research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a twisted-ribbon type double-stranded AgI coordination polymer: catena-poly[[silver(I)-μ3-bis­­(pyridin-3-ylmeth­yl)sulfane-κ3N:N′:S] nitrate]

CROSSMARK_Color_square_no_text.svg

aDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea, bDivision of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea, and cResearch institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: kangy@kangwon.ac.kr, kmpark@gnu.ac.kr

Edited by J. Simpson, University of Otago, New Zealand (Received 24 September 2017; accepted 27 September 2017; online 29 September 2017)

The asymmetric unit in the title compound, {[Ag(C12H12N2S)]·NO3}n or {[AgL]·NO3}n, L = bis­(pyridin-3-ylmeth­yl)sulfane, consists of an AgI cation bound to a pyridine N atom of an L ligand and an NO3 anion that is disordered over two orientations in an 0.570 (17):0.430 (17) occupancy ratio. Each AgI cation is coordinated by two pyridine N atoms from adjacent L ligands to form an infinite zigzag chain along [110]. In addition, each AgI ion binds to an S donor from a third L ligand in an adjacent parallel chain, resulting in the formation of a twisted-ribbon type of double-stranded chain propagating along the [110] or [1-10] directions. The AgI atom is displaced out of the trigonal N2S coordination plane by 0.371 (3) Å because of inter­actions between the AgI cation and O atoms of the disordered nitrate anions. Inter­molecular ππ stacking inter­actions [centroid-to-centroid distance = 3.824 (3) Å] occur between one pair of corresponding pyridine rings in the double-stranded chain. In the crystal, the double-stranded chains are alternately stacked along the c axis with alternate stacks linked by inter­molecular ππ stacking inter­actions [centroid-to-centroid distance = 3.849 (3) Å], generating a three-dimensional supra­molecular architecture. Weak inter­molecular C—H⋯O hydrogen bonds between the polymer chains and the O atoms of the nitrate anions also occur.

1. Chemical context

Among the diverse key factors in the development of AgI coordination polymers, the structures of the spacer ligands play important roles in determining the structural topology of the self-assembled polymer units (Zheng et al., 2009[Zheng, S.-R., Yang, Q.-Y., Yang, R., Pan, M., Cao, R. & Su, C.-Y. (2009). Cryst. Growth Des. 9, 2341-2353.]; Liu et al., 2011[Liu, D., Chang, Y.-J. & Lang, J.-P. (2011). CrystEngComm, 13, 1851-1857.]). For this reason, continuous efforts have focused on the design and development of such suitable ligands. In particular, dipyridyl-type mol­ecules functioning as bridging ligands have been widely used to construct diverse AgI coordination polymers with fascinating structures and attractive functional properties (Leong & Vittal, 2011[Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688-764.]; Moulton & Zaworotko, 2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]; Wang et al., 2012[Wang, C., Zhang, T. & Lin, W. (2012). Chem. Rev. 112, 1084-1104.]). We have also reported several AgI coordination polymers with inter­esting structures using dipyridyl-type ligands (Lee et al., 2012[Lee, E., Seo, J., Lee, S. S. & Park, K.-M. (2012). Cryst. Growth Des. 12, 3834-3837.], 2015[Lee, E., Ju, H., Moon, S.-H., Lee, S. S. & Park, K.-M. (2015). Bull. Korean Chem. Soc. 36, 1532-1535.]; Moon et al., 2015[Moon, S.-H., Kang, Y. & Park, K.-M. (2015). Acta Cryst. E71, 1287-1289.], 2016[Moon, S.-H., Kang, D. & Park, K.-M. (2016). Acta Cryst. E72, 1513-1516.]; Park et al., 2010[Park, K.-M., Seo, J., Moon, S.-H. & Lee, S. S. (2010). Cryst. Growth Des. 10, 4148-4154.]). The continuing inter­est in dipyridyl-type-ligand-based AgI coordination polymers prompted us to investigate the use of the ligand bis­(pyridin-3-ylmeth­yl)sulfane (L), which can coordinate to three AgI cations in a T-shape via the two pyridine nitro­gen donors as a bridgehead and the sulfur donor atoms, binding to the AgI cations at both ends of the dipyridyl bridge as well as at its centre. A reaction of silver(I) nitrate with L (synthesized using a literature procedure; Park et al., 2010[Park, K.-M., Seo, J., Moon, S.-H. & Lee, S. S. (2010). Cryst. Growth Des. 10, 4148-4154.]; Lee et al., 2012[Lee, E., Seo, J., Lee, S. S. & Park, K.-M. (2012). Cryst. Growth Des. 12, 3834-3837.]) afforded the title compound. Herein, we report its one-dimensional twisted-ribbon type double-stranded chain structure in the crystal.

