research communications
N-(piperidine-1-carbonothioyl)benzamide
of 4-methoxy-aSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Selangor, Malaysia, bDepartment of Chemistry, Mathematic & Natural Science Faculty, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia, cChemical Technology Program, Faculty of Science Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, and dFuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Selangor, Malaysia
*Correspondence e-mail: mb_kassim@ukm.edu.my
In the title compound, C14H18N2O2S, the piperidine ring has a chair conformation. Its mean plane is twisted with respect to the 4-methoxybenzoyl ring, with a dihedral angle of 63.0 (3)°. The central N—C(=S)—N(H)—C(=O) bridge is twisted with an N—C—N—C torsion angle of 74.8 (6)°. In the crystal, molecules are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming chains along the c-axis direction. Adjacent chains are linked by C—H⋯π interactions, forming layers parallel to the ac plane. The layers are linked by offset π–π interactions [intercentroid distance = 3.927 (3) Å], forming a supramolecular three-dimensional structure.
Keywords: crystal structure; benzoylthiourea; piperidine; pyrrolidine; benzamide; anti-cancer; hydrogen bonding; C—H⋯π interactions; offset π–π interactions.
CCDC reference: 1575129
1. Chemical context
Benzoylthiourea compounds exhibit anti-inflammatory (Brachmachari & Das, 2012), anti-cancer, anti-diabetic and anti-virus activity (Kovačková et al., 2011), and have applications as ionic sensors (Suhud et al. 2015b) and pharmaceutical drugs (Watson et al., 2000). Benzoylthiourea molecules containing thioamide (NH—C=S) and carbonyl (C=O) electron-rich donating groups facilitate the formation of coordination bonds with metal ions such as Co3+ (Tan et al., 2014), Ru2+ (Małecki & Nycz, 2013), Ag+ (Isab et al., 2010) and Ni2+ (Arslan et al., 2006). Bivalent and trivalent metal ions prefer to coordinate via the S and O atoms from the thiono and carbonyl units, respectively, but monovalent metal ions tend to coordinate via the S atom.
Herein, we report on the N-(piperidine-1-carbonothioyl)benzamide (MPiCB) and its chemical structural data in comparison with the previously reported compound 4-methoxy-N-[(pyrrolidin-1-yl)carbonothioyl]benzamide (MPCB; Suhud et al., 2015a,b).
of 4-methoxy-2. Structural commentary
The molecular structure of the title compound, MPiCB, is illustrated in Fig. 1. The geometrical parameters are similar to those observed for 4-methoxy-N-[(pyrrolidin-1-yl)carbothioyl]benzamide (MPCB; Suhud et al. 2015a). The 4-methoxybenzoyl and piperidine fragments adopt a trans–cis conformation with respect to the thiono S atom across the C8—N1 bond, with the piperidine ring having a chair conformation. The mean plane of the piperidine ring is twisted with respect to the 4-methoxy benzoyl ring with a dihedral angle of 63.0 (3)°. The central N—C(=S)—N(H)—C(=O) bridge is twisted with an N2—C8—N1—C7 torsion angle of 74.8 (6)°. The methoxy group lies in the plane of the benzene ring, with the C14—O2—C4—C3 torsion angle being 180.0 (4)°.
3. Supramolecular features
In the crystal of MPiCB, neighbouring molecules are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming chains along the c-axis direction (Table 1 and Fig. 2). Adjacent chains are linked by C—H⋯π interactions, involving a piperidine H atom and the π electrons of the benzene ring, forming layers parallel to the ac plane (Table 1 and Fig. 3). The layers are linked by offset π–π stacking interactions involving the benzene rings, forming a supramolecular three-dimensional structure as illustrated in Fig. 3 [Cg⋯Cgi = 3.927 (3) Å; Cg is the centroid of the C1–C6 ring; interplanar distance = 3.517 (2) Å; slippage = 1.747 Å; symmetry code: (i) −x, −y + 2, −z + 2].
4. Database survey
A search of the Cambridge Structural Database (Version 5.38, update May 2017; Groom et al., 2016) for the 4-methoxy-N-(carbonothioyl)benzamide skeleton gave 37 hits. Two compounds are of particular interest, namely 4-methoxy-N-(pyrrolidin-1-ylcarbonothioyl)benzamide (DUDYOS; Suhud et al., 2015a) mentioned previously (MPCB), and N-(2,6-dimethylpiperidine-1-carbonothioyl)-3,4,5-trimethoxybenzamide (HESLEX; Dillen et al., 2006). The 4-methoxybenzoyl ring and the mean plane of the piperidine ring in MPiCB form a smaller angle [63.13 (3)°] compared with the angle of 72.60 (14)° for similar mean planes found in DUDYOS (Suhud et al. 2015a). The bond lengths for C8=S1 [1.651 (4) Å] and C7=O1 [1.226 (4) Å] in MPiCB are comparable to those observed for DUDYOS [C=S = 1.662 (2) Å and C=O = 1.220 (2) Å]. Other bond lengths and angles in the MPiCB molecule are comparable with those reported for DUDYOS and N-(pyrrolidin-1-ylcarbothioyl)benzamide (SAGYOQ; Al-abbasi et al., 2012). Compound HESLEX also involves a piperidine ring with a chair conformation linked by the C(=S)—N(H)—C(=O) bridge to a 3,4,5-trimethoxybenzene ring. It crystallizes with two independent molecules in the with slightly different conformations. For example, the mean plane of the piperidine rings are inclined to the benzene rings by 58.97 (11) and 64.11 (11)°, compared to 63.13 (3)° in the title compound. The central N—C(=S)—N(H)—C(=O) bridge is twisted in each compound, with an N2—C8—N1—C7 torsion angle of 74.8 (6)° in MPiCB, 63.0 (3)° in DUDYOS, 65.5 (3) and 79.9 (3)° in HESLEX, and finally −59.7 (2)° in SAGYOQ.
5. Synthesis and crystallization
Benzoyl chloride (0.01 mol) was added slowly to ammonium thiocyanate (0.01 mol) in acetone and the mixture was stirred for 30 min at room temperature. A white precipitate of ammonium chloride was filtered off and the filtrate was cooled in an ice bath (278–283 K) for about 15 min. A cold solution (278–283 K) of piperidine (0.01 mol) in acetone was added to the benzoyl isothiocyanate and the mixture was left for 3 h at room temperature. A yellowish precipitate was formed, filtered and washed with cold water to give pale-yellow crystals (yield 87%, m.p. 401-402 K).
The infrared spectrum of MPiCB shows the characteristic signals for ν(NH) 3300, ν(O—CH3) 2900, ν(C=O) 1609, ν(C—Cbenzene) 1460, ν(C—Ostretching) 1327 and v(C=S) 1252 cm−1. The 1H NMR spectrum exhibits the H(N) group at 8.35 Hz, while the 13C NMR signal of the C=S and C=O groups appear at 174.66 and 163.19 Hz, respectively.
6. Refinement
Crystal data, data collection and structure . The NH H atom was located in a difference-Fourier map and freely refined. The C-bound H atoms were included in calculated positions and refined in a riding-model approximation: C—H = 0.93–0.97 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1575129
https://doi.org/10.1107/S2056989017013317/su4162sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017013317/su4162Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017013317/su4162Isup3.cml
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).C14H18N2O2S | F(000) = 592 |
Mr = 278.36 | Dx = 1.301 Mg m−3 |
Monoclinic, P21/c | Melting point = 402–401 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 8.2228 (9) Å | Cell parameters from 9933 reflections |
b = 18.1289 (19) Å | θ = 3.1–25.0° |
c = 9.945 (1) Å | µ = 0.23 mm−1 |
β = 106.612 (3)° | T = 296 K |
V = 1420.6 (3) Å3 | Block, pale-yellow |
Z = 4 | 0.50 × 0.35 × 0.16 mm |
Bruker SMART APEX CCD area-detector diffractometer | 2500 independent reflections |
Radiation source: fine-focus sealed tube | 1955 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
ω scan | θmax = 25.0°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −9→9 |
Tmin = 0.895, Tmax = 0.965 | k = −21→21 |
38784 measured reflections | l = −11→11 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.081 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.251 | w = 1/[σ2(Fo2) + (0.1213P)2 + 2.9951P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2500 reflections | Δρmax = 0.99 e Å−3 |
178 parameters | Δρmin = −0.52 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.012 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.10498 (18) | 0.58727 (6) | 1.00073 (14) | 0.0680 (5) | |
O1 | 0.0919 (5) | 0.77247 (17) | 0.7982 (3) | 0.0700 (10) | |
O2 | −0.3058 (4) | 1.02962 (17) | 0.9922 (3) | 0.0636 (9) | |
N1 | 0.1299 (4) | 0.73279 (18) | 1.0176 (3) | 0.0460 (8) | |
N2 | 0.3615 (6) | 0.6709 (2) | 0.9800 (6) | 0.0807 (15) | |
C1 | −0.0338 (5) | 0.8445 (2) | 0.9412 (4) | 0.0416 (9) | |
C2 | −0.1170 (5) | 0.8893 (3) | 0.8297 (4) | 0.0529 (11) | |
H2 | −0.1117 | 0.8781 | 0.7397 | 0.064* | |
C3 | −0.2068 (6) | 0.9496 (3) | 0.8504 (4) | 0.0587 (11) | |
H3 | −0.2622 | 0.9788 | 0.7742 | 0.070* | |
C4 | −0.2165 (5) | 0.9679 (2) | 0.9832 (4) | 0.0487 (10) | |
C5 | −0.1338 (5) | 0.9242 (2) | 1.0951 (4) | 0.0496 (10) | |
H5 | −0.1389 | 0.9357 | 1.1850 | 0.059* | |
C6 | −0.0434 (5) | 0.8633 (2) | 1.0739 (4) | 0.0482 (10) | |
H6 | 0.0123 | 0.8342 | 1.1502 | 0.058* | |
C7 | 0.0655 (5) | 0.7812 (2) | 0.9123 (4) | 0.0460 (10) | |
C8 | 0.2076 (6) | 0.6650 (2) | 0.9959 (4) | 0.0502 (10) | |
C9 | 0.4655 (9) | 0.7393 (3) | 0.9999 (9) | 0.102 (2) | |
H9A | 0.3928 | 0.7814 | 0.9997 | 0.122* | |
H9B | 0.5499 | 0.7374 | 1.0907 | 0.122* | |
C10 | 0.5469 (9) | 0.7491 (4) | 0.8969 (9) | 0.105 (2) | |
H10A | 0.6200 | 0.7920 | 0.9201 | 0.126* | |
H10B | 0.4624 | 0.7588 | 0.8082 | 0.126* | |
C11 | 0.6528 (7) | 0.6829 (4) | 0.8795 (8) | 0.0910 (18) | |
H11A | 0.6892 | 0.6889 | 0.7956 | 0.109* | |
H11B | 0.7533 | 0.6796 | 0.9593 | 0.109* | |
C12 | 0.5502 (10) | 0.6128 (4) | 0.8685 (10) | 0.119 (3) | |
H12A | 0.4694 | 0.6110 | 0.7759 | 0.143* | |
H12B | 0.6262 | 0.5711 | 0.8762 | 0.143* | |
C13 | 0.4638 (11) | 0.6046 (3) | 0.9654 (10) | 0.119 (3) | |
H13A | 0.5442 | 0.5940 | 1.0557 | 0.143* | |
H13B | 0.3885 | 0.5625 | 0.9396 | 0.143* | |
C14 | −0.3187 (7) | 1.0502 (3) | 1.1266 (6) | 0.0678 (13) | |
H14A | −0.3689 | 1.0106 | 1.1649 | 0.102* | |
H14B | −0.3884 | 1.0934 | 1.1179 | 0.102* | |
H14C | −0.2076 | 1.0605 | 1.1877 | 0.102* | |
H1 | 0.085 (5) | 0.732 (2) | 1.084 (4) | 0.043 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0856 (10) | 0.0478 (7) | 0.0731 (9) | −0.0160 (6) | 0.0266 (7) | 0.0031 (5) |
O1 | 0.124 (3) | 0.0583 (19) | 0.0390 (16) | −0.0046 (18) | 0.0422 (17) | −0.0021 (13) |
O2 | 0.0632 (19) | 0.0547 (18) | 0.070 (2) | 0.0078 (15) | 0.0152 (15) | 0.0078 (15) |
N1 | 0.064 (2) | 0.0447 (19) | 0.0374 (17) | −0.0028 (15) | 0.0268 (16) | −0.0016 (14) |
N2 | 0.094 (3) | 0.042 (2) | 0.133 (4) | −0.009 (2) | 0.075 (3) | −0.019 (2) |
C1 | 0.049 (2) | 0.042 (2) | 0.0356 (19) | −0.0123 (16) | 0.0146 (16) | 0.0004 (15) |
C2 | 0.062 (2) | 0.063 (3) | 0.032 (2) | −0.008 (2) | 0.0096 (17) | 0.0012 (18) |
C3 | 0.060 (3) | 0.065 (3) | 0.044 (2) | 0.001 (2) | 0.0033 (19) | 0.012 (2) |
C4 | 0.043 (2) | 0.046 (2) | 0.055 (2) | −0.0077 (17) | 0.0115 (17) | 0.0005 (18) |
C5 | 0.062 (2) | 0.050 (2) | 0.040 (2) | −0.0004 (19) | 0.0181 (18) | −0.0006 (17) |
C6 | 0.064 (2) | 0.048 (2) | 0.033 (2) | 0.0011 (19) | 0.0133 (17) | 0.0059 (16) |
C7 | 0.064 (2) | 0.047 (2) | 0.0309 (19) | −0.0177 (18) | 0.0199 (17) | −0.0060 (16) |
C8 | 0.070 (3) | 0.044 (2) | 0.042 (2) | −0.0095 (19) | 0.0253 (19) | −0.0063 (16) |
C9 | 0.103 (5) | 0.054 (3) | 0.175 (7) | −0.021 (3) | 0.084 (5) | −0.028 (4) |
C10 | 0.084 (4) | 0.079 (4) | 0.174 (7) | −0.015 (3) | 0.075 (5) | −0.011 (4) |
C11 | 0.064 (3) | 0.095 (4) | 0.124 (5) | 0.012 (3) | 0.041 (3) | −0.005 (4) |
C12 | 0.094 (5) | 0.088 (5) | 0.189 (8) | 0.018 (4) | 0.064 (5) | −0.036 (5) |
C13 | 0.142 (6) | 0.055 (3) | 0.195 (9) | 0.010 (4) | 0.105 (6) | −0.010 (4) |
C14 | 0.069 (3) | 0.053 (3) | 0.087 (4) | 0.004 (2) | 0.031 (3) | −0.006 (2) |
S1—C8 | 1.651 (4) | C5—H5 | 0.9300 |
O1—C7 | 1.226 (4) | C6—H6 | 0.9300 |
O2—C4 | 1.356 (5) | C9—C10 | 1.385 (9) |
O2—C14 | 1.421 (6) | C9—H9A | 0.9700 |
N1—C7 | 1.352 (5) | C9—H9B | 0.9700 |
N1—C8 | 1.430 (5) | C10—C11 | 1.521 (8) |
N1—H1 | 0.84 (4) | C10—H10A | 0.9700 |
N2—C8 | 1.323 (6) | C10—H10B | 0.9700 |
N2—C9 | 1.487 (6) | C11—C12 | 1.511 (9) |
N2—C13 | 1.497 (7) | C11—H11A | 0.9700 |
C1—C2 | 1.386 (6) | C11—H11B | 0.9700 |
C1—C6 | 1.387 (5) | C12—C13 | 1.358 (10) |
C1—C7 | 1.484 (6) | C12—H12A | 0.9700 |
C2—C3 | 1.367 (6) | C12—H12B | 0.9700 |
C2—H2 | 0.9300 | C13—H13A | 0.9700 |
C3—C4 | 1.386 (6) | C13—H13B | 0.9700 |
C3—H3 | 0.9300 | C14—H14A | 0.9600 |
C4—C5 | 1.377 (6) | C14—H14B | 0.9600 |
C5—C6 | 1.381 (6) | C14—H14C | 0.9600 |
C4—O2—C14 | 117.8 (3) | C10—C9—H9B | 109.0 |
C7—N1—C8 | 122.2 (3) | N2—C9—H9B | 109.0 |
C7—N1—H1 | 117 (3) | H9A—C9—H9B | 107.8 |
C8—N1—H1 | 115 (3) | C9—C10—C11 | 113.3 (6) |
C8—N2—C9 | 125.8 (4) | C9—C10—H10A | 108.9 |
C8—N2—C13 | 122.0 (4) | C11—C10—H10A | 108.9 |
C9—N2—C13 | 111.3 (5) | C9—C10—H10B | 108.9 |
C2—C1—C6 | 117.9 (4) | C11—C10—H10B | 108.9 |
C2—C1—C7 | 118.1 (3) | H10A—C10—H10B | 107.7 |
C6—C1—C7 | 123.9 (3) | C12—C11—C10 | 110.2 (5) |
C3—C2—C1 | 120.8 (4) | C12—C11—H11A | 109.6 |
C3—C2—H2 | 119.6 | C10—C11—H11A | 109.6 |
C1—C2—H2 | 119.6 | C12—C11—H11B | 109.6 |
C2—C3—C4 | 121.0 (4) | C10—C11—H11B | 109.6 |
C2—C3—H3 | 119.5 | H11A—C11—H11B | 108.1 |
C4—C3—H3 | 119.5 | C13—C12—C11 | 115.8 (6) |
O2—C4—C5 | 124.9 (4) | C13—C12—H12A | 108.3 |
O2—C4—C3 | 116.1 (4) | C11—C12—H12A | 108.3 |
C5—C4—C3 | 119.0 (4) | C13—C12—H12B | 108.3 |
C4—C5—C6 | 119.9 (4) | C11—C12—H12B | 108.3 |
C4—C5—H5 | 120.0 | H12A—C12—H12B | 107.4 |
C6—C5—H5 | 120.0 | C12—C13—N2 | 113.8 (6) |
C5—C6—C1 | 121.4 (4) | C12—C13—H13A | 108.8 |
C5—C6—H6 | 119.3 | N2—C13—H13A | 108.8 |
C1—C6—H6 | 119.3 | C12—C13—H13B | 108.8 |
O1—C7—N1 | 120.0 (4) | N2—C13—H13B | 108.8 |
O1—C7—C1 | 122.1 (4) | H13A—C13—H13B | 107.7 |
N1—C7—C1 | 117.9 (3) | O2—C14—H14A | 109.5 |
N2—C8—N1 | 115.7 (3) | O2—C14—H14B | 109.5 |
N2—C8—S1 | 125.9 (3) | H14A—C14—H14B | 109.5 |
N1—C8—S1 | 118.4 (3) | O2—C14—H14C | 109.5 |
C10—C9—N2 | 112.9 (6) | H14A—C14—H14C | 109.5 |
C10—C9—H9A | 109.0 | H14B—C14—H14C | 109.5 |
N2—C9—H9A | 109.0 | ||
C6—C1—C2—C3 | −0.5 (6) | C2—C1—C7—N1 | −172.4 (4) |
C7—C1—C2—C3 | −178.3 (4) | C6—C1—C7—N1 | 10.0 (6) |
C1—C2—C3—C4 | 0.3 (7) | C9—N2—C8—N1 | 7.8 (8) |
C14—O2—C4—C5 | −1.5 (6) | C13—N2—C8—N1 | 176.1 (6) |
C14—O2—C4—C3 | 180.0 (4) | C9—N2—C8—S1 | −168.8 (5) |
C2—C3—C4—O2 | 178.7 (4) | C13—N2—C8—S1 | −0.6 (9) |
C2—C3—C4—C5 | 0.0 (6) | C7—N1—C8—N2 | 74.8 (6) |
O2—C4—C5—C6 | −178.6 (4) | C7—N1—C8—S1 | −108.2 (4) |
C3—C4—C5—C6 | −0.1 (6) | C8—N2—C9—C10 | −137.5 (7) |
C4—C5—C6—C1 | −0.2 (6) | C13—N2—C9—C10 | 53.2 (9) |
C2—C1—C6—C5 | 0.5 (6) | N2—C9—C10—C11 | −53.7 (9) |
C7—C1—C6—C5 | 178.1 (4) | C9—C10—C11—C12 | 48.7 (9) |
C8—N1—C7—O1 | −9.5 (6) | C10—C11—C12—C13 | −47.0 (10) |
C8—N1—C7—C1 | 171.5 (3) | C11—C12—C13—N2 | 49.2 (11) |
C2—C1—C7—O1 | 8.6 (6) | C8—N2—C13—C12 | 139.6 (7) |
C6—C1—C7—O1 | −169.0 (4) | C9—N2—C13—C12 | −50.6 (10) |
Cg is the centroid of the C1–C6 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.84 (4) | 2.12 (4) | 2.897 (4) | 154 (4) |
C6—H6···O1i | 0.93 | 2.40 | 3.294 (5) | 160 |
C10—H10A···Cgii | 0.97 | 2.89 | 3.851 (8) | 170 |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x+1, y, z. |
Funding information
The authors thank the Universiti Kebangsaan Malaysia (UKM) for financial support via research grants DIP-2012–11, DLP-2013–001, DPP-2013–043 and DPP-2014–048, and the Ministry of Education, Malaysia for grant FRGS/1/2014/ST01/UKM/02/2.
References
Al-abbasi, A. A., Mohamed Tahir, M. I. & Kassim, M. B. (2012). Acta Cryst. E68, o201. Web of Science CSD CrossRef IUCr Journals
Arslan, H., Florke, U., Kulcu, N. & Kayhan, E. (2006). Turk. J. Chem. 30, 429–440. CAS
Brahmachari, G. & Das, S. (2012). Tetrahedron Lett. 53, 1479–1484. Web of Science CSD CrossRef CAS
Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Dillen, J., Woldu, M. G. & Koch, K. R. (2006). Acta Cryst. E62, o5225–o5227. Web of Science CSD CrossRef IUCr Journals
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals
Isab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Evans, H. S. (2010). Polyhedron, 29, 1251–1256. Web of Science CSD CrossRef CAS
Kovačková, S., Dračínský, M. & Rejman, D. (2011). Tetrahedron, 67, 1485–1500.
Małecki, J. G. & Nycz, J. N. (2013). Polyhedron, 55, 49–56.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals
Suhud, K., Heng, L. Y., Hasbullah, S. A., Ahmad, M. & Kassim, M. B. (2015a). Acta Cryst. E71, o225–o226. CSD CrossRef IUCr Journals
Suhud, K., Heng, L. Y., Rezayi, M., Al-abbasi, A. A., Hasbullah, S. A., Ahmad, M. & Kassim, M. B. (2015b). J. Solution Chem. 44, 181–192. CrossRef CAS
Tan, S. S., Al-abbasi, A. A., Tahir, M. I. M. & Kassim, M. B. (2014). Polyhedron, 68, 287–294. CSD CrossRef CAS
Watson, P. S., Jiang, B. & Scott, B. (2000). Org. Lett. 2, 3679–3681. Web of Science CrossRef PubMed CAS
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.