research communications
I coordination polymer: catena-poly[[silver(I)-μ3-bis(pyridin-3-ylmethyl)sulfane-κ3N:N′:S] nitrate]
of a twisted-ribbon type double-stranded AgaDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea, bDivision of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea, and cResearch institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: kangy@kangwon.ac.kr, kmpark@gnu.ac.kr
The 12H12N2S)]·NO3}n or {[AgL]·NO3}n, L = bis(pyridin-3-ylmethyl)sulfane, consists of an AgI cation bound to a pyridine N atom of an L ligand and an NO3− anion that is disordered over two orientations in an 0.570 (17):0.430 (17) occupancy ratio. Each AgI cation is coordinated by two pyridine N atoms from adjacent L ligands to form an infinite zigzag chain along [110]. In addition, each AgI ion binds to an S donor from a third L ligand in an adjacent parallel chain, resulting in the formation of a twisted-ribbon type of double-stranded chain propagating along the [110] or [1-10] directions. The AgI atom is displaced out of the trigonal N2S coordination plane by 0.371 (3) Å because of interactions between the AgI cation and O atoms of the disordered nitrate anions. Intermolecular π–π stacking interactions [centroid-to-centroid distance = 3.824 (3) Å] occur between one pair of corresponding pyridine rings in the double-stranded chain. In the crystal, the double-stranded chains are alternately stacked along the c axis with alternate stacks linked by intermolecular π–π stacking interactions [centroid-to-centroid distance = 3.849 (3) Å], generating a three-dimensional supramolecular architecture. Weak intermolecular C—H⋯O hydrogen bonds between the polymer chains and the O atoms of the nitrate anions also occur.
in the title compound, {[Ag(CKeywords: crystal structure; silver(I); tridentate ligand; double-stranded chain; hydrogen bonding; π–π interactions.
CCDC reference: 1576726
1. Chemical context
Among the diverse key factors in the development of AgI coordination polymers, the structures of the spacer ligands play important roles in determining the structural topology of the self-assembled polymer units (Zheng et al., 2009; Liu et al., 2011). For this reason, continuous efforts have focused on the design and development of such suitable ligands. In particular, dipyridyl-type molecules functioning as bridging ligands have been widely used to construct diverse AgI coordination polymers with fascinating structures and attractive functional properties (Leong & Vittal, 2011; Moulton & Zaworotko, 2001; Wang et al., 2012). We have also reported several AgI coordination polymers with interesting structures using dipyridyl-type ligands (Lee et al., 2012, 2015; Moon et al., 2015, 2016; Park et al., 2010). The continuing interest in dipyridyl-type-ligand-based AgI coordination polymers prompted us to investigate the use of the ligand bis(pyridin-3-ylmethyl)sulfane (L), which can coordinate to three AgI cations in a T-shape via the two pyridine nitrogen donors as a bridgehead and the sulfur donor atoms, binding to the AgI cations at both ends of the dipyridyl bridge as well as at its centre. A reaction of silver(I) nitrate with L (synthesized using a literature procedure; Park et al., 2010; Lee et al., 2012) afforded the title compound. Herein, we report its one-dimensional twisted-ribbon type double-stranded chain structure in the crystal.
2. Structural commentary
As shown in Fig. 1, the of the title compound comprises one AgI cation, bound to the N1 pyridine atom of a bis(pyridin-3-ylmethyl)sulfane ligand, L, and an NO3− anion that is disordered over two orientations in an 0.570 (17):0.430 (17) occupancy ratio. Pyridine N atoms N1 and N2 from two symmetry-related L ligands bind to the AgI cations to form an infinite zigzag chain. In addition, each AgI ion binds to an S1 donor from a third L ligand in an adjacent parallel chain, resulting in the formation of a twisted-ribbon type of double-stranded chain propagating along the [110] or [10] directions (Figs. 2 and 3). The AgI atom is therefore three-coordinated and the coordination geometry around the AgI cation can be considered as a highly distorted trigonal plane. Selected bond lengths and angles around the Ag1 atom are given in Table 1. N—Ag—N and N—Ag—S angles fall in the range 106.03 (12)–133.18 (12)°, deviating significantly from ideal trigonal–planar geometry. This may reflect the influence of additional Ag⋯O–NO2− interactions between the AgI ion and O atoms of the disordered nitrate anion [Ag1⋯O1 = 2.730 (18), Ag1⋯O1′ = 2.55 (2) Å; indicated by a dashed line in Fig. 1]. The AgI atom is displaced out of the trigonal N1, S1, N2 coordination plane by 0.372 (2) Å. The two pyridine rings coordinated to the AgI centre are tilted by 53.20 (15)° with respect to each other. In the double-stranded chain, intermolecular π–π stacking interactions between the N1-pyridine rings [Cg1⋯Cg1i = 3.824 (3) Å; yellow dashed lines in Fig. 2; Cg1 is the centroid of the N1/C1–C5 ring; symmetry code: (i) −x + , −y + , −z + 1] contribute to the stabilization of the double-stranded chain.
3. Supramolecular features
As shown in Fig. 3, the double-stranded chains propagate along the [110] and [10] directions in the crystal and are alternately stacked along the c axis. Adjacent chains are linked by intermolecular π–π stacking interactions between N2-pyridine rings [Cg2⋯Cg2ii = 3.849 (3) Å; yellow dashed lines in Fig. 3; Cg2 is the centroid of the N2/C8–C12 ring; symmetry code: (ii) −x + 1, y, −z + ], resulting in the formation of a three-dimensional supramolecular architecture (Fig. 3). Weak intermolecular C—H⋯O hydrogen bonds (Table 2) between the double-stranded chains and the NO3− anions are also observed in the crystal.
4. Synthesis and crystallization
The L ligand was synthesized according to a literature method (Park et al., 2010; Lee et al., 2012). Colourless plate-like X-ray quality single crystals of the title compound were obtained by vapor diffusion of diethyl ether into a DMSO solution of the L ligand with AgNO3 in a 1:1 molar ratio.
5. Refinement
Crystal data, data collection and structure . The NO3− anion is disordered over two orientations and the occupancies of the disorder components refined to a 0.570 (17):0.430 (17) ratio. The anisotropic displacement ellipsoids of four oxygen atoms (O3, O1′, O2′ and O3′) in the disordered NO3− anion were very elongated and therefore ISOR restraints were applied for these atoms (McArdle, 1995; Sheldrick, 2008). All H atoms were positioned geometrically and refined as riding: C—H = 0.93 Å for Csp2—H and 0.97 Å for methylene C—H, with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1576726
https://doi.org/10.1107/S2056989017013925/sj5535sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017013925/sj5535Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).[Ag(C12H12N2S)]NO3 | F(000) = 1536 |
Mr = 386.18 | Dx = 1.884 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 22.432 (3) Å | Cell parameters from 3272 reflections |
b = 8.1656 (12) Å | θ = 1.8–28.3° |
c = 15.036 (2) Å | µ = 1.64 mm−1 |
β = 98.636 (3)° | T = 298 K |
V = 2722.9 (7) Å3 | Plate, colourless |
Z = 8 | 0.25 × 0.20 × 0.05 mm |
Bruker APEXII CCD diffractometer | 1763 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.079 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 26.0°, θmin = 2.7° |
Tmin = 0.658, Tmax = 0.896 | h = −27→26 |
7550 measured reflections | k = −10→8 |
2676 independent reflections | l = −18→9 |
Refinement on F2 | 24 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.0526P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.97 | (Δ/σ)max < 0.001 |
2676 reflections | Δρmax = 0.66 e Å−3 |
209 parameters | Δρmin = −0.66 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ag1 | 0.13008 (2) | 0.47824 (6) | 0.49130 (3) | 0.05552 (19) | |
S1 | 0.33342 (6) | −0.07112 (16) | 0.34926 (9) | 0.0417 (3) | |
N1 | 0.2163 (2) | 0.4068 (5) | 0.4306 (3) | 0.0460 (11) | |
N2 | 0.5458 (2) | −0.1552 (6) | 0.4256 (3) | 0.0501 (11) | |
N3 | 0.1183 (3) | 0.8084 (7) | 0.3663 (4) | 0.0662 (15) | |
O1 | 0.0800 (7) | 0.756 (2) | 0.4114 (15) | 0.106 (6) | 0.570 (17) |
O2 | 0.1701 (6) | 0.7472 (18) | 0.3893 (9) | 0.117 (5) | 0.570 (17) |
O3 | 0.1169 (6) | 0.9256 (15) | 0.3181 (8) | 0.105 (5) | 0.570 (17) |
O1' | 0.1009 (9) | 0.764 (3) | 0.4311 (15) | 0.072 (5) | 0.430 (17) |
O2' | 0.1641 (12) | 0.845 (3) | 0.3590 (16) | 0.133 (8) | 0.430 (17) |
O3' | 0.0762 (7) | 0.815 (2) | 0.2930 (9) | 0.096 (6) | 0.430 (17) |
C1 | 0.2231 (2) | 0.2722 (6) | 0.3824 (3) | 0.0391 (12) | |
H1 | 0.1905 | 0.2011 | 0.3699 | 0.047* | |
C2 | 0.2760 (2) | 0.2324 (6) | 0.3498 (3) | 0.0386 (12) | |
C3 | 0.3244 (2) | 0.3392 (6) | 0.3697 (4) | 0.0464 (13) | |
H3 | 0.3606 | 0.3175 | 0.3487 | 0.056* | |
C4 | 0.3188 (2) | 0.4778 (6) | 0.4206 (4) | 0.0483 (13) | |
H4 | 0.3510 | 0.5498 | 0.4349 | 0.058* | |
C5 | 0.2640 (3) | 0.5066 (6) | 0.4498 (4) | 0.0503 (13) | |
H5 | 0.2601 | 0.5995 | 0.4842 | 0.060* | |
C6 | 0.2786 (2) | 0.0785 (7) | 0.2966 (4) | 0.0466 (13) | |
H6A | 0.2884 | 0.1065 | 0.2378 | 0.056* | |
H6B | 0.2389 | 0.0284 | 0.2877 | 0.056* | |
C7 | 0.3975 (2) | −0.0395 (7) | 0.2890 (4) | 0.0478 (13) | |
H7A | 0.3870 | −0.0722 | 0.2266 | 0.057* | |
H7B | 0.4089 | 0.0752 | 0.2908 | 0.057* | |
C8 | 0.4488 (2) | −0.1419 (6) | 0.3345 (3) | 0.0426 (12) | |
C9 | 0.4985 (2) | −0.0697 (7) | 0.3829 (4) | 0.0451 (12) | |
H9 | 0.4997 | 0.0440 | 0.3866 | 0.054* | |
C10 | 0.5422 (3) | −0.3178 (8) | 0.4195 (4) | 0.0591 (16) | |
H10 | 0.5739 | −0.3792 | 0.4496 | 0.071* | |
C11 | 0.4946 (3) | −0.4000 (7) | 0.3715 (5) | 0.0631 (17) | |
H11 | 0.4944 | −0.5137 | 0.3684 | 0.076* | |
C12 | 0.4474 (3) | −0.3106 (7) | 0.3282 (4) | 0.0538 (15) | |
H12 | 0.4147 | −0.3631 | 0.2947 | 0.065* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0456 (3) | 0.0747 (3) | 0.0449 (3) | 0.0096 (2) | 0.00258 (18) | −0.0054 (2) |
S1 | 0.0366 (6) | 0.0477 (7) | 0.0410 (7) | 0.0028 (5) | 0.0063 (5) | −0.0036 (6) |
N1 | 0.046 (3) | 0.051 (3) | 0.042 (3) | 0.003 (2) | 0.010 (2) | −0.001 (2) |
N2 | 0.043 (3) | 0.062 (3) | 0.045 (3) | 0.007 (2) | 0.006 (2) | −0.008 (2) |
N3 | 0.076 (4) | 0.060 (4) | 0.066 (4) | 0.007 (3) | 0.020 (4) | −0.003 (3) |
O1 | 0.071 (9) | 0.100 (9) | 0.147 (15) | −0.021 (7) | 0.014 (9) | 0.046 (9) |
O2 | 0.102 (8) | 0.110 (9) | 0.127 (10) | 0.063 (7) | −0.016 (7) | 0.004 (8) |
O3 | 0.132 (8) | 0.088 (7) | 0.102 (7) | 0.033 (6) | 0.045 (6) | 0.049 (6) |
O1' | 0.081 (7) | 0.069 (6) | 0.068 (6) | −0.005 (5) | 0.013 (5) | 0.003 (4) |
O2' | 0.125 (11) | 0.145 (11) | 0.131 (11) | −0.033 (9) | 0.027 (8) | −0.006 (8) |
O3' | 0.100 (9) | 0.110 (9) | 0.074 (8) | 0.040 (7) | −0.001 (6) | −0.019 (6) |
C1 | 0.037 (3) | 0.045 (3) | 0.033 (3) | 0.003 (2) | 0.000 (2) | 0.003 (2) |
C2 | 0.041 (3) | 0.041 (3) | 0.033 (3) | 0.006 (2) | 0.002 (2) | 0.007 (2) |
C3 | 0.042 (3) | 0.050 (3) | 0.048 (3) | 0.001 (2) | 0.010 (2) | 0.006 (3) |
C4 | 0.046 (3) | 0.043 (3) | 0.054 (3) | −0.006 (2) | 0.003 (3) | 0.008 (3) |
C5 | 0.059 (3) | 0.047 (3) | 0.043 (3) | 0.003 (3) | 0.004 (3) | −0.004 (3) |
C6 | 0.045 (3) | 0.056 (3) | 0.037 (3) | 0.006 (2) | 0.002 (2) | 0.000 (3) |
C7 | 0.039 (3) | 0.064 (3) | 0.040 (3) | 0.002 (2) | 0.006 (2) | −0.003 (3) |
C8 | 0.037 (3) | 0.055 (3) | 0.039 (3) | 0.001 (2) | 0.015 (2) | −0.004 (3) |
C9 | 0.042 (3) | 0.051 (3) | 0.043 (3) | 0.006 (2) | 0.009 (2) | −0.005 (3) |
C10 | 0.051 (4) | 0.064 (4) | 0.063 (4) | 0.019 (3) | 0.010 (3) | 0.005 (3) |
C11 | 0.060 (4) | 0.048 (3) | 0.085 (5) | 0.003 (3) | 0.023 (4) | −0.002 (3) |
C12 | 0.045 (3) | 0.061 (4) | 0.059 (4) | −0.004 (3) | 0.018 (3) | −0.012 (3) |
Ag1—N2i | 2.276 (5) | C2—C3 | 1.389 (7) |
Ag1—N1 | 2.333 (4) | C2—C6 | 1.495 (7) |
Ag1—S1ii | 2.5305 (14) | C3—C4 | 1.383 (7) |
Ag1—O1' | 2.55 (2) | C3—H3 | 0.9300 |
S1—C6 | 1.828 (5) | C4—C5 | 1.385 (8) |
S1—C7 | 1.829 (5) | C4—H4 | 0.9300 |
S1—Ag1ii | 2.5305 (14) | C5—H5 | 0.9300 |
N1—C1 | 1.338 (6) | C6—H6A | 0.9700 |
N1—C5 | 1.342 (7) | C6—H6B | 0.9700 |
N2—C10 | 1.333 (7) | C7—C8 | 1.500 (7) |
N2—C9 | 1.348 (7) | C7—H7A | 0.9700 |
N2—Ag1iii | 2.276 (5) | C7—H7B | 0.9700 |
N3—O2' | 1.09 (2) | C8—C9 | 1.371 (7) |
N3—O1' | 1.16 (2) | C8—C12 | 1.381 (7) |
N3—O3 | 1.199 (11) | C9—H9 | 0.9300 |
N3—O1 | 1.246 (17) | C10—C11 | 1.371 (9) |
N3—O2 | 1.265 (12) | C10—H10 | 0.9300 |
N3—O3' | 1.340 (14) | C11—C12 | 1.367 (8) |
C1—C2 | 1.389 (7) | C11—H11 | 0.9300 |
C1—H1 | 0.9300 | C12—H12 | 0.9300 |
N2i—Ag1—N1 | 113.22 (16) | C3—C4—H4 | 120.9 |
N2i—Ag1—S1ii | 133.18 (12) | C5—C4—H4 | 120.9 |
N1—Ag1—S1ii | 106.03 (12) | N1—C5—C4 | 123.1 (5) |
N2i—Ag1—O1' | 97.5 (4) | N1—C5—H5 | 118.4 |
N1—Ag1—O1' | 105.9 (5) | C4—C5—H5 | 118.4 |
S1ii—Ag1—O1' | 95.2 (5) | C2—C6—S1 | 114.0 (4) |
C6—S1—C7 | 102.7 (3) | C2—C6—H6A | 108.7 |
C6—S1—Ag1ii | 108.12 (18) | S1—C6—H6A | 108.7 |
C7—S1—Ag1ii | 105.08 (18) | C2—C6—H6B | 108.7 |
C1—N1—C5 | 117.6 (5) | S1—C6—H6B | 108.7 |
C1—N1—Ag1 | 125.9 (3) | H6A—C6—H6B | 107.6 |
C5—N1—Ag1 | 116.5 (3) | C8—C7—S1 | 107.6 (4) |
C10—N2—C9 | 116.7 (5) | C8—C7—H7A | 110.2 |
C10—N2—Ag1iii | 122.9 (4) | S1—C7—H7A | 110.2 |
C9—N2—Ag1iii | 120.1 (4) | C8—C7—H7B | 110.2 |
O2'—N3—O1' | 127.6 (17) | S1—C7—H7B | 110.2 |
O3—N3—O1 | 130.1 (11) | H7A—C7—H7B | 108.5 |
O3—N3—O2 | 114.9 (11) | C9—C8—C12 | 118.2 (5) |
O1—N3—O2 | 113.4 (12) | C9—C8—C7 | 120.6 (5) |
O2'—N3—O3' | 117.6 (16) | C12—C8—C7 | 121.1 (5) |
O1'—N3—O3' | 114.7 (13) | N2—C9—C8 | 123.3 (5) |
N3—O1'—Ag1 | 118.8 (14) | N2—C9—H9 | 118.3 |
N1—C1—C2 | 123.8 (5) | C8—C9—H9 | 118.3 |
N1—C1—H1 | 118.1 | N2—C10—C11 | 123.9 (6) |
C2—C1—H1 | 118.1 | N2—C10—H10 | 118.1 |
C3—C2—C1 | 117.3 (5) | C11—C10—H10 | 118.1 |
C3—C2—C6 | 123.5 (5) | C12—C11—C10 | 118.4 (6) |
C1—C2—C6 | 119.2 (5) | C12—C11—H11 | 120.8 |
C4—C3—C2 | 120.0 (5) | C10—C11—H11 | 120.8 |
C4—C3—H3 | 120.0 | C11—C12—C8 | 119.5 (6) |
C2—C3—H3 | 120.0 | C11—C12—H12 | 120.3 |
C3—C4—C5 | 118.2 (5) | C8—C12—H12 | 120.3 |
O2'—N3—O1'—Ag1 | −73 (3) | Ag1ii—S1—C6—C2 | 10.9 (4) |
O3'—N3—O1'—Ag1 | 107.3 (14) | C6—S1—C7—C8 | 173.0 (4) |
C5—N1—C1—C2 | −1.3 (7) | Ag1ii—S1—C7—C8 | 60.0 (4) |
Ag1—N1—C1—C2 | −178.0 (4) | S1—C7—C8—C9 | −110.0 (5) |
N1—C1—C2—C3 | 0.5 (7) | S1—C7—C8—C12 | 70.4 (6) |
N1—C1—C2—C6 | 180.0 (5) | C10—N2—C9—C8 | −0.5 (8) |
C1—C2—C3—C4 | 0.5 (7) | Ag1iii—N2—C9—C8 | 173.4 (4) |
C6—C2—C3—C4 | −178.9 (5) | C12—C8—C9—N2 | −0.8 (8) |
C2—C3—C4—C5 | −0.7 (8) | C7—C8—C9—N2 | 179.6 (5) |
C1—N1—C5—C4 | 1.2 (8) | C9—N2—C10—C11 | 1.5 (9) |
Ag1—N1—C5—C4 | 178.2 (4) | Ag1iii—N2—C10—C11 | −172.3 (5) |
C3—C4—C5—N1 | −0.2 (8) | N2—C10—C11—C12 | −1.0 (10) |
C3—C2—C6—S1 | 62.6 (6) | C10—C11—C12—C8 | −0.5 (9) |
C1—C2—C6—S1 | −116.9 (4) | C9—C8—C12—C11 | 1.3 (8) |
C7—S1—C6—C2 | −99.9 (4) | C7—C8—C12—C11 | −179.1 (5) |
Symmetry codes: (i) x−1/2, y+1/2, z; (ii) −x+1/2, −y+1/2, −z+1; (iii) x+1/2, y−1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O2 | 0.93 | 2.59 | 2.924 (12) | 102 |
C5—H5···O2iv | 0.93 | 2.60 | 3.318 (14) | 135 |
C6—H6A···O2v | 0.97 | 2.52 | 3.464 (14) | 163 |
C6—H6B···O2′vi | 0.97 | 2.60 | 3.44 (2) | 145 |
C7—H7B···O3′v | 0.97 | 2.38 | 3.233 (15) | 147 |
C9—H9···O1iii | 0.93 | 2.49 | 3.221 (18) | 136 |
C12—H12···O3vii | 0.93 | 2.45 | 3.256 (12) | 145 |
Symmetry codes: (iii) x+1/2, y−1/2, z; (iv) −x+1/2, −y+3/2, −z+1; (v) −x+1/2, y−1/2, −z+1/2; (vi) x, y−1, z; (vii) −x+1/2, y−3/2, −z+1/2. |
Funding information
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A3A01020410 and NRF-2016R1D1A1B01012630).
References
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Lee, E., Ju, H., Moon, S.-H., Lee, S. S. & Park, K.-M. (2015). Bull. Korean Chem. Soc. 36, 1532–1535. Web of Science CrossRef CAS
Lee, E., Seo, J., Lee, S. S. & Park, K.-M. (2012). Cryst. Growth Des. 12, 3834–3837. Web of Science CSD CrossRef CAS
Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764. Web of Science CrossRef CAS PubMed
Liu, D., Chang, Y.-J. & Lang, J.-P. (2011). CrystEngComm, 13, 1851–1857. Web of Science CSD CrossRef CAS
McArdle, P. (1995). J. Appl. Cryst. 28, 65. CrossRef IUCr Journals
Moon, S.-H., Kang, Y. & Park, K.-M. (2015). Acta Cryst. E71, 1287–1289. Web of Science CSD CrossRef IUCr Journals
Moon, S.-H., Kang, D. & Park, K.-M. (2016). Acta Cryst. E72, 1513–1516. CSD CrossRef IUCr Journals
Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658. Web of Science CrossRef PubMed CAS
Park, K.-M., Seo, J., Moon, S.-H. & Lee, S. S. (2010). Cryst. Growth Des. 10, 4148–4154. Web of Science CSD CrossRef CAS
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Wang, C., Zhang, T. & Lin, W. (2012). Chem. Rev. 112, 1084–1104. Web of Science CrossRef CAS PubMed
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals
Zheng, S.-R., Yang, Q.-Y., Yang, R., Pan, M., Cao, R. & Su, C.-Y. (2009). Cryst. Growth Des. 9, 2341–2353. Web of Science CSD CrossRef CAS
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.