[Scheme 1]

2. Structural commentary

As shown in Fig. 1[link], the asymmetric unit of the title compound comprises one AgI cation, bound to the N1 pyridine atom of a bis­(pyridin-3-ylmeth­yl)sulfane ligand, L, and an NO3 anion that is disordered over two orientations in an 0.570 (17):0.430 (17) occupancy ratio. Pyridine N atoms N1 and N2 from two symmetry-related L ligands bind to the AgI cations to form an infinite zigzag chain. In addition, each AgI ion binds to an S1 donor from a third L ligand in an adjacent parallel chain, resulting in the formation of a twisted-ribbon type of double-stranded chain propagating along the [110] or [1[\overline{1}]0] directions (Figs. 2[link] and 3[link]). The AgI atom is therefore three-coordinated and the coordination geometry around the AgI cation can be considered as a highly distorted trigonal plane. Selected bond lengths and angles around the Ag1 atom are given in Table 1[link]. N—Ag—N and N—Ag—S angles fall in the range 106.03 (12)–133.18 (12)°, deviating significantly from ideal trigonal–planar geometry. This may reflect the influence of additional Ag⋯O–NO2 inter­actions between the AgI ion and O atoms of the disordered nitrate anion [Ag1⋯O1 = 2.730 (18), Ag1⋯O1′ = 2.55 (2) Å; indicated by a dashed line in Fig. 1[link]]. The AgI atom is displaced out of the trigonal N1, S1, N2 coordination plane by 0.372 (2) Å. The two pyridine rings coordinated to the AgI centre are tilted by 53.20 (15)° with respect to each other. In the double-stranded chain, inter­molecular ππ stacking inter­actions between the N1-pyridine rings [Cg1⋯Cg1i = 3.824 (3) Å; yellow dashed lines in Fig. 2[link]; Cg1 is the centroid of the N1/C1–C5 ring; symmetry code: (i) −x + [{1\over 2}], −y + [{1\over 2}], −z + 1] contribute to the stabilization of the double-stranded chain.

Table 1
Selected geometric parameters (Å, °)

Ag1—N2i 2.276 (5) Ag1—S1ii 2.5305 (14)
Ag1—N1 2.333 (4)    
       
N2i—Ag1—N1 113.22 (16) N1—Ag1—S1ii 106.03 (12)
N2i—Ag1—S1ii 133.18 (12)    
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
View of the mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Disordered O atoms of the NO3 anion have been omitted for clarity. The dashed line represents the Ag⋯O inter­action. [Symmetry codes: (i) x − [{1\over 2}], y + [{1\over 2}], z; (ii) −x + [{1\over 2}], −y + [{1\over 2}], −z + 1; (iii) x + [{1\over 2}], y − [{1\over 2}], z.]
[Figure 2]
Figure 2
The double-stranded polymeric chains propagating along the [110] (upper chain) and [1[\overline{1}]0] (lower chain) directions. Yellow dashed lines represent inter­molecular ππ stacking inter­actions [centroid-to-centroid distance = 3.824 (3) Å] between the N1-containing pyridine rings in the chain. NO3 anions and H atoms have been omitted for clarity.
[Figure 3]
Figure 3
Three-dimensional supra­molecular network via inter­molecular ππ stacking inter­actions (yellow dashed lines) between the N2-containing pyridine rings. NO3 anions and H atoms have been omitted for clarity.

3. Supra­molecular features

As shown in Fig. 3[link], the double-stranded chains propagate along the [110] and [1[\overline{1}]0] directions in the crystal and are alternately stacked along the c axis. Adjacent chains are linked by inter­molecular ππ stacking inter­actions between N2-pyridine rings [Cg2⋯Cg2ii = 3.849 (3) Å; yellow dashed lines in Fig. 3[link]; Cg2 is the centroid of the N2/C8–C12 ring; symmetry code: (ii) −x + 1, y, −z + [{1\over 2}]], resulting in the formation of a three-dimensional supra­molecular architecture (Fig. 3[link]). Weak inter­molecular C—H⋯O hydrogen bonds (Table 2[link]) between the double-stranded chains and the NO3 anions are also observed in the crystal.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2 0.93 2.59 2.924 (12) 102
C5—H5⋯O2iii 0.93 2.60 3.318 (14) 135
C6—H6A⋯O2iv 0.97 2.52 3.464 (14) 163
C6—H6B⋯O2′v 0.97 2.60 3.44 (2) 145
C7—H7B⋯O3′iv 0.97 2.38 3.233 (15) 147
C9—H9⋯O1vi 0.93 2.49 3.221 (18) 136
C12—H12⋯O3vii 0.93 2.45 3.256 (12) 145
Symmetry codes: (iii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x, y-1, z; (vi) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (vii) [-x+{\script{1\over 2}}, y-{\script{3\over 2}}, -z+{\script{1\over 2}}].

4. Synthesis and crystallization

The L ligand was synthesized according to a literature method (Park et al., 2010[Park, K.-M., Seo, J., Moon, S.-H. & Lee, S. S. (2010). Cryst. Growth Des. 10, 4148-4154.]; Lee et al., 2012[Lee, E., Seo, J., Lee, S. S. & Park, K.-M. (2012). Cryst. Growth Des. 12, 3834-3837.]). Colourless plate-like X-ray quality single crystals of the title compound were obtained by vapor diffusion of diethyl ether into a DMSO solution of the L ligand with AgNO3 in a 1:1 molar ratio.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The NO3 anion is disordered over two orientations and the occupancies of the disorder components refined to a 0.570 (17):0.430 (17) ratio. The anisotropic displacement ellipsoids of four oxygen atoms (O3, O1′, O2′ and O3′) in the disordered NO3 anion were very elongated and therefore ISOR restraints were applied for these atoms (McArdle, 1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]). All H atoms were positioned geometrically and refined as riding: C—H = 0.93 Å for Csp2—H and 0.97 Å for methyl­ene C—H, with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Ag(C12H12N2S)]NO3
Mr 386.18
Crystal system, space group Monoclinic, C2/c
Temperature (K) 298
a, b, c (Å) 22.432 (3), 8.1656 (12), 15.036 (2)
β (°) 98.636 (3)
V3) 2722.9 (7)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.64
Crystal size (mm) 0.25 × 0.20 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.658, 0.896
No. of measured, independent and observed [I > 2σ(I)] reflections 7550, 2676, 1763
Rint 0.079
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.109, 0.97
No. of reflections 2676
No. of parameters 209
No. of restraints 24
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.66, −0.66
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

catena-Poly[[silver(I)-µ3-bis(pyridin-3-ylmethyl)sulfane-κ3N:N':S] nitrate] top
Crystal data top
[Ag(C12H12N2S)]NO3F(000) = 1536
Mr = 386.18Dx = 1.884 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.432 (3) ÅCell parameters from 3272 reflections
b = 8.1656 (12) Åθ = 1.8–28.3°
c = 15.036 (2) ŵ = 1.64 mm1
β = 98.636 (3)°T = 298 K
V = 2722.9 (7) Å3Plate, colourless
Z = 80.25 × 0.20 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
1763 reflections with I > 2σ(I)
φ and ω scansRint = 0.079
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 26.0°, θmin = 2.7°
Tmin = 0.658, Tmax = 0.896h = 2726
7550 measured reflectionsk = 108
2676 independent reflectionsl = 189
Refinement top
Refinement on F224 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0526P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
2676 reflectionsΔρmax = 0.66 e Å3
209 parametersΔρmin = 0.66 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.13008 (2)0.47824 (6)0.49130 (3)0.05552 (19)
S10.33342 (6)0.07112 (16)0.34926 (9)0.0417 (3)
N10.2163 (2)0.4068 (5)0.4306 (3)0.0460 (11)
N20.5458 (2)0.1552 (6)0.4256 (3)0.0501 (11)
N30.1183 (3)0.8084 (7)0.3663 (4)0.0662 (15)
O10.0800 (7)0.756 (2)0.4114 (15)0.106 (6)0.570 (17)
O20.1701 (6)0.7472 (18)0.3893 (9)0.117 (5)0.570 (17)
O30.1169 (6)0.9256 (15)0.3181 (8)0.105 (5)0.570 (17)
O1'0.1009 (9)0.764 (3)0.4311 (15)0.072 (5)0.430 (17)
O2'0.1641 (12)0.845 (3)0.3590 (16)0.133 (8)0.430 (17)
O3'0.0762 (7)0.815 (2)0.2930 (9)0.096 (6)0.430 (17)
C10.2231 (2)0.2722 (6)0.3824 (3)0.0391 (12)
H10.19050.20110.36990.047*
C20.2760 (2)0.2324 (6)0.3498 (3)0.0386 (12)
C30.3244 (2)0.3392 (6)0.3697 (4)0.0464 (13)
H30.36060.31750.34870.056*
C40.3188 (2)0.4778 (6)0.4206 (4)0.0483 (13)
H40.35100.54980.43490.058*
C50.2640 (3)0.5066 (6)0.4498 (4)0.0503 (13)
H50.26010.59950.48420.060*
C60.2786 (2)0.0785 (7)0.2966 (4)0.0466 (13)
H6A0.28840.10650.23780.056*
H6B0.23890.02840.28770.056*
C70.3975 (2)0.0395 (7)0.2890 (4)0.0478 (13)
H7A0.38700.07220.22660.057*
H7B0.40890.07520.29080.057*
C80.4488 (2)0.1419 (6)0.3345 (3)0.0426 (12)
C90.4985 (2)0.0697 (7)0.3829 (4)0.0451 (12)
H90.49970.04400.38660.054*
C100.5422 (3)0.3178 (8)0.4195 (4)0.0591 (16)
H100.57390.37920.44960.071*
C110.4946 (3)0.4000 (7)0.3715 (5)0.0631 (17)
H110.49440.51370.36840.076*
C120.4474 (3)0.3106 (7)0.3282 (4)0.0538 (15)
H120.41470.36310.29470.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0456 (3)0.0747 (3)0.0449 (3)0.0096 (2)0.00258 (18)0.0054 (2)
S10.0366 (6)0.0477 (7)0.0410 (7)0.0028 (5)0.0063 (5)0.0036 (6)
N10.046 (3)0.051 (3)0.042 (3)0.003 (2)0.010 (2)0.001 (2)
N20.043 (3)0.062 (3)0.045 (3)0.007 (2)0.006 (2)0.008 (2)
N30.076 (4)0.060 (4)0.066 (4)0.007 (3)0.020 (4)0.003 (3)
O10.071 (9)0.100 (9)0.147 (15)0.021 (7)0.014 (9)0.046 (9)
O20.102 (8)0.110 (9)0.127 (10)0.063 (7)0.016 (7)0.004 (8)
O30.132 (8)0.088 (7)0.102 (7)0.033 (6)0.045 (6)0.049 (6)
O1'0.081 (7)0.069 (6)0.068 (6)0.005 (5)0.013 (5)0.003 (4)
O2'0.125 (11)0.145 (11)0.131 (11)0.033 (9)0.027 (8)0.006 (8)
O3'0.100 (9)0.110 (9)0.074 (8)0.040 (7)0.001 (6)0.019 (6)
C10.037 (3)0.045 (3)0.033 (3)0.003 (2)0.000 (2)0.003 (2)
C20.041 (3)0.041 (3)0.033 (3)0.006 (2)0.002 (2)0.007 (2)
C30.042 (3)0.050 (3)0.048 (3)0.001 (2)0.010 (2)0.006 (3)
C40.046 (3)0.043 (3)0.054 (3)0.006 (2)0.003 (3)0.008 (3)
C50.059 (3)0.047 (3)0.043 (3)0.003 (3)0.004 (3)0.004 (3)
C60.045 (3)0.056 (3)0.037 (3)0.006 (2)0.002 (2)0.000 (3)
C70.039 (3)0.064 (3)0.040 (3)0.002 (2)0.006 (2)0.003 (3)
C80.037 (3)0.055 (3)0.039 (3)0.001 (2)0.015 (2)0.004 (3)
C90.042 (3)0.051 (3)0.043 (3)0.006 (2)0.009 (2)0.005 (3)
C100.051 (4)0.064 (4)0.063 (4)0.019 (3)0.010 (3)0.005 (3)
C110.060 (4)0.048 (3)0.085 (5)0.003 (3)0.023 (4)0.002 (3)
C120.045 (3)0.061 (4)0.059 (4)0.004 (3)0.018 (3)0.012 (3)
Geometric parameters (Å, º) top
Ag1—N2i2.276 (5)C2—C31.389 (7)
Ag1—N12.333 (4)C2—C61.495 (7)
Ag1—S1ii2.5305 (14)C3—C41.383 (7)
Ag1—O1'2.55 (2)C3—H30.9300
S1—C61.828 (5)C4—C51.385 (8)
S1—C71.829 (5)C4—H40.9300
S1—Ag1ii2.5305 (14)C5—H50.9300
N1—C11.338 (6)C6—H6A0.9700
N1—C51.342 (7)C6—H6B0.9700
N2—C101.333 (7)C7—C81.500 (7)
N2—C91.348 (7)C7—H7A0.9700
N2—Ag1iii2.276 (5)C7—H7B0.9700
N3—O2'1.09 (2)C8—C91.371 (7)
N3—O1'1.16 (2)C8—C121.381 (7)
N3—O31.199 (11)C9—H90.9300
N3—O11.246 (17)C10—C111.371 (9)
N3—O21.265 (12)C10—H100.9300
N3—O3'1.340 (14)C11—C121.367 (8)
C1—C21.389 (7)C11—H110.9300
C1—H10.9300C12—H120.9300
N2i—Ag1—N1113.22 (16)C3—C4—H4120.9
N2i—Ag1—S1ii133.18 (12)C5—C4—H4120.9
N1—Ag1—S1ii106.03 (12)N1—C5—C4123.1 (5)
N2i—Ag1—O1'97.5 (4)N1—C5—H5118.4
N1—Ag1—O1'105.9 (5)C4—C5—H5118.4
S1ii—Ag1—O1'95.2 (5)C2—C6—S1114.0 (4)
C6—S1—C7102.7 (3)C2—C6—H6A108.7
C6—S1—Ag1ii108.12 (18)S1—C6—H6A108.7
C7—S1—Ag1ii105.08 (18)C2—C6—H6B108.7
C1—N1—C5117.6 (5)S1—C6—H6B108.7
C1—N1—Ag1125.9 (3)H6A—C6—H6B107.6
C5—N1—Ag1116.5 (3)C8—C7—S1107.6 (4)
C10—N2—C9116.7 (5)C8—C7—H7A110.2
C10—N2—Ag1iii122.9 (4)S1—C7—H7A110.2
C9—N2—Ag1iii120.1 (4)C8—C7—H7B110.2
O2'—N3—O1'127.6 (17)S1—C7—H7B110.2
O3—N3—O1130.1 (11)H7A—C7—H7B108.5
O3—N3—O2114.9 (11)C9—C8—C12118.2 (5)
O1—N3—O2113.4 (12)C9—C8—C7120.6 (5)
O2'—N3—O3'117.6 (16)C12—C8—C7121.1 (5)
O1'—N3—O3'114.7 (13)N2—C9—C8123.3 (5)
N3—O1'—Ag1118.8 (14)N2—C9—H9118.3
N1—C1—C2123.8 (5)C8—C9—H9118.3
N1—C1—H1118.1N2—C10—C11123.9 (6)
C2—C1—H1118.1N2—C10—H10118.1
C3—C2—C1117.3 (5)C11—C10—H10118.1
C3—C2—C6123.5 (5)C12—C11—C10118.4 (6)
C1—C2—C6119.2 (5)C12—C11—H11120.8
C4—C3—C2120.0 (5)C10—C11—H11120.8
C4—C3—H3120.0C11—C12—C8119.5 (6)
C2—C3—H3120.0C11—C12—H12120.3
C3—C4—C5118.2 (5)C8—C12—H12120.3
O2'—N3—O1'—Ag173 (3)Ag1ii—S1—C6—C210.9 (4)
O3'—N3—O1'—Ag1107.3 (14)C6—S1—C7—C8173.0 (4)
C5—N1—C1—C21.3 (7)Ag1ii—S1—C7—C860.0 (4)
Ag1—N1—C1—C2178.0 (4)S1—C7—C8—C9110.0 (5)
N1—C1—C2—C30.5 (7)S1—C7—C8—C1270.4 (6)
N1—C1—C2—C6180.0 (5)C10—N2—C9—C80.5 (8)
C1—C2—C3—C40.5 (7)Ag1iii—N2—C9—C8173.4 (4)
C6—C2—C3—C4178.9 (5)C12—C8—C9—N20.8 (8)
C2—C3—C4—C50.7 (8)C7—C8—C9—N2179.6 (5)
C1—N1—C5—C41.2 (8)C9—N2—C10—C111.5 (9)
Ag1—N1—C5—C4178.2 (4)Ag1iii—N2—C10—C11172.3 (5)
C3—C4—C5—N10.2 (8)N2—C10—C11—C121.0 (10)
C3—C2—C6—S162.6 (6)C10—C11—C12—C80.5 (9)
C1—C2—C6—S1116.9 (4)C9—C8—C12—C111.3 (8)
C7—S1—C6—C299.9 (4)C7—C8—C12—C11179.1 (5)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O20.932.592.924 (12)102
C5—H5···O2iv0.932.603.318 (14)135
C6—H6A···O2v0.972.523.464 (14)163
C6—H6B···O2vi0.972.603.44 (2)145
C7—H7B···O3v0.972.383.233 (15)147
C9—H9···O1iii0.932.493.221 (18)136
C12—H12···O3vii0.932.453.256 (12)145
Symmetry codes: (iii) x+1/2, y1/2, z; (iv) x+1/2, y+3/2, z+1; (v) x+1/2, y1/2, z+1/2; (vi) x, y1, z; (vii) x+1/2, y3/2, z+1/2.
 

Funding information

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A3A01020410 and NRF-2016R1D1A1B01012630).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationLee, E., Ju, H., Moon, S.-H., Lee, S. S. & Park, K.-M. (2015). Bull. Korean Chem. Soc. 36, 1532–1535.  Web of Science CrossRef CAS
First citationLee, E., Seo, J., Lee, S. S. & Park, K.-M. (2012). Cryst. Growth Des. 12, 3834–3837.  Web of Science CSD CrossRef CAS
First citationLeong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764.  Web of Science CrossRef CAS PubMed
First citationLiu, D., Chang, Y.-J. & Lang, J.-P. (2011). CrystEngComm, 13, 1851–1857.  Web of Science CSD CrossRef CAS
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals
First citationMoon, S.-H., Kang, Y. & Park, K.-M. (2015). Acta Cryst. E71, 1287–1289.  Web of Science CSD CrossRef IUCr Journals
First citationMoon, S.-H., Kang, D. & Park, K.-M. (2016). Acta Cryst. E72, 1513–1516.  CSD CrossRef IUCr Journals
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS
First citationPark, K.-M., Seo, J., Moon, S.-H. & Lee, S. S. (2010). Cryst. Growth Des. 10, 4148–4154.  Web of Science CSD CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationWang, C., Zhang, T. & Lin, W. (2012). Chem. Rev. 112, 1084–1104.  Web of Science CrossRef CAS PubMed
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationZheng, S.-R., Yang, Q.-Y., Yang, R., Pan, M., Cao, R. & Su, C.-Y. (2009). Cryst. Growth Des. 9, 2341–2353.  Web of Science CSD CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds