Rb2a and Rb2b, were restrained to give the same value.

The highest residual electron densities are 2.03 e Å−3 in CsIn(HAsO4)2. They are located about 1.65 Å from As at the same z coordinate value. At first, it seemed sensible that this position is a `flipped' As position centring an alternative location of the AsO4 tetra­hedron. An unrestrained refinement of this position led to occupancy factors of 0.984 (2) for As and 0.015 (2) for the second position and R1 decreased from 2.17 to 1.99%. However, the isotropic displacement parameter of the second position refined to zero, which suggested that this position may be an artifact. The position can be generated by a mirror plane in (110) (Fig. 6[link]). Since application of appropriate twin matrices to the original model did not improve the refinement and since O ligands for this second possible As position could not be detected, the position was omitted from the model.

[Figure 6]
Figure 6
Possible second As position (AsB) in CsIn(HAsO4)2, which could explain the residual electron densities. The AsB position can roughly be generated by a mirror plane in (110). See text for discussion.

The highest residual electron densities of RbIn(HAsO4)2 are at or below 1 e Å−3 and 1.43 Å from atom O4. The highest residual electron densities of KIn(HAsO4)2 are 1.18 e Å−3 and close to the As position.

Supporting information


Computing details top

For all structures, data collection: COLLECT (Nonius, 2003); cell refinement: SCALEPACK (Otwinowski et al., 2003); data reduction: DENZO and SCALEPACK (Otwinowski et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

Potassium indium bis[hydrogen arsenate(V)] (KInHAsO42) top
Crystal data top
KIn(HAsO4)2F(000) = 800
Mr = 433.78Dx = 3.736 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 8.340 (2) ÅCell parameters from 1474 reflections
b = 10.657 (2) Åθ = 3.4–32.6°
c = 9.197 (2) ŵ = 12.13 mm1
β = 109.37 (3)°T = 293 K
V = 771.2 (3) Å3Small prisms, colourless
Z = 40.19 × 0.02 × 0.02 mm
Data collection top
Nonius KappaCCD single-crystal four-circle
diffractometer
1295 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
φ and ω scansθmax = 32.6°, θmin = 3.4°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski et al., 2003)
h = 1212
Tmin = 0.207, Tmax = 0.794k = 1616
2743 measured reflectionsl = 1313
1406 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019All H-atom parameters refined
wR(F2) = 0.046 w = 1/[σ2(Fo2) + (0.0227P)2 + 1.2908P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
1406 reflectionsΔρmax = 1.18 e Å3
64 parametersΔρmin = 1.00 e Å3
1 restraintExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00181 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
K10.2500000.2500000.0000000.0437 (3)0.976 (2)
K20.0000000.678 (5)0.2500000.0437 (3)0.024 (2)
In0.0000000.13427 (2)0.2500000.00852 (7)
As0.27607 (3)0.39725 (2)0.36013 (2)0.00952 (7)
O10.1914 (2)0.26806 (16)0.26523 (19)0.0186 (3)
O20.3114 (2)0.49181 (17)0.22827 (18)0.0177 (3)
O30.4522 (2)0.36289 (15)0.50672 (18)0.0139 (3)
O40.1329 (2)0.4729 (2)0.4285 (2)0.0254 (4)
H0.159 (6)0.473 (5)0.529 (2)0.076 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0550 (7)0.0588 (7)0.0301 (5)0.0355 (6)0.0312 (5)0.0195 (5)
K20.0550 (7)0.0588 (7)0.0301 (5)0.0355 (6)0.0312 (5)0.0195 (5)
In0.00910 (10)0.00802 (11)0.00799 (10)0.0000.00224 (7)0.000
As0.01099 (11)0.00995 (12)0.00731 (10)0.00206 (7)0.00262 (8)0.00008 (7)
O10.0243 (9)0.0157 (8)0.0181 (8)0.0108 (7)0.0103 (7)0.0055 (6)
O20.0199 (8)0.0178 (8)0.0114 (7)0.0096 (6)0.0003 (6)0.0062 (6)
O30.0138 (7)0.0176 (8)0.0087 (7)0.0024 (6)0.0015 (6)0.0005 (5)
O40.0192 (9)0.0402 (12)0.0152 (8)0.0122 (8)0.0035 (7)0.0053 (8)
Geometric parameters (Å, º) top
K1—O1i2.6488 (17)K2—O3ix3.20 (3)
K1—O12.6488 (17)K2—O23.33 (3)
K1—K2ii2.653 (15)K2—O2viii3.33 (3)
K1—K2iii2.653 (15)K2—Asix3.35 (4)
K1—O3iv2.7788 (17)K2—Asx3.35 (4)
K1—O3v2.7788 (17)In—O12.1104 (17)
K1—O4vi3.112 (2)In—O1viii2.1104 (17)
K1—O4vii3.112 (2)In—O3iv2.1388 (16)
K1—O23.2553 (19)In—O3xi2.1388 (16)
K1—O2i3.2553 (19)In—O2xii2.1473 (16)
K1—As3.6059 (7)In—O2vii2.1473 (16)
K1—Asi3.6059 (7)As—O11.6574 (17)
K2—O42.74 (4)As—O31.6721 (17)
K2—O4viii2.74 (4)As—O21.6762 (16)
K2—O1ix2.792 (18)As—O41.7231 (19)
K2—O1x2.792 (18)O4—H0.876 (19)
K2—O3x3.20 (3)
O1i—K1—O1180.0K1ix—K2—Asix72.8 (8)
O1i—K1—K2ii63.6 (3)K1x—K2—Asix83.9 (10)
O1—K1—K2ii116.4 (3)O4—K2—Asix125.63 (13)
O1i—K1—K2iii116.4 (3)O4viii—K2—Asix122.06 (11)
O1—K1—K2iii63.6 (3)O1ix—K2—Asix29.6 (4)
K2ii—K1—K2iii180 (2)O1x—K2—Asix113.1 (16)
O1i—K1—O3iv115.35 (5)O3x—K2—Asix90.8 (12)
O1—K1—O3iv64.65 (5)O3ix—K2—Asix29.5 (3)
K2ii—K1—O3iv72.1 (6)O2—K2—Asix82.73 (9)
K2iii—K1—O3iv107.9 (6)O2viii—K2—Asix163.5 (6)
O1i—K1—O3v64.65 (5)K1ix—K2—Asx83.9 (10)
O1—K1—O3v115.35 (5)K1x—K2—Asx72.8 (8)
K2ii—K1—O3v107.9 (6)O4—K2—Asx122.06 (11)
K2iii—K1—O3v72.1 (6)O4viii—K2—Asx125.63 (13)
O3iv—K1—O3v180.00 (6)O1ix—K2—Asx113.1 (16)
O1i—K1—O4vi90.87 (5)O1x—K2—Asx29.6 (4)
O1—K1—O4vi89.13 (5)O3x—K2—Asx29.5 (3)
K2ii—K1—O4vi56.1 (11)O3ix—K2—Asx90.8 (12)
K2iii—K1—O4vi123.9 (11)O2—K2—Asx163.5 (6)
O3iv—K1—O4vi101.27 (5)O2viii—K2—Asx82.73 (9)
O3v—K1—O4vi78.73 (5)Asix—K2—Asx91.7 (13)
O1i—K1—O4vii89.13 (5)O1—In—O1viii94.99 (10)
O1—K1—O4vii90.87 (5)O1—In—O3iv86.23 (7)
K2ii—K1—O4vii123.9 (11)O1viii—In—O3iv92.67 (7)
K2iii—K1—O4vii56.1 (11)O1—In—O3xi92.67 (7)
O3iv—K1—O4vii78.73 (5)O1viii—In—O3xi86.23 (7)
O3v—K1—O4vii101.27 (5)O3iv—In—O3xi178.38 (9)
O4vi—K1—O4vii180.0O1—In—O2xii177.02 (7)
O1i—K1—O2127.87 (5)O1viii—In—O2xii87.52 (7)
O1—K1—O252.13 (5)O3iv—In—O2xii92.07 (6)
K2ii—K1—O2104.0 (10)O3xi—In—O2xii89.08 (7)
K2iii—K1—O276.0 (10)O1—In—O2vii87.52 (7)
O3iv—K1—O2106.19 (5)O1viii—In—O2vii177.02 (7)
O3v—K1—O273.81 (5)O3iv—In—O2vii89.08 (7)
O4vi—K1—O249.92 (5)O3xi—In—O2vii92.07 (6)
O4vii—K1—O2130.08 (5)O2xii—In—O2vii90.01 (10)
O1i—K1—O2i52.13 (5)O1—In—K1viii107.25 (5)
O1—K1—O2i127.87 (5)O1viii—In—K1viii42.55 (5)
K2ii—K1—O2i76.0 (10)O3iv—In—K1viii132.97 (5)
K2iii—K1—O2i104.0 (10)O3xi—In—K1viii46.31 (5)
O3iv—K1—O2i73.80 (5)O2xii—In—K1viii75.69 (5)
O3v—K1—O2i106.20 (5)O2vii—In—K1viii135.06 (5)
O4vi—K1—O2i130.08 (5)O1—In—K142.55 (5)
O4vii—K1—O2i49.92 (5)O1viii—In—K1107.25 (5)
O2—K1—O2i180.0O3iv—In—K146.31 (5)
O1i—K1—As154.71 (4)O3xi—In—K1132.97 (5)
O1—K1—As25.29 (4)O2xii—In—K1135.06 (5)
K2ii—K1—As117.5 (7)O2vii—In—K175.69 (5)
K2iii—K1—As62.5 (7)K1viii—In—K1141.977 (12)
O3iv—K1—As87.14 (4)O1—In—K2iii36.3 (7)
O3v—K1—As92.86 (4)O1viii—In—K2iii130.9 (7)
O4vi—K1—As72.55 (4)O3iv—In—K2iii80.73 (5)
O4vii—K1—As107.45 (4)O3xi—In—K2iii99.09 (6)
O2—K1—As27.68 (3)O2xii—In—K2iii140.9 (7)
O2i—K1—As152.32 (3)O2vii—In—K2iii51.8 (7)
O1i—K1—Asi25.29 (4)K1viii—In—K2iii135.3 (4)
O1—K1—Asi154.71 (4)K1—In—K2iii38.4 (3)
K2ii—K1—Asi62.5 (7)O1—In—K2xii130.9 (7)
K2iii—K1—Asi117.5 (7)O1viii—In—K2xii36.3 (7)
O3iv—K1—Asi92.86 (4)O3iv—In—K2xii99.09 (6)
O3v—K1—Asi87.14 (4)O3xi—In—K2xii80.73 (5)
O4vi—K1—Asi107.45 (4)O2xii—In—K2xii51.8 (7)
O4vii—K1—Asi72.55 (4)O2vii—In—K2xii140.9 (7)
O2—K1—Asi152.32 (3)K1viii—In—K2xii38.4 (3)
O2i—K1—Asi27.68 (3)K1—In—K2xii135.3 (4)
As—K1—Asi180.0K2iii—In—K2xii167.1 (14)
K1ix—K2—K1x147 (2)O1—As—O3110.45 (9)
K1ix—K2—O470.4 (4)O1—As—O2105.35 (8)
K1x—K2—O4142.6 (17)O3—As—O2113.38 (8)
K1ix—K2—O4viii142.6 (17)O1—As—O4110.80 (10)
K1x—K2—O4viii70.4 (4)O3—As—O4109.76 (8)
O4—K2—O4viii73.9 (13)O2—As—O4106.99 (10)
K1ix—K2—O1ix58.2 (4)O1—As—K2iii56.3 (5)
K1x—K2—O1ix109.3 (10)O3—As—K2iii70.26 (6)
O4—K2—O1ix96.2 (5)O2—As—K2iii87.2 (6)
O4viii—K2—O1ix116.1 (8)O4—As—K2iii163.7 (7)
K1ix—K2—O1x109.3 (10)O1—As—K143.06 (6)
K1x—K2—O1x58.2 (4)O3—As—K1114.49 (6)
O4—K2—O1x116.1 (8)O2—As—K164.44 (6)
O4viii—K2—O1x96.2 (5)O4—As—K1134.49 (6)
O1ix—K2—O1x140 (2)K2iii—As—K144.66 (8)
K1ix—K2—O3x55.8 (6)O1—As—K2114.2 (5)
K1x—K2—O3x102.0 (12)O3—As—K2134.2 (4)
O4—K2—O3x100.01 (14)O2—As—K263.8 (2)
O4viii—K2—O3x144.0 (5)O4—As—K243.88 (15)
O1ix—K2—O3x99.8 (12)K2iii—As—K2146.9 (3)
O1x—K2—O3x53.8 (5)K1—As—K2104.94 (19)
K1ix—K2—O3ix102.0 (12)As—O1—In140.97 (10)
K1x—K2—O3ix55.8 (6)As—O1—K1111.65 (8)
O4—K2—O3ix144.0 (5)In—O1—K1104.85 (7)
O4viii—K2—O3ix100.01 (14)As—O1—K2iii94.1 (9)
O1ix—K2—O3ix53.8 (5)In—O1—K2iii117.1 (10)
O1x—K2—O3ix99.8 (12)K1—O1—K2iii58.29 (14)
O3x—K2—O3ix104.1 (15)As—O2—Inxiii131.05 (9)
K1ix—K2—O279.6 (4)As—O2—K187.88 (7)
K1x—K2—O2121.6 (6)Inxiii—O2—K1124.98 (7)
O4—K2—O252.4 (7)As—O2—K289.3 (6)
O4viii—K2—O269.8 (10)Inxiii—O2—K297.7 (7)
O1ix—K2—O256.7 (3)K1—O2—K2123.5 (5)
O1x—K2—O2163.3 (17)As—O3—Inxi130.50 (9)
O3x—K2—O2134.62 (5)As—O3—K1v129.02 (8)
O3ix—K2—O291.84 (5)Inxi—O3—K1v99.88 (6)
K1ix—K2—O2viii121.6 (6)As—O3—K2iii80.2 (3)
K1x—K2—O2viii79.6 (4)Inxi—O3—K2iii139.1 (7)
O4—K2—O2viii69.8 (10)K1v—O3—K2iii52.13 (8)
O4viii—K2—O2viii52.4 (7)As—O4—K2110.3 (2)
O1ix—K2—O2viii163.3 (17)As—O4—K1ix108.30 (10)
O1x—K2—O2viii56.7 (3)K2—O4—K1ix53.4 (7)
O3x—K2—O2viii91.84 (5)As—O4—H115 (3)
O3ix—K2—O2viii134.62 (5)K2—O4—H123 (3)
O2—K2—O2viii106.6 (15)K1ix—O4—H80 (3)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1, z; (iii) x+1/2, y1/2, z; (iv) x1/2, y+1/2, z1/2; (v) x+1, y, z+1/2; (vi) x, y+1, z1/2; (vii) x+1/2, y1/2, z+1/2; (viii) x, y, z+1/2; (ix) x+1/2, y+1/2, z+1/2; (x) x1/2, y+1/2, z; (xi) x+1/2, y+1/2, z+1; (xii) x1/2, y1/2, z; (xiii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H···O2xiv0.88 (2)1.89 (3)2.690 (3)151 (4)
Symmetry code: (xiv) x, y+1, z+1/2.
Rubidium indium bis[hydrogen arsenate(V)] (RbInHAsO42) top
Crystal data top
RbIn(HAsO4)2Dx = 4.053 Mg m3
Mr = 480.15Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3c:HCell parameters from 2882 reflections
a = 8.512 (1) Åθ = 2.9–32.6°
c = 56.434 (11) ŵ = 17.50 mm1
V = 3541.1 (11) Å3T = 293 K
Z = 18Small hexagonal platelets, colourless
F(000) = 39240.05 × 0.05 × 0.02 mm
Data collection top
Nonius KappaCCD single-crystal four-circle
diffractometer
1255 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
φ and ω scansθmax = 32.6°, θmin = 2.9°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski et al., 2003)
h = 1212
Tmin = 0.475, Tmax = 0.779k = 1010
5262 measured reflectionsl = 8585
1443 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018All H-atom parameters refined
wR(F2) = 0.041 w = 1/[σ2(Fo2) + (0.014P)2 + 16.3085P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.006
1443 reflectionsΔρmax = 1.00 e Å3
69 parametersΔρmin = 0.86 e Å3
3 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.000313 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rb1A0.0000000.0000000.7500000.0236 (2)0.949 (3)
Rb1B0.0000000.051 (4)0.7500000.0236 (2)0.0170 (9)
Rb2A0.0000000.0000000.66882 (10)0.0423 (6)0.567 (3)
Rb2B0.0304 (11)0.0266 (11)0.66795 (15)0.0423 (6)0.1442 (9)
In10.3333330.6666670.75297 (2)0.01028 (7)
In20.3333330.6666670.6666670.01217 (8)
As0.39741 (3)0.36940 (3)0.71279 (2)0.01097 (7)
O10.5235 (3)0.3776 (3)0.68584 (3)0.0298 (5)
O20.4271 (2)0.2389 (2)0.73221 (3)0.0171 (3)
O30.1635 (2)0.2654 (3)0.70899 (3)0.0201 (4)
O40.4679 (2)0.1119 (2)0.77738 (3)0.0155 (3)
H0.131 (6)0.339 (5)0.7128 (7)0.051 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb1A0.0267 (3)0.0267 (3)0.0175 (3)0.01335 (15)0.0000.000
Rb1B0.0267 (3)0.0267 (3)0.0175 (3)0.01335 (15)0.0000.000
Rb2A0.0509 (8)0.0509 (8)0.0250 (4)0.0254 (4)0.0000.000
Rb2B0.0509 (8)0.0509 (8)0.0250 (4)0.0254 (4)0.0000.000
In10.01052 (8)0.01052 (8)0.00981 (12)0.00526 (4)0.0000.000
In20.01472 (11)0.01472 (11)0.00707 (16)0.00736 (6)0.0000.000
As0.01290 (11)0.01207 (11)0.01030 (10)0.00802 (9)0.00056 (8)0.00086 (8)
O10.0399 (12)0.0513 (14)0.0129 (8)0.0337 (12)0.0062 (8)0.0002 (8)
O20.0170 (8)0.0122 (8)0.0203 (8)0.0060 (7)0.0076 (7)0.0012 (6)
O30.0145 (8)0.0163 (9)0.0308 (10)0.0087 (7)0.0061 (7)0.0072 (7)
O40.0137 (8)0.0133 (8)0.0217 (8)0.0084 (6)0.0038 (6)0.0056 (6)
Geometric parameters (Å, º) top
Rb1A—Rb1Bi0.44 (3)Rb2A—O1vi3.462 (3)
Rb1A—Rb1Bii0.44 (3)Rb2A—O1vii3.462 (3)
Rb1A—O3iii3.042 (2)Rb2A—O1viii3.462 (3)
Rb1A—O3i3.042 (2)Rb2A—O4ix3.668 (5)
Rb1A—O3iv3.042 (2)Rb2A—O4x3.668 (5)
Rb1A—O3v3.042 (2)Rb2A—O4xi3.668 (5)
Rb1A—O3ii3.042 (2)Rb2A—O1xii3.830 (3)
Rb1A—O33.042 (2)Rb2A—O1xiii3.830 (3)
Rb1A—O23.3114 (19)Rb2A—O1xiv3.830 (3)
Rb1A—O2v3.3115 (19)Rb2A—O3xv3.888 (4)
Rb1A—O2iv3.3114 (19)Rb2B—Rb2Bi0.423 (14)
Rb1A—O2ii3.3114 (19)Rb2B—Rb2Bii0.423 (14)
Rb1A—O2iii3.3114 (18)Rb2B—O32.911 (9)
Rb1A—O2i3.3114 (18)Rb2B—O3ii3.056 (9)
Rb1A—Asiii3.8862 (5)Rb2B—O3i3.185 (8)
Rb1A—H3.28 (4)Rb2B—O1viii3.259 (8)
Rb1A—Hi3.28 (4)Rb2B—O1vi3.436 (9)
Rb1A—Hii3.28 (4)Rb2B—O4x3.525 (8)
Rb1A—Hiv3.28 (4)Rb2B—O1xiii3.608 (9)
Rb1A—Hiii3.28 (4)Rb2B—Asxvi3.781 (8)
Rb1A—Hv3.28 (4)Rb2B—Asxv3.869 (8)
Rb1B—Rb1Bi0.76 (6)Rb2B—As3.945 (9)
Rb1B—Rb1Bii0.76 (5)In1—O2xvii2.1306 (17)
Rb1B—O3v2.842 (12)In1—O2ii2.1306 (17)
Rb1B—O32.842 (12)In1—O2xviii2.1306 (17)
Rb1B—O2iv2.98 (2)In1—O4xix2.1457 (17)
Rb1B—O2i2.98 (2)In1—O4i2.1457 (16)
Rb1B—O3iv3.035 (3)In1—O4xii2.1457 (16)
Rb1B—O3i3.035 (3)In2—O1vii2.1312 (19)
Rb1B—O23.312 (3)In2—O1xvi2.131 (2)
Rb1B—O2v3.312 (3)In2—O1i2.1312 (19)
Rb1B—O3iii3.32 (2)In2—O1xii2.131 (2)
Rb1B—O3ii3.32 (2)In2—O1xix2.1312 (19)
Rb1B—H2.99 (4)In2—O1xx2.1312 (19)
Rb1B—Hv2.99 (4)As—O1xiii1.6508 (18)
Rb2A—Rb2Bii0.249 (8)As—O21.6668 (17)
Rb2A—Rb2Bi0.249 (8)As—O4v1.6736 (17)
Rb2A—O33.006 (5)As—O31.7409 (19)
Rb2A—O3i3.006 (5)O3—H0.83 (3)
Rb2A—O3ii3.006 (5)
Rb1Bi—Rb1A—Rb1Bii120.00 (12)O3—Rb2A—O1xiv76.69 (8)
Rb1Bi—Rb1A—O3iii59.08 (4)O3i—Rb2A—O1xiv44.11 (5)
Rb1Bii—Rb1A—O3iii85.05 (9)O3ii—Rb2A—O1xiv112.37 (15)
Rb1Bi—Rb1A—O3i59.08 (4)O1vi—Rb2A—O1xiv45.46 (6)
Rb1Bii—Rb1A—O3i126.88 (5)O1vii—Rb2A—O1xiv95.29 (5)
O3iii—Rb1A—O3i118.16 (8)O1viii—Rb2A—O1xiv150.55 (6)
Rb1Bi—Rb1A—O3iv126.88 (4)O4ix—Rb2A—O1xiv78.40 (6)
Rb1Bii—Rb1A—O3iv59.08 (7)O4x—Rb2A—O1xiv120.81 (10)
O3iii—Rb1A—O3iv68.39 (6)O4xi—Rb2A—O1xiv111.19 (9)
O3i—Rb1A—O3iv170.10 (7)O1xii—Rb2A—O1xiv113.93 (7)
Rb1Bi—Rb1A—O3v85.05 (4)O1xiii—Rb2A—O1xiv113.93 (7)
Rb1Bii—Rb1A—O3v126.88 (5)Rb2Bii—Rb2A—O3xv126 (3)
O3iii—Rb1A—O3v68.39 (6)Rb2Bi—Rb2A—O3xv74 (3)
O3i—Rb1A—O3v106.24 (7)O3—Rb2A—O3xv89.86 (5)
O3iv—Rb1A—O3v68.39 (6)O3i—Rb2A—O3xv129.48 (6)
Rb1Bi—Rb1A—O3ii85.05 (4)O3ii—Rb2A—O3xv145.79 (7)
Rb1Bii—Rb1A—O3ii59.08 (7)O1vi—Rb2A—O3xv42.24 (6)
O3iii—Rb1A—O3ii106.24 (7)O1vii—Rb2A—O3xv117.63 (15)
O3i—Rb1A—O3ii68.39 (6)O1viii—Rb2A—O3xv66.65 (8)
O3iv—Rb1A—O3ii118.16 (7)O4ix—Rb2A—O3xv42.47 (6)
O3v—Rb1A—O3ii170.10 (8)O4x—Rb2A—O3xv40.66 (6)
Rb1Bi—Rb1A—O3126.88 (4)O4xi—Rb2A—O3xv76.43 (11)
Rb1Bii—Rb1A—O385.05 (9)O1xii—Rb2A—O3xv151.71 (14)
O3iii—Rb1A—O3170.10 (7)O1xiii—Rb2A—O3xv69.64 (5)
O3i—Rb1A—O368.38 (6)O1xiv—Rb2A—O3xv87.30 (5)
O3iv—Rb1A—O3106.24 (7)Rb2Bi—Rb2B—Rb2Bii60.00 (6)
O3v—Rb1A—O3118.16 (7)Rb2Bi—Rb2B—O3106.1 (12)
O3ii—Rb1A—O368.38 (6)Rb2Bii—Rb2B—O3127.22 (14)
Rb1Bi—Rb1A—O2148.87 (3)Rb2Bi—Rb2B—O3ii104.1 (12)
Rb1Bii—Rb1A—O237.75 (11)Rb2Bii—Rb2B—O3ii66.3 (12)
O3iii—Rb1A—O2120.30 (5)O3—Rb2B—O3ii69.9 (2)
O3i—Rb1A—O2112.03 (5)Rb2Bi—Rb2B—O3i46.66 (16)
O3iv—Rb1A—O267.27 (5)Rb2Bii—Rb2B—O3i68.5 (12)
O3v—Rb1A—O2125.02 (5)O3—Rb2B—O3i68.05 (19)
O3ii—Rb1A—O264.77 (5)O3ii—Rb2B—O3i66.39 (17)
O3—Rb1A—O250.13 (4)Rb2Bi—Rb2B—O1viii158.2 (7)
Rb1Bi—Rb1A—O2v37.75 (3)Rb2Bii—Rb2B—O1viii111 (2)
Rb1Bii—Rb1A—O2v148.87 (10)O3—Rb2B—O1viii94.9 (2)
O3iii—Rb1A—O2v64.77 (5)O3ii—Rb2B—O1viii88.5 (2)
O3i—Rb1A—O2v67.27 (5)O3i—Rb2B—O1viii153.0 (3)
O3iv—Rb1A—O2v112.03 (5)Rb2Bi—Rb2B—O1vi62.0 (19)
O3v—Rb1A—O2v50.13 (5)Rb2Bii—Rb2B—O1vi118.2 (19)
O3ii—Rb1A—O2v120.30 (5)O3—Rb2B—O1vi87.5 (2)
O3—Rb1A—O2v125.02 (5)O3ii—Rb2B—O1vi149.7 (3)
O2—Rb1A—O2v172.51 (6)O3i—Rb2B—O1vi86.8 (2)
Rb1Bi—Rb1A—O2iv148.87 (3)O1viii—Rb2B—O1vi114.2 (2)
Rb1Bii—Rb1A—O2iv86.26 (12)Rb2Bi—Rb2B—O4x113.2 (3)
O3iii—Rb1A—O2iv112.03 (5)Rb2Bii—Rb2B—O4x105.2 (7)
O3i—Rb1A—O2iv120.30 (5)O3—Rb2B—O4x125.4 (3)
O3iv—Rb1A—O2iv50.13 (4)O3ii—Rb2B—O4x130.1 (3)
O3v—Rb1A—O2iv64.77 (5)O3i—Rb2B—O4x159.7 (3)
O3ii—Rb1A—O2iv125.02 (5)O1viii—Rb2B—O4x47.08 (11)
O3—Rb1A—O2iv67.27 (5)O1vi—Rb2B—O4x79.33 (17)
O2—Rb1A—O2iv62.27 (6)Rb2Bi—Rb2B—O1xiii150.5 (18)
O2v—Rb1A—O2iv111.23 (3)Rb2Bii—Rb2B—O1xiii141.8 (19)
Rb1Bi—Rb1A—O2ii37.75 (3)O3—Rb2B—O1xiii47.02 (14)
Rb1Bii—Rb1A—O2ii86.26 (12)O3ii—Rb2B—O1xiii79.7 (2)
O3iii—Rb1A—O2ii67.27 (5)O3i—Rb2B—O1xiii113.9 (3)
O3i—Rb1A—O2ii64.77 (5)O1viii—Rb2B—O1xiii48.49 (13)
O3iv—Rb1A—O2ii125.02 (5)O1vi—Rb2B—O1xiii99.9 (2)
O3v—Rb1A—O2ii120.30 (5)O4x—Rb2B—O1xiii83.29 (17)
O3ii—Rb1A—O2ii50.13 (5)Rb2Bi—Rb2B—Asxvi132.4 (6)
O3—Rb1A—O2ii112.03 (5)Rb2Bii—Rb2B—Asxvi98.8 (15)
O2—Rb1A—O2ii111.23 (3)O3—Rb2B—Asxvi119.4 (2)
O2v—Rb1A—O2ii75.50 (6)O3ii—Rb2B—Asxvi104.1 (2)
O2iv—Rb1A—O2ii172.51 (6)O3i—Rb2B—Asxvi166.2 (3)
Rb1Bi—Rb1A—O2iii86.26 (3)O1viii—Rb2B—Asxvi25.78 (7)
Rb1Bii—Rb1A—O2iii37.75 (11)O1vi—Rb2B—Asxvi104.6 (2)
O3iii—Rb1A—O2iii50.13 (4)O4x—Rb2B—Asxvi26.18 (6)
O3i—Rb1A—O2iii125.02 (5)O1xiii—Rb2B—Asxvi72.35 (15)
O3iv—Rb1A—O2iii64.77 (5)Rb2Bi—Rb2B—Asxv75.0 (15)
O3v—Rb1A—O2iii112.03 (5)Rb2Bii—Rb2B—Asxv117.0 (13)
O3ii—Rb1A—O2iii67.27 (5)O3—Rb2B—Asxv105.0 (2)
O3—Rb1A—O2iii120.30 (5)O3ii—Rb2B—Asxv174.4 (3)
O2—Rb1A—O2iii75.50 (6)O3i—Rb2B—Asxv110.1 (2)
O2v—Rb1A—O2iii111.23 (3)O1viii—Rb2B—Asxv94.17 (18)
O2iv—Rb1A—O2iii111.23 (3)O1vi—Rb2B—Asxv25.24 (7)
O2ii—Rb1A—O2iii62.27 (6)O4x—Rb2B—Asxv54.35 (12)
Rb1Bi—Rb1A—O2i86.26 (3)O1xiii—Rb2B—Asxv98.42 (18)
Rb1Bii—Rb1A—O2i148.87 (11)Asxvi—Rb2B—Asxv80.12 (15)
O3iii—Rb1A—O2i125.02 (5)Rb2Bi—Rb2B—As129.9 (12)
O3i—Rb1A—O2i50.13 (4)Rb2Bii—Rb2B—As133.2 (10)
O3iv—Rb1A—O2i120.30 (5)O3—Rb2B—As23.86 (9)
O3v—Rb1A—O2i67.27 (5)O3ii—Rb2B—As67.16 (17)
O3ii—Rb1A—O2i112.03 (5)O3i—Rb2B—As89.1 (2)
O3—Rb1A—O2i64.77 (5)O1viii—Rb2B—As71.31 (17)
O2—Rb1A—O2i111.23 (3)O1vi—Rb2B—As100.0 (2)
O2v—Rb1A—O2i62.27 (6)O4x—Rb2B—As107.7 (2)
O2iv—Rb1A—O2i75.50 (6)O1xiii—Rb2B—As24.73 (7)
O2ii—Rb1A—O2i111.23 (3)Asxvi—Rb2B—As96.34 (18)
O2iii—Rb1A—O2i172.51 (7)Asxv—Rb2B—As109.1 (2)
Rb1Bi—Rb1A—Asiii68.045 (6)O2xvii—In1—O2ii92.65 (7)
Rb1Bii—Rb1A—Asiii62.23 (10)O2xvii—In1—O2xviii92.65 (7)
O3iii—Rb1A—Asiii25.58 (3)O2ii—In1—O2xviii92.65 (7)
O3i—Rb1A—Asiii121.18 (4)O2xvii—In1—O4xix91.95 (7)
O3iv—Rb1A—Asiii68.11 (4)O2ii—In1—O4xix173.42 (7)
O3v—Rb1A—Asiii92.38 (4)O2xviii—In1—O4xix91.82 (7)
O3ii—Rb1A—Asiii83.92 (4)O2xvii—In1—O4i91.82 (7)
O3—Rb1A—Asiii145.24 (3)O2ii—In1—O4i91.95 (7)
O2—Rb1A—Asiii99.68 (3)O2xviii—In1—O4i173.42 (7)
O2v—Rb1A—Asiii86.65 (3)O4xix—In1—O4i83.21 (7)
O2iv—Rb1A—Asiii118.16 (3)O2xvii—In1—O4xii173.42 (7)
O2ii—Rb1A—Asiii57.81 (3)O2ii—In1—O4xii91.82 (7)
O2iii—Rb1A—Asiii25.19 (3)O2xviii—In1—O4xii91.95 (7)
O2i—Rb1A—Asiii148.88 (3)O4xix—In1—O4xii83.21 (7)
Rb1Bi—Rb1A—H127.6 (7)O4i—In1—O4xii83.21 (7)
Rb1Bii—Rb1A—H95.7 (8)O2xvii—In1—Rb2Axxi123.37 (5)
O3iii—Rb1A—H170.2 (6)O2ii—In1—Rb2Axxi123.36 (5)
O3i—Rb1A—H69.0 (7)O2xviii—In1—Rb2Axxi123.36 (5)
O3iv—Rb1A—H103.6 (7)O4xix—In1—Rb2Axxi50.06 (5)
O3v—Rb1A—H103.8 (6)O4i—In1—Rb2Axxi50.06 (5)
O3ii—Rb1A—H82.3 (6)O4xii—In1—Rb2Axxi50.06 (5)
O3—Rb1A—H14.5 (6)O2xvii—In1—Rb1Axix32.08 (5)
O2—Rb1A—H58.6 (7)O2ii—In1—Rb1Axix107.92 (5)
O2v—Rb1A—H115.4 (7)O2xviii—In1—Rb1Axix118.90 (5)
O2iv—Rb1A—H58.4 (6)O4xix—In1—Rb1Axix73.96 (4)
O2ii—Rb1A—H122.5 (6)O4i—In1—Rb1Axix63.88 (4)
O2iii—Rb1A—H132.7 (7)O4xii—In1—Rb1Axix141.47 (5)
O2i—Rb1A—H53.3 (7)Rb2Axxi—In1—Rb1Axix91.955 (3)
Asiii—Rb1A—H157.8 (7)O2xvii—In1—Rb1A118.90 (5)
Rb1Bi—Rb1A—Hi44.8 (6)O2ii—In1—Rb1A32.08 (5)
Rb1Bii—Rb1A—Hi127.6 (8)O2xviii—In1—Rb1A107.92 (5)
O3iii—Rb1A—Hi103.8 (6)O4xix—In1—Rb1A141.47 (5)
O3i—Rb1A—Hi14.5 (6)O4i—In1—Rb1A73.96 (4)
O3iv—Rb1A—Hi170.2 (6)O4xii—In1—Rb1A63.88 (5)
O3v—Rb1A—Hi103.6 (7)Rb2Axxi—In1—Rb1A91.954 (3)
O3ii—Rb1A—Hi69.0 (7)Rb1Axix—In1—Rb1A119.9
O3—Rb1A—Hi82.3 (6)O2xvii—In1—Rb1Axviii107.92 (5)
O2—Rb1A—Hi122.5 (6)O2ii—In1—Rb1Axviii118.90 (5)
O2v—Rb1A—Hi58.4 (6)O2xviii—In1—Rb1Axviii32.08 (5)
O2iv—Rb1A—Hi132.7 (7)O4xix—In1—Rb1Axviii63.88 (5)
O2ii—Rb1A—Hi53.3 (7)O4i—In1—Rb1Axviii141.47 (5)
O2iii—Rb1A—Hi115.4 (7)O4xii—In1—Rb1Axviii73.96 (5)
O2i—Rb1A—Hi58.6 (7)Rb2Axxi—In1—Rb1Axviii91.954 (3)
Asiii—Rb1A—Hi107.6 (7)Rb1Axix—In1—Rb1Axviii119.9
H—Rb1A—Hi83.5 (9)Rb1A—In1—Rb1Axviii119.9
Rb1Bi—Rb1A—Hii95.7 (7)O1vii—In2—O1xvi96.52 (7)
Rb1Bii—Rb1A—Hii44.8 (6)O1vii—In2—O1i180.0
O3iii—Rb1A—Hii103.6 (7)O1xvi—In2—O1i83.48 (7)
O3i—Rb1A—Hii82.3 (6)O1vii—In2—O1xii83.48 (7)
O3iv—Rb1A—Hii103.8 (6)O1xvi—In2—O1xii180.0
O3v—Rb1A—Hii170.2 (6)O1i—In2—O1xii96.52 (7)
O3ii—Rb1A—Hii14.5 (6)O1vii—In2—O1xix83.48 (7)
O3—Rb1A—Hii69.0 (7)O1xvi—In2—O1xix83.48 (7)
O2—Rb1A—Hii53.3 (7)O1i—In2—O1xix96.52 (7)
O2v—Rb1A—Hii132.7 (7)O1xii—In2—O1xix96.52 (7)
O2iv—Rb1A—Hii115.4 (8)O1vii—In2—O1xx96.52 (7)
O2ii—Rb1A—Hii58.6 (7)O1xvi—In2—O1xx96.52 (7)
O2iii—Rb1A—Hii58.4 (6)O1i—In2—O1xx83.48 (7)
O2i—Rb1A—Hii122.5 (6)O1xii—In2—O1xx83.48 (7)
Asiii—Rb1A—Hii78.9 (7)O1xix—In2—O1xx180.0
H—Rb1A—Hii83.5 (9)O1vii—In2—Rb2Axx47.93 (8)
Hi—Rb1A—Hii83.5 (9)O1xvi—In2—Rb2Axx80.47 (7)
Rb1Bi—Rb1A—Hiv127.6 (7)O1i—In2—Rb2Axx132.07 (8)
Rb1Bii—Rb1A—Hiv44.8 (6)O1xii—In2—Rb2Axx99.53 (7)
O3iii—Rb1A—Hiv69.0 (7)O1xix—In2—Rb2Axx37.05 (8)
O3i—Rb1A—Hiv170.2 (6)O1xx—In2—Rb2Axx142.95 (8)
O3iv—Rb1A—Hiv14.5 (6)O1vii—In2—Rb2Axix132.07 (8)
O3v—Rb1A—Hiv82.3 (6)O1xvi—In2—Rb2Axix99.53 (7)
O3ii—Rb1A—Hiv103.8 (6)O1i—In2—Rb2Axix47.93 (8)
O3—Rb1A—Hiv103.6 (7)O1xii—In2—Rb2Axix80.47 (7)
O2—Rb1A—Hiv58.4 (6)O1xix—In2—Rb2Axix142.95 (8)
O2v—Rb1A—Hiv122.5 (6)O1xx—In2—Rb2Axix37.05 (8)
O2iv—Rb1A—Hiv58.6 (7)Rb2Axx—In2—Rb2Axix180.0
O2ii—Rb1A—Hiv115.4 (7)O1vii—In2—Rb2A37.05 (8)
O2iii—Rb1A—Hiv53.3 (7)O1xvi—In2—Rb2A132.07 (8)
O2i—Rb1A—Hiv132.7 (7)O1i—In2—Rb2A142.95 (8)
Asiii—Rb1A—Hiv62.0 (7)O1xii—In2—Rb2A47.93 (8)
H—Rb1A—Hiv104.8 (15)O1xix—In2—Rb2A80.47 (7)
Hi—Rb1A—Hiv168.6 (14)O1xx—In2—Rb2A99.53 (7)
Hii—Rb1A—Hiv89.6 (11)Rb2Axx—In2—Rb2A60.060 (6)
Rb1Bi—Rb1A—Hiii44.8 (6)Rb2Axix—In2—Rb2A119.940 (6)
Rb1Bii—Rb1A—Hiii95.7 (8)O1vii—In2—Rb2Axviii99.53 (7)
O3iii—Rb1A—Hiii14.5 (6)O1xvi—In2—Rb2Axviii37.05 (8)
O3i—Rb1A—Hiii103.8 (6)O1i—In2—Rb2Axviii80.47 (7)
O3iv—Rb1A—Hiii82.3 (6)O1xii—In2—Rb2Axviii142.95 (8)
O3v—Rb1A—Hiii69.0 (7)O1xix—In2—Rb2Axviii47.93 (8)
O3ii—Rb1A—Hiii103.6 (7)O1xx—In2—Rb2Axviii132.07 (8)
O3—Rb1A—Hiii170.2 (6)Rb2Axx—In2—Rb2Axviii60.060 (6)
O2—Rb1A—Hiii132.7 (7)Rb2Axix—In2—Rb2Axviii119.940 (7)
O2v—Rb1A—Hiii53.3 (7)Rb2A—In2—Rb2Axviii119.940 (6)
O2iv—Rb1A—Hiii122.5 (6)O1vii—In2—Rb2Axxii80.47 (7)
O2ii—Rb1A—Hiii58.4 (6)O1xvi—In2—Rb2Axxii142.95 (8)
O2iii—Rb1A—Hiii58.6 (7)O1i—In2—Rb2Axxii99.53 (7)
O2i—Rb1A—Hiii115.4 (7)O1xii—In2—Rb2Axxii37.05 (8)
Asiii—Rb1A—Hiii33.5 (7)O1xix—In2—Rb2Axxii132.07 (8)
H—Rb1A—Hiii168.6 (14)O1xx—In2—Rb2Axxii47.93 (8)
Hi—Rb1A—Hiii89.6 (12)Rb2Axx—In2—Rb2Axxii119.940 (6)
Hii—Rb1A—Hiii104.8 (15)Rb2Axix—In2—Rb2Axxii60.060 (6)
Hiv—Rb1A—Hiii83.5 (9)Rb2A—In2—Rb2Axxii60.061 (6)
Rb1Bi—Rb1A—Hv95.7 (7)Rb2Axviii—In2—Rb2Axxii180.0
Rb1Bii—Rb1A—Hv127.6 (8)O1vii—In2—Rb2Axxiii142.95 (8)
O3iii—Rb1A—Hv82.3 (6)O1xvi—In2—Rb2Axxiii47.93 (8)
O3i—Rb1A—Hv103.6 (7)O1i—In2—Rb2Axxiii37.05 (8)
O3iv—Rb1A—Hv69.0 (7)O1xii—In2—Rb2Axxiii132.07 (8)
O3v—Rb1A—Hv14.5 (6)O1xix—In2—Rb2Axxiii99.53 (7)
O3ii—Rb1A—Hv170.2 (6)O1xx—In2—Rb2Axxiii80.47 (7)
O3—Rb1A—Hv103.8 (6)Rb2Axx—In2—Rb2Axxiii119.940 (7)
O2—Rb1A—Hv115.4 (8)Rb2Axix—In2—Rb2Axxiii60.060 (6)
O2v—Rb1A—Hv58.6 (7)Rb2A—In2—Rb2Axxiii180.0
O2iv—Rb1A—Hv53.3 (7)Rb2Axviii—In2—Rb2Axxiii60.061 (6)
O2ii—Rb1A—Hv132.7 (7)Rb2Axxii—In2—Rb2Axxiii119.939 (6)
O2iii—Rb1A—Hv122.5 (6)O1xiii—As—O2116.08 (10)
O2i—Rb1A—Hv58.4 (6)O1xiii—As—O4v109.85 (10)
Asiii—Rb1A—Hv105.4 (6)O2—As—O4v113.73 (8)
H—Rb1A—Hv89.6 (11)O1xiii—As—O3104.27 (10)
Hi—Rb1A—Hv104.8 (14)O2—As—O3104.94 (9)
Hii—Rb1A—Hv168.6 (15)O4v—As—O3106.99 (8)
Hiv—Rb1A—Hv83.5 (9)O1xiii—As—Rb1Bii133.87 (15)
Hiii—Rb1A—Hv83.5 (9)O2—As—Rb1Bii51.9 (5)
Rb1Bi—Rb1B—Rb1Bii60.00 (3)O4v—As—Rb1Bii115.4 (2)
Rb1Bi—Rb1B—O3v97.5 (5)O3—As—Rb1Bii54.3 (4)
Rb1Bii—Rb1B—O3v123.7 (5)O1xiii—As—Rb1B138.5 (3)
Rb1Bi—Rb1B—O3123.7 (5)O2—As—Rb1B62.1 (4)
Rb1Bii—Rb1B—O397.5 (6)O4v—As—Rb1B107.4 (4)
O3v—Rb1B—O3133.3 (11)O3—As—Rb1B46.49 (19)
Rb1Bi—Rb1B—O2iv158.5 (3)Rb1Bii—As—Rb1B11.6 (9)
Rb1Bii—Rb1B—O2iv109.8 (5)O1xiii—As—Rb2Bxxiv59.16 (16)
O3v—Rb1B—O2iv71.7 (5)O2—As—Rb2Bxxiv175.06 (16)
O3—Rb1B—O2iv74.5 (5)O4v—As—Rb2Bxxiv68.35 (14)
Rb1Bi—Rb1B—O2i109.8 (4)O3—As—Rb2Bxxiv78.23 (14)
Rb1Bii—Rb1B—O2i158.5 (3)Rb1Bii—As—Rb2Bxxiv131.9 (5)
O3v—Rb1B—O2i74.5 (5)Rb1B—As—Rb2Bxxiv122.0 (3)
O3—Rb1B—O2i71.7 (5)O1xiii—As—Rb2Bxv62.57 (15)
O2iv—Rb1B—O2i85.8 (8)O2—As—Rb2Bxv175.80 (17)
Rb1Bi—Rb1B—O3iv105.8 (5)O4v—As—Rb2Bxv70.24 (15)
Rb1Bii—Rb1B—O3iv68.2 (6)O3—As—Rb2Bxv72.08 (14)
O3v—Rb1B—O3iv71.05 (15)Rb1Bii—As—Rb2Bxv125.7 (4)
O3—Rb1B—O3iv111.7 (3)Rb1B—As—Rb2Bxv115.9 (3)
O2iv—Rb1B—O3iv53.4 (2)Rb2Bxxiv—As—Rb2Bxv6.2 (2)
O2i—Rb1B—O3iv132.8 (9)O1xiii—As—Rb1A134.73 (9)
Rb1Bi—Rb1B—O3i68.2 (5)O2—As—Rb1A57.74 (6)
Rb1Bii—Rb1B—O3i105.8 (5)O4v—As—Rb1A112.84 (6)
O3v—Rb1B—O3i111.7 (3)O3—As—Rb1A48.98 (7)
O3—Rb1B—O3i71.04 (15)Rb1Bii—As—Rb1A6.0 (4)
O2iv—Rb1B—O3i132.8 (9)Rb1B—As—Rb1A6.2 (5)
O2i—Rb1B—O3i53.4 (2)Rb2Bxxiv—As—Rb1A126.16 (13)
O3iv—Rb1B—O3i173.4 (12)Rb2Bxv—As—Rb1A119.97 (12)
Rb1Bi—Rb1B—O2114.7 (5)O1xiii—As—Rb2Axv61.31 (9)
Rb1Bii—Rb1B—O257.8 (6)O2—As—Rb2Axv177.30 (9)
O3v—Rb1B—O2132.6 (4)O4v—As—Rb2Axv68.43 (8)
O3—Rb1B—O251.41 (7)O3—As—Rb2Axv75.58 (7)
O2iv—Rb1B—O265.7 (2)Rb1Bii—As—Rb2Axv129.1 (4)
O2i—Rb1B—O2120.6 (6)Rb1B—As—Rb2Axv119.2 (3)
O3iv—Rb1B—O267.34 (7)Rb2Bxxiv—As—Rb2Axv2.88 (15)
O3i—Rb1B—O2112.19 (11)Rb2Bxv—As—Rb2Axv3.52 (13)
Rb1Bi—Rb1B—O2v57.8 (5)Rb1A—As—Rb2Axv123.340 (18)
Rb1Bii—Rb1B—O2v114.7 (4)O1xiii—As—Rb2B66.15 (14)
O3v—Rb1B—O2v51.41 (7)O2—As—Rb2B104.87 (14)
O3—Rb1B—O2v132.6 (4)O4v—As—Rb2B137.04 (14)
O2iv—Rb1B—O2v120.6 (6)O3—As—Rb2B42.56 (14)
O2i—Rb1B—O2v65.7 (2)Rb1Bii—As—Rb2B74.7 (2)
O3iv—Rb1B—O2v112.19 (11)Rb1B—As—Rb2B74.33 (18)
O3i—Rb1B—O2v67.34 (7)Rb2Bxxiv—As—Rb2B74.78 (3)
O2—Rb1B—O2v172.4 (11)Rb2Bxv—As—Rb2B70.9 (2)
Rb1Bi—Rb1B—O3iii45.4 (3)Rb1A—As—Rb2B72.61 (11)
Rb1Bii—Rb1B—O3iii61.5 (3)Rb2Axv—As—Rb2B73.66 (14)
O3v—Rb1B—O3iii66.84 (19)O1xiii—As—Rb2Bxxv63.55 (13)
O3—Rb1B—O3iii158.9 (9)O2—As—Rb2Bxxv178.70 (16)
O2iv—Rb1B—O3iii113.43 (5)O4v—As—Rb2Bxxv65.54 (13)
O2i—Rb1B—O3iii126.87 (6)O3—As—Rb2Bxxv76.36 (14)
O3iv—Rb1B—O3iii64.9 (3)Rb1Bii—As—Rb2Bxxv129.3 (5)
O3i—Rb1B—O3iii110.3 (6)Rb1B—As—Rb2Bxxv119.0 (4)
O2—Rb1B—O3iii112.4 (6)Rb2Bxxiv—As—Rb2Bxxv4.39 (15)
O2v—Rb1B—O3iii61.9 (2)Rb2Bxv—As—Rb2Bxxv5.30 (19)
Rb1Bi—Rb1B—O3ii61.5 (3)Rb1A—As—Rb2Bxxv123.48 (12)
Rb1Bii—Rb1B—O3ii45.4 (3)Rb2Axv—As—Rb2Bxxv2.94 (15)
O3v—Rb1B—O3ii158.9 (9)Rb2B—As—Rb2Bxxv76.18 (18)
O3—Rb1B—O3ii66.84 (19)Asxxvi—O1—In2xxvii142.20 (12)
O2iv—Rb1B—O3ii126.87 (6)Asxxvi—O1—Rb2Bxxviii95.06 (18)
O2i—Rb1B—O3ii113.43 (5)In2xxvii—O1—Rb2Bxxviii119.53 (18)
O3iv—Rb1B—O3ii110.3 (6)Asxxvi—O1—Rb2Bvi92.19 (16)
O3i—Rb1B—O3ii64.9 (3)In2xxvii—O1—Rb2Bvi123.76 (15)
O2—Rb1B—O3ii61.9 (2)Rb2Bxxviii—O1—Rb2Bvi6.6 (3)
O2v—Rb1B—O3ii112.4 (6)Asxxvi—O1—Rb2Avi93.97 (12)
O3iii—Rb1B—O3ii94.2 (8)In2xxvii—O1—Rb2Avi121.16 (11)
Rb1Bi—Rb1B—H135.3 (8)Rb2Bxxviii—O1—Rb2Avi2.47 (17)
Rb1Bii—Rb1B—H112.7 (9)Rb2Bvi—O1—Rb2Avi4.12 (14)
O3v—Rb1B—H117.3 (12)Asxxvi—O1—Rb2Bxxvi89.12 (16)
O3—Rb1B—H16.1 (6)In2xxvii—O1—Rb2Bxxvi106.82 (16)
O2iv—Rb1B—H65.2 (9)Rb2Bxxviii—O1—Rb2Bxxvi86.07 (7)
O2i—Rb1B—H59.4 (9)Rb2Bvi—O1—Rb2Bxxvi80.1 (2)
O3iv—Rb1B—H111.3 (10)Rb2Avi—O1—Rb2Bxxvi83.83 (15)
O3i—Rb1B—H73.1 (8)Asxxvi—O1—Rb2Axxvi87.55 (12)
O2—Rb1B—H61.4 (8)In2xxvii—O1—Rb2Axxvi107.67 (9)
O2v—Rb1B—H124.3 (10)Rb2Bxxviii—O1—Rb2Axxvi86.97 (17)
O3iii—Rb1B—H173.7 (9)Rb2Bvi—O1—Rb2Axxvi80.92 (17)
O3ii—Rb1B—H82.4 (6)Rb2Avi—O1—Rb2Axxvi84.71 (5)
Rb1Bi—Rb1B—Hv112.7 (9)Rb2Bxxvi—O1—Rb2Axxvi1.7 (2)
Rb1Bii—Rb1B—Hv135.3 (7)Asxxvi—O1—Rb2Axxvii110.41 (11)
O3v—Rb1B—Hv16.1 (6)In2xxvii—O1—Rb2Axxvii74.80 (7)
O3—Rb1B—Hv117.3 (12)Rb2Bxxviii—O1—Rb2Axxvii65.58 (17)
O2iv—Rb1B—Hv59.4 (9)Rb2Bvi—O1—Rb2Axxvii72.13 (14)
O2i—Rb1B—Hv65.2 (9)Rb2Avi—O1—Rb2Axxvii68.03 (4)
O3iv—Rb1B—Hv73.1 (8)Rb2Bxxvi—O1—Rb2Axxvii146.21 (11)
O3i—Rb1B—Hv111.3 (9)Rb2Axxvi—O1—Rb2Axxvii147.76 (12)
O2—Rb1B—Hv124.3 (11)As—O2—In1xxix123.06 (9)
O2v—Rb1B—Hv61.4 (8)As—O2—Rb1Bii102.0 (4)
O3iii—Rb1B—Hv82.4 (6)In1xxix—O2—Rb1Bii124.8 (3)
O3ii—Rb1B—Hv173.7 (10)As—O2—Rb1A97.07 (7)
H—Rb1B—Hv101.4 (15)In1xxix—O2—Rb1A127.94 (7)
Rb2Bii—Rb2A—Rb2Bi116 (2)Rb1Bii—O2—Rb1A5.1 (4)
Rb2Bii—Rb2A—O3134 (3)As—O2—Rb1B91.5 (4)
Rb2Bi—Rb2A—O399 (3)In1xxix—O2—Rb1B128.91 (9)
Rb2Bii—Rb2A—O3i99 (3)Rb1Bii—O2—Rb1B12.4 (9)
Rb2Bi—Rb2A—O3i65 (3)Rb1A—O2—Rb1B7.5 (5)
O3—Rb2A—O3i69.31 (13)As—O2—Rb2A56.91 (5)
Rb2Bii—Rb2A—O3ii65 (3)In1xxix—O2—Rb2A162.73 (8)
Rb2Bi—Rb2A—O3ii134 (3)Rb1Bii—O2—Rb2A68.43 (19)
O3—Rb2A—O3ii69.31 (13)Rb1A—O2—Rb2A66.24 (6)
O3i—Rb2A—O3ii69.31 (13)Rb1B—O2—Rb2A66.61 (7)
Rb2Bii—Rb2A—O1vi140 (3)As—O3—Rb1B107.13 (15)
Rb2Bi—Rb2A—O1vi34 (2)As—O3—Rb2B113.58 (18)
O3—Rb2A—O1vi85.60 (6)Rb1B—O3—Rb2B107.8 (5)
O3i—Rb2A—O1vi89.21 (6)As—O3—Rb2A117.21 (9)
O3ii—Rb2A—O1vi151.25 (17)Rb1B—O3—Rb2A103.8 (4)
Rb2Bii—Rb2A—O1vii34 (2)Rb2B—O3—Rb2A4.46 (18)
Rb2Bi—Rb2A—O1vii82 (2)As—O3—Rb1Bii98.0 (5)
O3—Rb2A—O1vii151.25 (17)Rb1B—O3—Rb1Bii14.3 (10)
O3i—Rb2A—O1vii85.60 (6)Rb2B—O3—Rb1Bii102.66 (17)
O3ii—Rb2A—O1vii89.21 (6)Rb2A—O3—Rb1Bii99.24 (11)
O1vi—Rb2A—O1vii108.60 (10)As—O3—Rb1A105.44 (8)
Rb2Bii—Rb2A—O1viii82 (2)Rb1B—O3—Rb1A7.6 (6)
Rb2Bi—Rb2A—O1viii140 (3)Rb2B—O3—Rb1A102.30 (16)
O3—Rb2A—O1viii89.21 (6)Rb2A—O3—Rb1A98.50 (9)
O3i—Rb2A—O1viii151.25 (17)Rb1Bii—O3—Rb1A8.2 (6)
O3ii—Rb2A—O1viii85.60 (6)As—O3—Rb2Bi121.23 (19)
O1vi—Rb2A—O1viii108.60 (10)Rb1B—O3—Rb2Bi103.8 (4)
O1vii—Rb2A—O1viii108.59 (10)Rb2B—O3—Rb2Bi7.6 (3)
Rb2Bii—Rb2A—O4ix98 (3)Rb2A—O3—Rb2Bi4.62 (15)
Rb2Bi—Rb2A—O4ix53 (3)Rb1Bii—O3—Rb2Bi100.4 (2)
O3—Rb2A—O4ix126.63 (6)Rb1A—O3—Rb2Bi99.01 (18)
O3i—Rb2A—O4ix117.83 (6)As—O3—Rb2Bii115.94 (17)
O3ii—Rb2A—O4ix163.52 (11)Rb1B—O3—Rb2Bii101.7 (5)
O1vi—Rb2A—O4ix44.75 (6)Rb2B—O3—Rb2Bii6.1 (2)
O1vii—Rb2A—O4ix77.05 (10)Rb2A—O3—Rb2Bii3.2 (2)
O1viii—Rb2A—O4ix90.14 (12)Rb1Bii—O3—Rb2Bii96.67 (18)
Rb2Bii—Rb2A—O4x86 (3)Rb1A—O3—Rb2Bii96.23 (18)
Rb2Bi—Rb2A—O4x98 (3)Rb2Bi—O3—Rb2Bii7.4 (2)
O3—Rb2A—O4x117.83 (6)As—O3—Rb1Bi110.6 (3)
O3i—Rb2A—O4x163.52 (11)Rb1B—O3—Rb1Bi10.9 (8)
O3ii—Rb2A—O4x126.63 (6)Rb2B—O3—Rb1Bi97.1 (4)
O1vi—Rb2A—O4x77.05 (10)Rb2A—O3—Rb1Bi93.2 (4)
O1vii—Rb2A—O4x90.14 (12)Rb1Bii—O3—Rb1Bi12.6 (9)
O1viii—Rb2A—O4x44.75 (6)Rb1A—O3—Rb1Bi6.0 (4)
O4ix—Rb2A—O4x45.71 (8)Rb2Bi—O3—Rb1Bi93.5 (4)
Rb2Bii—Rb2A—O4xi53 (3)Rb2Bii—O3—Rb1Bi91.0 (4)
Rb2Bi—Rb2A—O4xi86 (3)As—O3—Rb2Axv78.72 (7)
O3—Rb2A—O4xi163.52 (11)Rb1B—O3—Rb2Axv159.5 (6)
O3i—Rb2A—O4xi126.63 (6)Rb2B—O3—Rb2Axv86.8 (2)
O3ii—Rb2A—O4xi117.83 (6)Rb2A—O3—Rb2Axv90.14 (5)
O1vi—Rb2A—O4xi90.14 (12)Rb1Bii—O3—Rb2Axv170.52 (10)
O1vii—Rb2A—O4xi44.75 (6)Rb1A—O3—Rb2Axv167.05 (8)
O1viii—Rb2A—O4xi77.05 (10)Rb2Bi—O3—Rb2Axv88.8 (2)
O4ix—Rb2A—O4xi45.71 (8)Rb2Bii—O3—Rb2Axv92.8 (2)
O4x—Rb2A—O4xi45.71 (8)Rb1Bi—O3—Rb2Axv167.03 (11)
Rb2Bii—Rb2A—O1xii26 (3)As—O3—H108 (3)
Rb2Bi—Rb2A—O1xii117 (2)Rb1B—O3—H92 (3)
O3—Rb2A—O1xii112.37 (15)Rb2B—O3—H125 (3)
O3i—Rb2A—O1xii76.69 (8)Rb2A—O3—H124 (3)
O3ii—Rb2A—O1xii44.11 (5)Rb1Bii—O3—H105 (3)
O1vi—Rb2A—O1xii150.55 (6)Rb1A—O3—H99 (3)
O1vii—Rb2A—O1xii45.46 (6)Rb2Bi—O3—H120 (3)
O1viii—Rb2A—O1xii95.29 (5)Rb2Bii—O3—H127 (3)
O4ix—Rb2A—O1xii120.81 (10)Rb1Bi—O3—H100 (3)
O4x—Rb2A—O1xii111.19 (9)Rb2Axv—O3—H68 (3)
O4xi—Rb2A—O1xii78.40 (6)Asv—O4—In1xxvii127.87 (9)
Rb2Bii—Rb2A—O1xiii117 (2)Asv—O4—Rb2Bxxx85.47 (16)
Rb2Bi—Rb2A—O1xiii126 (2)In1xxvii—O4—Rb2Bxxx106.35 (17)
O3—Rb2A—O1xiii44.11 (5)Asv—O4—Rb2Axxx86.47 (7)
O3i—Rb2A—O1xiii112.37 (15)In1xxvii—O4—Rb2Axxx103.30 (7)
O3ii—Rb2A—O1xiii76.69 (8)Rb2Bxxx—O4—Rb2Axxx3.25 (18)
O1vi—Rb2A—O1xiii95.29 (5)Asv—O4—Rb1Axxvi131.05 (7)
O1vii—Rb2A—O1xiii150.54 (6)In1xxvii—O4—Rb1Axxvi90.25 (5)
O1viii—Rb2A—O1xiii45.46 (6)Rb2Bxxx—O4—Rb1Axxvi115.02 (15)
O4ix—Rb2A—O1xiii111.19 (9)Rb2Axxx—O4—Rb1Axxvi116.54 (4)
O4x—Rb2A—O1xiii78.40 (6)Asv—O4—Rb1A48.38 (5)
O4xi—Rb2A—O1xiii120.81 (10)In1xxvii—O4—Rb1A80.54 (5)
O1xii—Rb2A—O1xiii113.93 (7)Rb2Bxxx—O4—Rb1A109.65 (15)
Rb2Bii—Rb2A—O1xiv126 (2)Rb2Axxx—O4—Rb1A108.26 (4)
Rb2Bi—Rb2A—O1xiv26 (3)Rb1Axxvi—O4—Rb1A135.18 (4)
Symmetry codes: (i) y, xy, z; (ii) x+y, x, z; (iii) xy, y, z+3/2; (iv) y, x, z+3/2; (v) x, x+y, z+3/2; (vi) x+2/3, y2/3, z+4/3; (vii) y+2/3, x+y+4/3, z+4/3; (viii) xy4/3, x2/3, z+4/3; (ix) x1/3, xy2/3, z1/6; (x) y1/3, x+1/3, z1/6; (xi) x+y+2/3, y+1/3, z1/6; (xii) x+y+1, x+1, z; (xiii) x1, y, z; (xiv) y, xy1, z; (xv) x1/3, y2/3, z+4/3; (xvi) xy1/3, x+1/3, z+4/3; (xvii) y, xy+1, z; (xviii) x+1, y+1, z; (xix) x, y+1, z; (xx) x+2/3, y+1/3, z+4/3; (xxi) y+1/3, x+2/3, z+1/6; (xxii) x1/3, y+1/3, z+4/3; (xxiii) x+2/3, y+4/3, z+4/3; (xxiv) y1/3, x+y2/3, z+4/3; (xxv) xy1/3, x2/3, z+4/3; (xxvi) x+1, y, z; (xxvii) x, y1, z; (xxviii) y+2/3, x+y2/3, z+4/3; (xxix) x1, y1, z; (xxx) y+1/3, x1/3, z+1/6.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H···O4xxxi0.83 (3)1.82 (3)2.634 (2)168 (4)
Symmetry code: (xxxi) y, x1, z+3/2.
Caesium indium bis[hydrogen arsenate(V)] (CsInHAsO42) top
Crystal data top
CsIn(HAsO4)2Dx = 4.291 Mg m3
Mr = 527.59Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3c:HCell parameters from 2985 reflections
a = 8.629 (1) Åθ = 3.1–30.0°
c = 56.986 (11) ŵ = 15.34 mm1
V = 3674.7 (11) Å3T = 293 K
Z = 18Small pseudooctahedra, colourless
F(000) = 42480.06 × 0.06 × 0.04 mm
Data collection top
Nonius KappaCCD single-crystal four-circle
diffractometer
1039 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
φ and ω scansθmax = 30.0°, θmin = 3.1°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski et al., 2003)
h = 1212
Tmin = 0.460, Tmax = 0.579k = 99
4350 measured reflectionsl = 7979
1199 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022All H-atom parameters refined
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0234P)2 + 28.1228P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.004
1199 reflectionsΔρmax = 2.09 e Å3
61 parametersΔρmin = 0.86 e Å3
1 restraintExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.000028 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.0000000.0000000.7500000.02557 (14)
Cs20.0000000.0000000.66740 (2)0.02940 (12)
In10.3333330.6666670.75230 (2)0.00967 (10)
In20.3333330.6666670.6666670.01033 (12)
As0.41576 (4)0.38822 (4)0.71249 (2)0.01182 (10)
O10.4878 (4)0.4176 (4)0.68649 (4)0.0247 (6)
O20.4350 (3)0.2496 (3)0.73117 (4)0.0154 (5)
O30.1870 (3)0.2856 (3)0.70680 (5)0.0217 (5)
O40.4768 (3)0.1133 (3)0.77606 (4)0.0147 (5)
H0.152 (5)0.354 (4)0.7115 (6)0.013 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0283 (2)0.0283 (2)0.0201 (3)0.01415 (10)0.0000.000
Cs20.03461 (17)0.03461 (17)0.0190 (2)0.01730 (8)0.0000.000
In10.01027 (13)0.01027 (13)0.00848 (17)0.00513 (6)0.0000.000
In20.01173 (16)0.01173 (16)0.0075 (2)0.00587 (8)0.0000.000
As0.01466 (17)0.01309 (17)0.01022 (15)0.00882 (14)0.00082 (12)0.00125 (11)
O10.0366 (15)0.0361 (15)0.0126 (11)0.0265 (13)0.0067 (11)0.0014 (10)
O20.0155 (11)0.0154 (11)0.0157 (11)0.0079 (9)0.0056 (9)0.0020 (9)
O30.0174 (12)0.0216 (13)0.0290 (13)0.0120 (11)0.0083 (10)0.0115 (11)
O40.0154 (11)0.0126 (11)0.0183 (11)0.0086 (9)0.0032 (9)0.0057 (9)
Geometric parameters (Å, º) top
Cs1—O33.280 (3)Cs2—O4xii3.703 (2)
Cs1—O3i3.280 (3)Cs2—O4xiii3.703 (2)
Cs1—O3ii3.280 (3)Cs2—O4xiv3.703 (2)
Cs1—O3iii3.280 (3)Cs2—Asxi3.8762 (6)
Cs1—O3iv3.280 (3)Cs2—Asix3.8762 (6)
Cs1—O3v3.280 (3)Cs2—Asx3.8762 (6)
Cs1—O23.434 (2)In1—O2xv2.127 (2)
Cs1—O2ii3.434 (2)In1—O2iii2.127 (2)
Cs1—O2v3.434 (2)In1—O2xvi2.127 (2)
Cs1—O2iii3.434 (2)In1—O4xvii2.150 (2)
Cs1—O2i3.434 (2)In1—O4iv2.150 (2)
Cs1—O2iv3.434 (2)In1—O4xviii2.150 (2)
Cs1—H3.44 (4)In2—O1vii2.133 (2)
Cs1—Hiv3.44 (4)In2—O1xi2.133 (3)
Cs1—Hiii3.44 (4)In2—O1xix2.133 (2)
Cs2—O3iv3.121 (3)In2—O1iv2.133 (2)
Cs2—O3iii3.121 (2)In2—O1xviii2.133 (3)
Cs2—O33.121 (3)In2—O1xvii2.133 (2)
Cs2—O1vi3.419 (3)As—O1xx1.655 (2)
Cs2—O1vii3.419 (3)As—O21.671 (2)
Cs2—O1viii3.419 (3)As—O4ii1.679 (2)
Cs2—O3ix3.698 (3)As—O31.743 (3)
Cs2—O3x3.698 (3)O3—H0.83 (3)
Cs2—O3xi3.698 (3)
O3—Cs1—O3i166.65 (9)O1vi—Cs2—Asxi102.94 (4)
O3—Cs1—O3ii119.30 (9)O1vii—Cs2—Asxi88.69 (5)
O3i—Cs1—O3ii69.82 (7)O1viii—Cs2—Asxi25.24 (4)
O3—Cs1—O3iii69.82 (7)O3ix—Cs2—Asxi61.32 (4)
O3i—Cs1—O3iii103.15 (9)O3x—Cs2—Asxi94.72 (4)
O3ii—Cs1—O3iii166.65 (10)O3xi—Cs2—Asxi26.48 (4)
O3—Cs1—O3iv69.82 (7)O4xii—Cs2—Asxi70.49 (4)
O3i—Cs1—O3iv119.30 (10)O4xiii—Cs2—Asxi25.47 (3)
O3ii—Cs1—O3iv103.15 (9)O4xiv—Cs2—Asxi53.44 (4)
O3iii—Cs1—O3iv69.82 (7)O3iv—Cs2—Asix107.26 (5)
O3—Cs1—O3v103.15 (9)O3iii—Cs2—Asix174.10 (5)
O3i—Cs1—O3v69.82 (7)O3—Cs2—Asix100.69 (5)
O3ii—Cs1—O3v69.82 (7)O1vi—Cs2—Asix25.24 (4)
O3iii—Cs1—O3v119.30 (9)O1vii—Cs2—Asix102.94 (4)
O3iv—Cs1—O3v166.65 (9)O1viii—Cs2—Asix88.69 (5)
O3—Cs1—O247.28 (6)O3ix—Cs2—Asix26.48 (4)
O3i—Cs1—O2119.81 (6)O3x—Cs2—Asix61.32 (4)
O3ii—Cs1—O2126.64 (6)O3xi—Cs2—Asix94.72 (4)
O3iii—Cs1—O266.62 (6)O4xii—Cs2—Asix25.47 (3)
O3iv—Cs1—O2111.83 (6)O4xiii—Cs2—Asix53.44 (4)
O3v—Cs1—O267.00 (6)O4xiv—Cs2—Asix70.49 (4)
O3—Cs1—O2ii126.65 (6)Asxi—Cs2—Asix78.314 (13)
O3i—Cs1—O2ii66.61 (6)O3iv—Cs2—Asx100.69 (5)
O3ii—Cs1—O2ii47.28 (6)O3iii—Cs2—Asx107.26 (5)
O3iii—Cs1—O2ii119.81 (6)O3—Cs2—Asx174.10 (5)
O3iv—Cs1—O2ii67.01 (6)O1vi—Cs2—Asx88.69 (5)
O3v—Cs1—O2ii111.83 (6)O1vii—Cs2—Asx25.24 (4)
O2—Cs1—O2ii170.75 (8)O1viii—Cs2—Asx102.94 (4)
O3—Cs1—O2v67.01 (6)O3ix—Cs2—Asx94.72 (4)
O3i—Cs1—O2v111.83 (6)O3x—Cs2—Asx26.48 (4)
O3ii—Cs1—O2v66.61 (6)O3xi—Cs2—Asx61.32 (4)
O3iii—Cs1—O2v126.65 (6)O4xii—Cs2—Asx53.44 (4)
O3iv—Cs1—O2v119.81 (6)O4xiii—Cs2—Asx70.49 (4)
O3v—Cs1—O2v47.28 (6)O4xiv—Cs2—Asx25.47 (4)
O2—Cs1—O2v61.36 (8)Asxi—Cs2—Asx78.314 (13)
O2ii—Cs1—O2v110.71 (3)Asix—Cs2—Asx78.314 (13)
O3—Cs1—O2iii111.83 (6)O2xv—In1—O2iii91.11 (9)
O3i—Cs1—O2iii67.01 (6)O2xv—In1—O2xvi91.11 (9)
O3ii—Cs1—O2iii119.81 (6)O2iii—In1—O2xvi91.11 (9)
O3iii—Cs1—O2iii47.28 (6)O2xv—In1—O4xvii92.57 (9)
O3iv—Cs1—O2iii66.61 (6)O2iii—In1—O4xvii175.38 (9)
O3v—Cs1—O2iii126.65 (6)O2xvi—In1—O4xvii91.61 (9)
O2—Cs1—O2iii110.71 (3)O2xv—In1—O4iv91.61 (8)
O2ii—Cs1—O2iii77.59 (7)O2iii—In1—O4iv92.57 (9)
O2v—Cs1—O2iii170.75 (8)O2xvi—In1—O4iv175.38 (9)
O3—Cs1—O2i119.82 (6)O4xvii—In1—O4iv84.54 (9)
O3i—Cs1—O2i47.28 (6)O2xv—In1—O4xviii175.38 (9)
O3ii—Cs1—O2i111.83 (6)O2iii—In1—O4xviii91.61 (9)
O3iii—Cs1—O2i67.01 (6)O2xvi—In1—O4xviii92.57 (9)
O3iv—Cs1—O2i126.65 (6)O4xvii—In1—O4xviii84.54 (9)
O3v—Cs1—O2i66.61 (6)O4iv—In1—O4xviii84.54 (9)
O2—Cs1—O2i77.59 (7)O2xv—In1—Cs2xxi124.48 (6)
O2ii—Cs1—O2i110.71 (3)O2iii—In1—Cs2xxi124.48 (6)
O2v—Cs1—O2i110.71 (3)O2xvi—In1—Cs2xxi124.48 (6)
O2iii—Cs1—O2i61.36 (8)O4xvii—In1—Cs2xxi50.96 (6)
O3—Cs1—O2iv66.61 (6)O4iv—In1—Cs2xxi50.96 (6)
O3i—Cs1—O2iv126.65 (6)O4xviii—In1—Cs2xxi50.96 (6)
O3ii—Cs1—O2iv67.01 (6)O1vii—In2—O1xi94.56 (9)
O3iii—Cs1—O2iv111.83 (6)O1vii—In2—O1xix94.55 (9)
O3iv—Cs1—O2iv47.28 (6)O1xi—In2—O1xix94.55 (9)
O3v—Cs1—O2iv119.81 (6)O1vii—In2—O1iv180.0
O2—Cs1—O2iv110.71 (3)O1xi—In2—O1iv85.45 (9)
O2ii—Cs1—O2iv61.36 (8)O1xix—In2—O1iv85.45 (9)
O2v—Cs1—O2iv77.59 (7)O1vii—In2—O1xviii85.45 (9)
O2iii—Cs1—O2iv110.71 (3)O1xi—In2—O1xviii180.0
O2i—Cs1—O2iv170.75 (8)O1xix—In2—O1xviii85.45 (9)
O3—Cs1—H13.9 (5)O1iv—In2—O1xviii94.55 (9)
O3i—Cs1—H170.1 (7)O1vii—In2—O1xvii85.45 (9)
O3ii—Cs1—H105.5 (5)O1xi—In2—O1xvii85.45 (9)
O3iii—Cs1—H83.1 (5)O1xix—In2—O1xvii180.0
O3iv—Cs1—H69.8 (6)O1iv—In2—O1xvii94.55 (9)
O3v—Cs1—H100.5 (7)O1xviii—In2—O1xvii94.55 (9)
O2—Cs1—H55.4 (6)O1vii—In2—Cs2xix56.94 (8)
O2ii—Cs1—H117.1 (6)O1xi—In2—Cs2xix72.56 (8)
O2v—Cs1—H58.5 (6)O1xix—In2—Cs2xix146.29 (7)
O2iii—Cs1—H122.2 (6)O1iv—In2—Cs2xix123.06 (8)
O2i—Cs1—H131.7 (6)O1xviii—In2—Cs2xix107.44 (8)
O2iv—Cs1—H55.8 (6)O1xvii—In2—Cs2xix33.71 (7)
O3—Cs1—Hiv83.1 (5)O1vii—In2—Cs2xvii123.06 (8)
O3i—Cs1—Hiv105.5 (6)O1xi—In2—Cs2xvii107.44 (8)
O3ii—Cs1—Hiv100.5 (6)O1xix—In2—Cs2xvii33.71 (7)
O3iii—Cs1—Hiv69.8 (6)O1iv—In2—Cs2xvii56.94 (8)
O3iv—Cs1—Hiv13.9 (5)O1xviii—In2—Cs2xvii72.56 (8)
O3v—Cs1—Hiv170.2 (6)O1xvii—In2—Cs2xvii146.29 (7)
O2—Cs1—Hiv122.2 (6)Cs2xix—In2—Cs2xvii180.0
O2ii—Cs1—Hiv58.5 (6)O1vii—In2—Cs233.71 (7)
O2v—Cs1—Hiv131.7 (6)O1xi—In2—Cs2123.06 (8)
O2iii—Cs1—Hiv55.8 (6)O1xix—In2—Cs2107.44 (8)
O2i—Cs1—Hiv117.1 (6)O1iv—In2—Cs2146.29 (7)
O2iv—Cs1—Hiv55.4 (6)O1xviii—In2—Cs256.94 (8)
H—Cs1—Hiv83.7 (8)O1xvii—In2—Cs272.56 (8)
O3—Cs1—Hiii69.8 (6)Cs2xix—In2—Cs260.0
O3i—Cs1—Hiii100.5 (6)Cs2xvii—In2—Cs2120.0
O3ii—Cs1—Hiii170.2 (6)O1vii—In2—Cs2xvi107.44 (8)
O3iii—Cs1—Hiii13.9 (5)O1xi—In2—Cs2xvi33.71 (7)
O3iv—Cs1—Hiii83.1 (5)O1xix—In2—Cs2xvi123.06 (8)
O3v—Cs1—Hiii105.5 (5)O1iv—In2—Cs2xvi72.56 (8)
O2—Cs1—Hiii55.8 (6)O1xviii—In2—Cs2xvi146.29 (7)
O2ii—Cs1—Hiii131.7 (6)O1xvii—In2—Cs2xvi56.94 (8)
O2v—Cs1—Hiii117.1 (7)Cs2xix—In2—Cs2xvi60.0
O2iii—Cs1—Hiii55.4 (6)Cs2xvii—In2—Cs2xvi120.0
O2i—Cs1—Hiii58.5 (6)Cs2—In2—Cs2xvi120.0
O2iv—Cs1—Hiii122.2 (6)O1vii—In2—Cs2xxii72.56 (8)
H—Cs1—Hiii83.7 (8)O1xi—In2—Cs2xxii146.29 (7)
Hiv—Cs1—Hiii83.7 (8)O1xix—In2—Cs2xxii56.94 (8)
O3iv—Cs2—O3iii73.97 (8)O1iv—In2—Cs2xxii107.44 (8)
O3iv—Cs2—O373.97 (8)O1xviii—In2—Cs2xxii33.71 (7)
O3iii—Cs2—O373.97 (8)O1xvii—In2—Cs2xxii123.06 (8)
O3iv—Cs2—O1vi82.81 (6)Cs2xix—In2—Cs2xxii120.0
O3iii—Cs2—O1vi153.75 (6)Cs2xvii—In2—Cs2xxii60.0
O3—Cs2—O1vi88.16 (7)Cs2—In2—Cs2xxii60.0
O3iv—Cs2—O1vii88.16 (7)Cs2xvi—In2—Cs2xxii180.0
O3iii—Cs2—O1vii82.80 (7)O1vii—In2—Cs2xxiii146.29 (7)
O3—Cs2—O1vii153.75 (7)O1xi—In2—Cs2xxiii56.94 (8)
O1vi—Cs2—O1vii108.90 (4)O1xix—In2—Cs2xxiii72.56 (8)
O3iv—Cs2—O1viii153.75 (7)O1iv—In2—Cs2xxiii33.71 (7)
O3iii—Cs2—O1viii88.16 (7)O1xviii—In2—Cs2xxiii123.06 (8)
O3—Cs2—O1viii82.81 (6)O1xvii—In2—Cs2xxiii107.44 (8)
O1vi—Cs2—O1viii108.90 (4)Cs2xix—In2—Cs2xxiii120.0
O1vii—Cs2—O1viii108.90 (4)Cs2xvii—In2—Cs2xxiii60.0
O3iv—Cs2—O3ix124.57 (9)Cs2—In2—Cs2xxiii180.0
O3iii—Cs2—O3ix148.48 (9)Cs2xvi—In2—Cs2xxiii60.0
O3—Cs2—O3ix86.50 (7)Cs2xxii—In2—Cs2xxiii120.0
O1vi—Cs2—O3ix44.45 (6)O1xx—As—O2117.25 (12)
O1vii—Cs2—O3ix119.69 (6)O1xx—As—O4ii108.41 (12)
O1viii—Cs2—O3ix64.61 (6)O2—As—O4ii113.77 (11)
O3iv—Cs2—O3x86.50 (7)O1xx—As—O3105.44 (13)
O3iii—Cs2—O3x124.56 (9)O2—As—O3104.33 (12)
O3—Cs2—O3x148.48 (8)O4ii—As—O3106.72 (11)
O1vi—Cs2—O3x64.61 (6)O1xx—As—Cs2ix61.74 (9)
O1vii—Cs2—O3x44.45 (6)O2—As—Cs2ix174.14 (8)
O1viii—Cs2—O3x119.69 (6)O4ii—As—Cs2ix71.50 (8)
O3ix—Cs2—O3x84.57 (6)O3—As—Cs2ix71.06 (9)
O3iv—Cs2—O3xi148.48 (9)O1xx—As—Cs1139.73 (11)
O3iii—Cs2—O3xi86.50 (7)O2—As—Cs155.91 (8)
O3—Cs2—O3xi124.57 (9)O4ii—As—Cs1109.82 (8)
O1vi—Cs2—O3xi119.69 (6)O3—As—Cs151.15 (9)
O1vii—Cs2—O3xi64.61 (6)Cs2ix—As—Cs1120.598 (10)
O1viii—Cs2—O3xi44.45 (6)O1xx—As—Cs275.26 (11)
O3ix—Cs2—O3xi84.57 (6)O2—As—Cs299.50 (8)
O3x—Cs2—O3xi84.57 (6)O4ii—As—Cs2138.02 (8)
O3iv—Cs2—O4xii113.69 (6)O3—As—Cs237.36 (8)
O3iii—Cs2—O4xii159.43 (6)Cs2ix—As—Cs274.638 (9)
O3—Cs2—O4xii126.02 (6)Cs1—As—Cs268.078 (14)
O1vi—Cs2—O4xii44.41 (5)Asxxiv—O1—In2xxv140.67 (15)
O1vii—Cs2—O4xii78.54 (5)Asxxiv—O1—Cs2vi93.02 (10)
O1viii—Cs2—O4xii89.74 (5)In2xxv—O1—Cs2vi126.03 (9)
O3ix—Cs2—O4xii43.56 (5)Asxxiv—O1—Cs2xxiv82.42 (10)
O3x—Cs2—O4xii41.47 (5)In2xxv—O1—Cs2xxiv97.96 (9)
O3xi—Cs2—O4xii77.76 (5)Cs2vi—O1—Cs2xxiv80.74 (5)
O3iv—Cs2—O4xiii159.43 (6)Asxxiv—O1—Cs2xxv118.31 (12)
O3iii—Cs2—O4xiii126.02 (6)In2xxv—O1—Cs2xxv82.33 (8)
O3—Cs2—O4xiii113.70 (7)Cs2vi—O1—Cs2xxv72.50 (5)
O1vi—Cs2—O4xiii78.54 (5)Cs2xxiv—O1—Cs2xxv146.39 (6)
O1vii—Cs2—O4xiii89.74 (6)As—O2—In1xxvi122.05 (12)
O1viii—Cs2—O4xiii44.41 (5)As—O2—Cs1100.33 (9)
O3ix—Cs2—O4xiii41.47 (5)In1xxvi—O2—Cs1125.68 (9)
O3x—Cs2—O4xiii77.76 (5)As—O2—Cs260.78 (7)
O3xi—Cs2—O4xiii43.56 (5)In1xxvi—O2—Cs2162.87 (9)
O4xii—Cs2—O4xiii45.97 (6)Cs1—O2—Cs266.29 (4)
O3iv—Cs2—O4xiv126.02 (6)As—O3—Cs2122.83 (12)
O3iii—Cs2—O4xiv113.69 (6)As—O3—Cs1104.40 (11)
O3—Cs2—O4xiv159.43 (6)Cs2—O3—Cs194.64 (7)
O1vi—Cs2—O4xiv89.74 (5)As—O3—Cs2ix82.46 (10)
O1vii—Cs2—O4xiv44.41 (5)Cs2—O3—Cs2ix93.50 (7)
O1viii—Cs2—O4xiv78.53 (5)Cs1—O3—Cs2ix164.05 (8)
O3ix—Cs2—O4xiv77.76 (5)As—O3—H107 (3)
O3x—Cs2—O4xiv43.56 (5)Cs2—O3—H124 (3)
O3xi—Cs2—O4xiv41.47 (5)Cs1—O3—H94 (3)
O4xii—Cs2—O4xiv45.97 (6)Cs2ix—O3—H70 (3)
O4xiii—Cs2—O4xiv45.97 (6)Asii—O4—In1xxv129.32 (12)
O3iv—Cs2—Asxi174.10 (5)Asii—O4—Cs2xxvii83.03 (8)
O3iii—Cs2—Asxi100.69 (5)In1xxv—O4—Cs2xxvii102.24 (8)
O3—Cs2—Asxi107.26 (5)
Symmetry codes: (i) xy, y, z+3/2; (ii) x, x+y, z+3/2; (iii) x+y, x, z; (iv) y, xy, z; (v) y, x, z+3/2; (vi) x+2/3, y2/3, z+4/3; (vii) y+2/3, x+y+4/3, z+4/3; (viii) xy4/3, x2/3, z+4/3; (ix) x1/3, y2/3, z+4/3; (x) y+2/3, x+y+1/3, z+4/3; (xi) xy1/3, x+1/3, z+4/3; (xii) x1/3, xy2/3, z1/6; (xiii) y1/3, x+1/3, z1/6; (xiv) x+y+2/3, y+1/3, z1/6; (xv) y, xy+1, z; (xvi) x+1, y+1, z; (xvii) x, y+1, z; (xviii) x+y+1, x+1, z; (xix) x+2/3, y+1/3, z+4/3; (xx) x1, y, z; (xxi) y+1/3, x+2/3, z+1/6; (xxii) x1/3, y+1/3, z+4/3; (xxiii) x+2/3, y+4/3, z+4/3; (xxiv) x+1, y, z; (xxv) x, y1, z; (xxvi) x1, y1, z; (xxvii) y+1/3, x1/3, z+1/6.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H···O4xxviii0.83 (3)1.80 (3)2.621 (3)170 (4)
Symmetry code: (xxviii) y, x1, z+3/2.
 

Acknowledgements

The authors acknowledge the TU Wien University Library for financial support through its Open Access Funding Program.

Funding information

Funding for this research was provided by: Austrian Academy of Sciences, Doc-fForte Fellowship to K. Schwendtner.

References

First citationBaur, W. H. (1981). Structure and Bonding in Crystals, edited by M. O'Keeffe & A. Navrotsky, pp. 31–52. New York: Academic Press.
First citationBelam, W., Driss, A. & Jouini, T. (1997). Acta Cryst. C53, 5–7.  CrossRef CAS Web of Science IUCr Journals
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationEzhova, Z. A., Deichman, E. N. & Tananaev, I. V. (1977). Zh. Neorg. Khim. 22, 2696–2703.  CAS
First citationFilaretov, A. A., Zhizhin, M. G., Komissarova, L. N., Danilov, V. P., Chernyshev, V. V. & Lazoryak, B. I. (2002a). J. Solid State Chem. 166, 362–368.  CrossRef CAS
First citationFilaretov, A. A., Zhizhin, M. G., Olenev, A. V., Gurkin, A. A., Bobylev, A. P., Lazoryak, B. I., Danilov, V. P. & Komissarova, L. N. (2002b). Zh. Neorg. Khim. 47, 1930–1946.  CAS
First citationGagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578.  Web of Science CrossRef IUCr Journals
First citationHuang, Y.-X., Li, M.-R., Mi, J.-X., Mao, S.-Y., Chen, H.-H. & Zhao, J.-T. (2004). Wuji Huaxue Xuebao, 20, 1191–1196.  CAS
First citationKhorari, S., Rulmont, A. & Tarte, P. (1997). J. Solid State Chem. 134, 31–37.  Web of Science CrossRef CAS
First citationKolitsch, U. (2004). Z. Kristallogr. New Cryst. Struct. 219, 207–208.  CAS
First citationLesage, J., Adam, L., Guesdon, A. & Raveau, B. (2007). J. Solid State Chem. 180, 1799–1808.  Web of Science CrossRef CAS
First citationLii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577–1580.
First citationLii, K.-H. & Ye, J. (1997). J. Solid State Chem. 131, 131–137.  CrossRef CAS Web of Science
First citationMao, S.-Y., Li, M.-R., Mi, J.-X., Chen, H.-H., Deng, J.-F. & Zhao, J.-T. (2002). Z. Kristallogr. New Cryst. Struct. 217, 311–312.  CAS
First citationMasquelier, C., d'Yvoire, F., Bretey, E., Berthet, P. & Peytour-Chansac, C. (1994a). Solid State Ionics, 67, 183–189.  CrossRef CAS Web of Science
First citationMasquelier, C., d'Yvoire, F. & Collin, G. (1994b). Solid State Ionic Materials, Proceedings of the 4th Asian Conference on Solid State Ionics, Kuala Lumpur, Malaysia, 2–6 August 1994, edited by B. V. R. Chowdari, M. Yahaya, I. A. Talib & M. M. Salleh, pp. 167–172. Singapore: World Scientific.
First citationMasquelier, C., d'Yvoire, F. & Collin, G. (1995). J. Solid State Chem. 118, 33–42.  CrossRef CAS Web of Science
First citationMasquelier, C., d'Yvoire, F. & Rodier, N. (1990). Acta Cryst. C46, 1584–1587.  CrossRef CAS Web of Science IUCr Journals
First citationMasquelier, C., Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. (1998). J. Solid State Chem. 135, 228–234.  Web of Science CrossRef CAS
First citationMasquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the 37th Power Sources Conference, Cherry Hill, New Jersey, June 17–20, 1996, pp. 188–191. Fort Monmouth, NJ: US Army Research Laboratory.
First citationMesa, J. L., Goñi, A., Brandl, A. L., Moreno, N. O., Barberis, G. E. & Rojo, T. (2000). J. Mater. Chem. 10, 2779–2785.  Web of Science CrossRef CAS
First citationNonius (2003). KappaCCD Server Software and COLLECT. Nonius BV, Delft, The Netherlands.
First citationOtwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234.  Web of Science CrossRef CAS IUCr Journals
First citationOuerfelli, N., Guesmi, A., Mazza, D., Madani, A., Zid, M. F. & Driss, A. (2007a). J. Solid State Chem. 180, 1224–1229.  Web of Science CrossRef CAS
First citationOuerfelli, N., Guesmi, A., Mazza, D., Zid, M. F. & Driss, A. (2008). Acta Cryst. C64, i41–i44.  Web of Science CrossRef IUCr Journals
First citationOuerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007b). J. Solid State Chem. 180, 2942–2949.  Web of Science CrossRef CAS
First citationOuerfelli, N., Souilem, A., Zid, M. F. & Driss, A. (2014). Acta Cryst. E70, i21–i22.  CSD CrossRef IUCr Journals
First citationPintard-Scrépel, M., d'Yvoire, F. & Durand, J. (1983). Acta Cryst. C39, 9–12.  CrossRef IUCr Journals
First citationPrem, M., Lengauer, C. & Tillmanns, E. (2005a). University of Vienna, Austria. ICDD Grant-in-Aid.
First citationPrem, M., Lengauer, C. & Tillmanns, E. (2005b). University of Vienna, Austria. ICDD Grant-in-Aid.
First citationRousse, G., Rodríguez-Carvajal, J., Wurm, C. & Masquelier, C. (2013). Phys. Rev. B, 88, 214433214431–214433/214439.  CrossRef
First citationSchwendtner, K. (2006). J. Alloys Compd. 421, 57–63.  Web of Science CrossRef CAS
First citationSchwendtner, K. (2008). PhD thesis, Universität Wien, Austria.
First citationSchwendtner, K. & Kolitsch, U. (2004a). Acta Cryst. C60, i79–i83.  Web of Science CrossRef CAS IUCr Journals
First citationSchwendtner, K. & Kolitsch, U. (2004b). Acta Cryst. C60, i84–i88.  Web of Science CrossRef CAS IUCr Journals
First citationSchwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90–i93.  Web of Science CrossRef CAS IUCr Journals
First citationSchwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205–215.  Web of Science CrossRef IUCr Journals
First citationSchwendtner, K. & Kolitsch, U. (2007b). Acta Cryst. C63, i17–i20.  Web of Science CrossRef IUCr Journals
First citationSchwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399–409.  Web of Science CrossRef CAS
First citationSchwendtner, K. & Kolitsch, U. (2007d). Mineral. Mag. 71, 249–263.  Web of Science CrossRef CAS
First citationSchwendtner, K. & Kolitsch, U. (2017a). Acta Cryst. C73, 600–608.  Web of Science CSD CrossRef IUCr Journals
First citationSchwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 1294–1297.  CrossRef IUCr Journals
First citationSchwendtner, K. & Kolitsch, U. (2017c). Acta Cryst. E73, 785–790.  CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationVencato, I., Mattievich, E., Moreira, L. F. & Mascarenhas, Y. P. (1989). Acta Cryst. C45, 367–371.  CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationWinand, J. M., Rulmont, A. & Tarte, P. (1990). J. Solid State Chem. 87, 83–94.  CrossRef CAS
First citationYakubovich, O. V. (1993). Kristallografiya, 38, 43–48.  CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds