research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-meth­­oxy-N-(piperidine-1-carbono­thio­yl)benzamide

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Selangor, Malaysia, bDepartment of Chemistry, Mathematic & Natural Science Faculty, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia, cChemical Technology Program, Faculty of Science Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, and dFuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Selangor, Malaysia
*Correspondence e-mail: mb_kassim@ukm.edu.my

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 18 July 2017; accepted 18 September 2017; online 25 September 2017)

In the title compound, C14H18N2O2S, the piperidine ring has a chair conformation. Its mean plane is twisted with respect to the 4-meth­oxy­benzoyl ring, with a dihedral angle of 63.0 (3)°. The central N—C(=S)—N(H)—C(=O) bridge is twisted with an N—C—N—C torsion angle of 74.8 (6)°. In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming chains along the c-axis direction. Adjacent chains are linked by C—H⋯π inter­actions, forming layers parallel to the ac plane. The layers are linked by offset ππ inter­actions [inter­centroid distance = 3.927 (3) Å], forming a supra­molecular three-dimensional structure.

1. Chemical context

Benzoyl­thio­urea compounds exhibit anti-inflammatory (Brachmachari & Das, 2012[Brahmachari, G. & Das, S. (2012). Tetrahedron Lett. 53, 1479-1484.]), anti-cancer, anti-diabetic and anti-virus activity (Kovačková et al., 2011[Kovačková, S., Dračínský, M. & Rejman, D. (2011). Tetrahedron, 67, 1485-1500.]), and have applications as ionic sensors (Suhud et al. 2015b[Suhud, K., Heng, L. Y., Rezayi, M., Al-abbasi, A. A., Hasbullah, S. A., Ahmad, M. & Kassim, M. B. (2015b). J. Solution Chem. 44, 181-192.]) and pharmaceutical drugs (Watson et al., 2000[Watson, P. S., Jiang, B. & Scott, B. (2000). Org. Lett. 2, 3679-3681.]). Benzoyl­thio­urea mol­ecules containing thio­amide (NH—C=S) and carbonyl (C=O) electron-rich donating groups facilitate the formation of coordination bonds with metal ions such as Co3+ (Tan et al., 2014[Tan, S. S., Al-abbasi, A. A., Tahir, M. I. M. & Kassim, M. B. (2014). Polyhedron, 68, 287-294.]), Ru2+ (Małecki & Nycz, 2013[Małecki, J. G. & Nycz, J. N. (2013). Polyhedron, 55, 49-56.]), Ag+ (Isab et al., 2010[Isab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Evans, H. S. (2010). Polyhedron, 29, 1251-1256.]) and Ni2+ (Arslan et al., 2006[Arslan, H., Florke, U., Kulcu, N. & Kayhan, E. (2006). Turk. J. Chem. 30, 429-440.]). Bivalent and trivalent metal ions prefer to coordinate via the S and O atoms from the thiono and carbonyl units, respectively, but monovalent metal ions tend to coordinate via the S atom.

[Scheme 1]

Herein, we report on the crystal structure of 4-meth­oxy-N-(piperidine-1-carbono­thio­yl)benzamide (MPiCB) and its chemical structural data in comparison with the previously reported compound 4-meth­oxy-N-[(pyrrolidin-1-yl)carbono­thio­yl]benzamide (MPCB; Suhud et al., 2015a[Suhud, K., Heng, L. Y., Hasbullah, S. A., Ahmad, M. & Kassim, M. B. (2015a). Acta Cryst. E71, o225-o226.],b[Suhud, K., Heng, L. Y., Rezayi, M., Al-abbasi, A. A., Hasbullah, S. A., Ahmad, M. & Kassim, M. B. (2015b). J. Solution Chem. 44, 181-192.]).

2. Structural commentary

The mol­ecular structure of the title compound, MPiCB, is illustrated in Fig. 1[link]. The geometrical parameters are similar to those observed for 4-meth­oxy-N-[(pyrrolidin-1-yl)carbo­thio­yl]benzamide (MPCB; Suhud et al. 2015a[Suhud, K., Heng, L. Y., Hasbullah, S. A., Ahmad, M. & Kassim, M. B. (2015a). Acta Cryst. E71, o225-o226.]). The 4-meth­oxy­benzoyl and piperidine fragments adopt a transcis conformation with respect to the thiono S atom across the C8—N1 bond, with the piperidine ring having a chair conformation. The mean plane of the piperidine ring is twisted with respect to the 4-meth­oxy benzoyl ring with a dihedral angle of 63.0 (3)°. The central N—C(=S)—N(H)—C(=O) bridge is twisted with an N2—C8—N1—C7 torsion angle of 74.8 (6)°. The meth­oxy group lies in the plane of the benzene ring, with the C14—O2—C4—C3 torsion angle being 180.0 (4)°.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound (MPiCB), with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal of MPiCB, neighbouring mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming chains along the c-axis direction (Table 1[link] and Fig. 2[link]). Adjacent chains are linked by C—H⋯π inter­actions, involving a piperidine H atom and the π electrons of the benzene ring, forming layers parallel to the ac plane (Table 1[link] and Fig. 3[link]). The layers are linked by offset ππ stacking inter­actions involving the benzene rings, forming a supra­molecular three-dimensional structure as illustrated in Fig. 3[link] [CgCgi = 3.927 (3) Å; Cg is the centroid of the C1–C6 ring; inter­planar distance = 3.517 (2) Å; slippage = 1.747 Å; symmetry code: (i) −x, −y + 2, −z + 2].

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.84 (4) 2.12 (4) 2.897 (4) 154 (4)
C6—H6⋯O1i 0.93 2.40 3.294 (5) 160
C10—H10ACgii 0.97 2.89 3.851 (8) 170
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z.
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound (MPiCB). Hydrogen bonds (see Table 1[link]) are shown as dashed lines.
[Figure 3]
Figure 3
A view normal to the ac plane of the crystal packing of the title compound (MPiCB), showing the offset ππ stacking inter­actions that add further stabilization to the crystal structure, and the hydrogen bonds (dashed lines).

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 4-meth­oxy-N-(carbono­thio­yl)benzamide skeleton gave 37 hits. Two compounds are of particular inter­est, namely 4-meth­oxy-N-(pyrrolidin-1-ylcarbono­thio­yl)benzamide (DUDYOS; Suhud et al., 2015a[Suhud, K., Heng, L. Y., Hasbullah, S. A., Ahmad, M. & Kassim, M. B. (2015a). Acta Cryst. E71, o225-o226.]) mentioned previously (MPCB), and N-(2,6-di­meth­yl­piperidine-1-carbono­thio­yl)-3,4,5-tri­meth­oxy­benz­amide (HESLEX; Dillen et al., 2006[Dillen, J., Woldu, M. G. & Koch, K. R. (2006). Acta Cryst. E62, o5225-o5227.]). The 4-meth­oxy­benzoyl ring and the mean plane of the piperidine ring in MPiCB form a smaller angle [63.13 (3)°] compared with the angle of 72.60 (14)° for similar mean planes found in DUDYOS (Suhud et al. 2015a[Suhud, K., Heng, L. Y., Hasbullah, S. A., Ahmad, M. & Kassim, M. B. (2015a). Acta Cryst. E71, o225-o226.]). The bond lengths for C8=S1 [1.651 (4) Å] and C7=O1 [1.226 (4) Å] in MPiCB are comparable to those observed for DUDYOS [C=S = 1.662 (2) Å and C=O = 1.220 (2) Å]. Other bond lengths and angles in the MPiCB mol­ecule are comparable with those reported for DUDYOS and N-(pyrrolidin-1-ylcarbo­thio­yl)benzamide (SAGYOQ; Al-abbasi et al., 2012[Al-abbasi, A. A., Mohamed Tahir, M. I. & Kassim, M. B. (2012). Acta Cryst. E68, o201.]). Compound HESLEX also involves a piperidine ring with a chair conformation linked by the C(=S)—N(H)—C(=O) bridge to a 3,4,5-tri­meth­oxy­benzene ring. It crystallizes with two independent mol­ecules in the asymmetric unit with slightly different conformations. For example, the mean plane of the piperidine rings are inclined to the benzene rings by 58.97 (11) and 64.11 (11)°, compared to 63.13 (3)° in the title compound. The central N—C(=S)—N(H)—C(=O) bridge is twisted in each compound, with an N2—C8—N1—C7 torsion angle of 74.8 (6)° in MPiCB, 63.0 (3)° in DUDYOS, 65.5 (3) and 79.9 (3)° in HESLEX, and finally −59.7 (2)° in SAGYOQ.

5. Synthesis and crystallization

Benzoyl chloride (0.01 mol) was added slowly to ammonium thio­cyanate (0.01 mol) in acetone and the mixture was stirred for 30 min at room temperature. A white precipitate of ammonium chloride was filtered off and the filtrate was cooled in an ice bath (278–283 K) for about 15 min. A cold solution (278–283 K) of piperidine (0.01 mol) in acetone was added to the benzoyl iso­thio­cyanate and the mixture was left for 3 h at room temperature. A yellowish precipitate was formed, filtered and washed with cold water to give pale-yellow crystals (yield 87%, m.p. 401-402 K).

The infrared spectrum of MPiCB shows the characteristic signals for ν(NH) 3300, ν(O—CH3) 2900, ν(C=O) 1609, ν(C—Cbenzene) 1460, ν(C—Ostretching) 1327 and v(C=S) 1252 cm−1. The 1H NMR spectrum exhibits the H(N) group at 8.35 Hz, while the 13C NMR signal of the C=S and C=O groups appear at 174.66 and 163.19 Hz, respectively.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The NH H atom was located in a difference-Fourier map and freely refined. The C-bound H atoms were included in calculated positions and refined in a riding-model approximation: C—H = 0.93–0.97 Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C14H18N2O2S
Mr 278.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 8.2228 (9), 18.1289 (19), 9.945 (1)
β (°) 106.612 (3)
V3) 1420.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.50 × 0.35 × 0.16
 
Data collection
Diffractometer Bruker SMART APEX CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.895, 0.965
No. of measured, independent and observed [I > 2σ(I)] reflections 38784, 2500, 1955
Rint 0.049
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.251, 1.03
No. of reflections 2500
No. of parameters 178
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.99, −0.52
Computer programs: SMART and SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

4-Methoxy-N-(piperidine-1-carbonothioyl)benzamide top
Crystal data top
C14H18N2O2SF(000) = 592
Mr = 278.36Dx = 1.301 Mg m3
Monoclinic, P21/cMelting point = 402–401 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.2228 (9) ÅCell parameters from 9933 reflections
b = 18.1289 (19) Åθ = 3.1–25.0°
c = 9.945 (1) ŵ = 0.23 mm1
β = 106.612 (3)°T = 296 K
V = 1420.6 (3) Å3Block, pale-yellow
Z = 40.50 × 0.35 × 0.16 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2500 independent reflections
Radiation source: fine-focus sealed tube1955 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scanθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 99
Tmin = 0.895, Tmax = 0.965k = 2121
38784 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.081H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.251 w = 1/[σ2(Fo2) + (0.1213P)2 + 2.9951P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2500 reflectionsΔρmax = 0.99 e Å3
178 parametersΔρmin = 0.52 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.10498 (18)0.58727 (6)1.00073 (14)0.0680 (5)
O10.0919 (5)0.77247 (17)0.7982 (3)0.0700 (10)
O20.3058 (4)1.02962 (17)0.9922 (3)0.0636 (9)
N10.1299 (4)0.73279 (18)1.0176 (3)0.0460 (8)
N20.3615 (6)0.6709 (2)0.9800 (6)0.0807 (15)
C10.0338 (5)0.8445 (2)0.9412 (4)0.0416 (9)
C20.1170 (5)0.8893 (3)0.8297 (4)0.0529 (11)
H20.11170.87810.73970.064*
C30.2068 (6)0.9496 (3)0.8504 (4)0.0587 (11)
H30.26220.97880.77420.070*
C40.2165 (5)0.9679 (2)0.9832 (4)0.0487 (10)
C50.1338 (5)0.9242 (2)1.0951 (4)0.0496 (10)
H50.13890.93571.18500.059*
C60.0434 (5)0.8633 (2)1.0739 (4)0.0482 (10)
H60.01230.83421.15020.058*
C70.0655 (5)0.7812 (2)0.9123 (4)0.0460 (10)
C80.2076 (6)0.6650 (2)0.9959 (4)0.0502 (10)
C90.4655 (9)0.7393 (3)0.9999 (9)0.102 (2)
H9A0.39280.78140.99970.122*
H9B0.54990.73741.09070.122*
C100.5469 (9)0.7491 (4)0.8969 (9)0.105 (2)
H10A0.62000.79200.92010.126*
H10B0.46240.75880.80820.126*
C110.6528 (7)0.6829 (4)0.8795 (8)0.0910 (18)
H11A0.68920.68890.79560.109*
H11B0.75330.67960.95930.109*
C120.5502 (10)0.6128 (4)0.8685 (10)0.119 (3)
H12A0.46940.61100.77590.143*
H12B0.62620.57110.87620.143*
C130.4638 (11)0.6046 (3)0.9654 (10)0.119 (3)
H13A0.54420.59401.05570.143*
H13B0.38850.56250.93960.143*
C140.3187 (7)1.0502 (3)1.1266 (6)0.0678 (13)
H14A0.36891.01061.16490.102*
H14B0.38841.09341.11790.102*
H14C0.20761.06051.18770.102*
H10.085 (5)0.732 (2)1.084 (4)0.043 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0856 (10)0.0478 (7)0.0731 (9)0.0160 (6)0.0266 (7)0.0031 (5)
O10.124 (3)0.0583 (19)0.0390 (16)0.0046 (18)0.0422 (17)0.0021 (13)
O20.0632 (19)0.0547 (18)0.070 (2)0.0078 (15)0.0152 (15)0.0078 (15)
N10.064 (2)0.0447 (19)0.0374 (17)0.0028 (15)0.0268 (16)0.0016 (14)
N20.094 (3)0.042 (2)0.133 (4)0.009 (2)0.075 (3)0.019 (2)
C10.049 (2)0.042 (2)0.0356 (19)0.0123 (16)0.0146 (16)0.0004 (15)
C20.062 (2)0.063 (3)0.032 (2)0.008 (2)0.0096 (17)0.0012 (18)
C30.060 (3)0.065 (3)0.044 (2)0.001 (2)0.0033 (19)0.012 (2)
C40.043 (2)0.046 (2)0.055 (2)0.0077 (17)0.0115 (17)0.0005 (18)
C50.062 (2)0.050 (2)0.040 (2)0.0004 (19)0.0181 (18)0.0006 (17)
C60.064 (2)0.048 (2)0.033 (2)0.0011 (19)0.0133 (17)0.0059 (16)
C70.064 (2)0.047 (2)0.0309 (19)0.0177 (18)0.0199 (17)0.0060 (16)
C80.070 (3)0.044 (2)0.042 (2)0.0095 (19)0.0253 (19)0.0063 (16)
C90.103 (5)0.054 (3)0.175 (7)0.021 (3)0.084 (5)0.028 (4)
C100.084 (4)0.079 (4)0.174 (7)0.015 (3)0.075 (5)0.011 (4)
C110.064 (3)0.095 (4)0.124 (5)0.012 (3)0.041 (3)0.005 (4)
C120.094 (5)0.088 (5)0.189 (8)0.018 (4)0.064 (5)0.036 (5)
C130.142 (6)0.055 (3)0.195 (9)0.010 (4)0.105 (6)0.010 (4)
C140.069 (3)0.053 (3)0.087 (4)0.004 (2)0.031 (3)0.006 (2)
Geometric parameters (Å, º) top
S1—C81.651 (4)C5—H50.9300
O1—C71.226 (4)C6—H60.9300
O2—C41.356 (5)C9—C101.385 (9)
O2—C141.421 (6)C9—H9A0.9700
N1—C71.352 (5)C9—H9B0.9700
N1—C81.430 (5)C10—C111.521 (8)
N1—H10.84 (4)C10—H10A0.9700
N2—C81.323 (6)C10—H10B0.9700
N2—C91.487 (6)C11—C121.511 (9)
N2—C131.497 (7)C11—H11A0.9700
C1—C21.386 (6)C11—H11B0.9700
C1—C61.387 (5)C12—C131.358 (10)
C1—C71.484 (6)C12—H12A0.9700
C2—C31.367 (6)C12—H12B0.9700
C2—H20.9300C13—H13A0.9700
C3—C41.386 (6)C13—H13B0.9700
C3—H30.9300C14—H14A0.9600
C4—C51.377 (6)C14—H14B0.9600
C5—C61.381 (6)C14—H14C0.9600
C4—O2—C14117.8 (3)C10—C9—H9B109.0
C7—N1—C8122.2 (3)N2—C9—H9B109.0
C7—N1—H1117 (3)H9A—C9—H9B107.8
C8—N1—H1115 (3)C9—C10—C11113.3 (6)
C8—N2—C9125.8 (4)C9—C10—H10A108.9
C8—N2—C13122.0 (4)C11—C10—H10A108.9
C9—N2—C13111.3 (5)C9—C10—H10B108.9
C2—C1—C6117.9 (4)C11—C10—H10B108.9
C2—C1—C7118.1 (3)H10A—C10—H10B107.7
C6—C1—C7123.9 (3)C12—C11—C10110.2 (5)
C3—C2—C1120.8 (4)C12—C11—H11A109.6
C3—C2—H2119.6C10—C11—H11A109.6
C1—C2—H2119.6C12—C11—H11B109.6
C2—C3—C4121.0 (4)C10—C11—H11B109.6
C2—C3—H3119.5H11A—C11—H11B108.1
C4—C3—H3119.5C13—C12—C11115.8 (6)
O2—C4—C5124.9 (4)C13—C12—H12A108.3
O2—C4—C3116.1 (4)C11—C12—H12A108.3
C5—C4—C3119.0 (4)C13—C12—H12B108.3
C4—C5—C6119.9 (4)C11—C12—H12B108.3
C4—C5—H5120.0H12A—C12—H12B107.4
C6—C5—H5120.0C12—C13—N2113.8 (6)
C5—C6—C1121.4 (4)C12—C13—H13A108.8
C5—C6—H6119.3N2—C13—H13A108.8
C1—C6—H6119.3C12—C13—H13B108.8
O1—C7—N1120.0 (4)N2—C13—H13B108.8
O1—C7—C1122.1 (4)H13A—C13—H13B107.7
N1—C7—C1117.9 (3)O2—C14—H14A109.5
N2—C8—N1115.7 (3)O2—C14—H14B109.5
N2—C8—S1125.9 (3)H14A—C14—H14B109.5
N1—C8—S1118.4 (3)O2—C14—H14C109.5
C10—C9—N2112.9 (6)H14A—C14—H14C109.5
C10—C9—H9A109.0H14B—C14—H14C109.5
N2—C9—H9A109.0
C6—C1—C2—C30.5 (6)C2—C1—C7—N1172.4 (4)
C7—C1—C2—C3178.3 (4)C6—C1—C7—N110.0 (6)
C1—C2—C3—C40.3 (7)C9—N2—C8—N17.8 (8)
C14—O2—C4—C51.5 (6)C13—N2—C8—N1176.1 (6)
C14—O2—C4—C3180.0 (4)C9—N2—C8—S1168.8 (5)
C2—C3—C4—O2178.7 (4)C13—N2—C8—S10.6 (9)
C2—C3—C4—C50.0 (6)C7—N1—C8—N274.8 (6)
O2—C4—C5—C6178.6 (4)C7—N1—C8—S1108.2 (4)
C3—C4—C5—C60.1 (6)C8—N2—C9—C10137.5 (7)
C4—C5—C6—C10.2 (6)C13—N2—C9—C1053.2 (9)
C2—C1—C6—C50.5 (6)N2—C9—C10—C1153.7 (9)
C7—C1—C6—C5178.1 (4)C9—C10—C11—C1248.7 (9)
C8—N1—C7—O19.5 (6)C10—C11—C12—C1347.0 (10)
C8—N1—C7—C1171.5 (3)C11—C12—C13—N249.2 (11)
C2—C1—C7—O18.6 (6)C8—N2—C13—C12139.6 (7)
C6—C1—C7—O1169.0 (4)C9—N2—C13—C1250.6 (10)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.84 (4)2.12 (4)2.897 (4)154 (4)
C6—H6···O1i0.932.403.294 (5)160
C10—H10A···Cgii0.972.893.851 (8)170
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y, z.
 

Funding information

The authors thank the Universiti Kebangsaan Malaysia (UKM) for financial support via research grants DIP-2012–11, DLP-2013–001, DPP-2013–043 and DPP-2014–048, and the Ministry of Education, Malaysia for grant FRGS/1/2014/ST01/UKM/02/2.

References

First citationAl-abbasi, A. A., Mohamed Tahir, M. I. & Kassim, M. B. (2012). Acta Cryst. E68, o201.  Web of Science CSD CrossRef IUCr Journals
First citationArslan, H., Florke, U., Kulcu, N. & Kayhan, E. (2006). Turk. J. Chem. 30, 429–440.  CAS
First citationBrahmachari, G. & Das, S. (2012). Tetrahedron Lett. 53, 1479–1484.  Web of Science CSD CrossRef CAS
First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationDillen, J., Woldu, M. G. & Koch, K. R. (2006). Acta Cryst. E62, o5225–o5227.  Web of Science CSD CrossRef IUCr Journals
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationIsab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Evans, H. S. (2010). Polyhedron, 29, 1251–1256.  Web of Science CSD CrossRef CAS
First citationKovačková, S., Dračínský, M. & Rejman, D. (2011). Tetrahedron, 67, 1485–1500.
First citationMałecki, J. G. & Nycz, J. N. (2013). Polyhedron, 55, 49–56.
First citation[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationSuhud, K., Heng, L. Y., Hasbullah, S. A., Ahmad, M. & Kassim, M. B. (2015a). Acta Cryst. E71, o225–o226.  CSD CrossRef IUCr Journals
First citationSuhud, K., Heng, L. Y., Rezayi, M., Al-abbasi, A. A., Hasbullah, S. A., Ahmad, M. & Kassim, M. B. (2015b). J. Solution Chem. 44, 181–192.  CrossRef CAS
First citationTan, S. S., Al-abbasi, A. A., Tahir, M. I. M. & Kassim, M. B. (2014). Polyhedron, 68, 287–294.  CSD CrossRef CAS
First citationWatson, P. S., Jiang, B. & Scott, B. (2000). Org. Lett. 2, 3679–3681.  Web of Science CrossRef PubMed CAS
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds