research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 7β-hy­dr­oxy­royleanone isolated from Taxodium ascendens (B.)

CROSSMARK_Color_square_no_text.svg

aSchool of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China, and bCollege of Chemistry and Life Science, Qinghai University for Nationalities, Xining 810007, People's Republic of China
*Correspondence e-mail: xzyang@mail.scuec.edu.cn, mxhmxh02@163.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 7 July 2017; accepted 18 August 2017; online 5 September 2017)

The title compound, C20H28O4 [systematic name: (4bS,8aS,10S)-3,10-dihy­droxy-2-isopropyl-4b,8,8-trimethyl-4b,5,6,7,8,8a,9,10-octa­hydro­phenanthrene-1,4-dione], is an abietane-type diterpene, which was isolated from Taxodium ascendens (B.). The compound crystallizes in the chiral space group P21, but it was not possible to determine the absolute structure of the mol­ecule in the crystal by resonant scattering. The mol­ecular structure is stabilized by two intra­molecular O—H⋯O hydrogen bonds, enclosing S(5) and S(6) ring motifs. In the crystal, mol­ecules are linked by O—H⋯O and C—H⋯O hydrogen bonds, forming chains along the [010] direction. The crystal structure of the 10R stereoisomer of the title compound, isolated from the roots of Premna obtusifolia (Verbenaceae), has been reported. It crystallized in the chiral space group P212121, and the absolute structure was determined as (4bS,8aS,10R), by resonant scattering using Cu Kα radiation [Razak et al. (2010[Razak, I. A., Salae, A. W., Chantrapromma, S., Karalai, C. & Fun, H.-K. (2010). Acta Cryst. E66, o1566-o1567.]). Acta Cryst. E66, o1566–o1567].

1. Chemical context

Taxodium ascendens Brongn belongs to the Taxodiaceae species, which is native to the south-east of North America and has spread widely over southern China (Si et al., 2001[Si, Y., Zhang, C.-K., Yao, X.-H. & Tu, Z.-B. (2001). J. Wuhan Bot. Res. 19, 517-520.]). Previous chemical studies of Taxodium ascendens (B.) have described many diterpenes, such as 6,7-de­hydro­royleanone, salvinolone and xanthoperol (Kusumoto et al., 2009[Kusumoto, N., Ashitani, T., Hayasaka, Y., Murayama, T., Ogiyama, K. & Takahashi, K. (2009). J. Chem. Ecol. 35, 635-642.]; Gonzalez, 2015[Gonzalez, M. A. (2015). Nat. Prod. Rep. 32, 684-704.]), and the diterpenoids have attracted much attention in recent years because of their diverse biological properties (Burmistrova et al., 2013[Burmistrova, O., Simoes, M. F., Rijo, P., Quintana, J., Bermejo, J. & Estevez, F. (2013). J. Nat. Prod. 76, 1413-1423.]; Tanaka, 2001[Tanaka, R. (2001). Bioorg. Med. Chem. 9, 1911-1921.]), such as anti­bacterial (Yang et al., 2001[Yang, Z., Kitano, Y., Chiba, K., Shibata, N., Kurokawa, H., Doi, Y., Arakawa, Y. & Tada, M. (2001). Bioorg. Med. Chem. 9, 347-356.]), anti­oxidant (Kolak et al., 2009[Kolak, U., Kabouche, A., Öztürk, M., Kabouche, Z., Topçu, G. & Ulubelen, A. (2009). Phytochem. Anal. 20, 320-327.]), anti­fungal (Topçu & Gören, 2007[Topçu, G. & Gören, A. C. (2007). Rec. Nat. Prod. 1, 1-16.]) and anti­cholinesterase activities (Topçu et al., 2013[Topçu, G., Kolak, U., Ozturk, M., Boga, M., Hatipoglu, S. D., Bahadori, F., Culhaoglu, B. & Dirmenci, T. (2013). Nat. Prod. J, 3, 3-9.]). A detailed phytochemical investigation of a petroleum ether extract of the pollen of Taxodium ascendens Brongn has been carried out and a series of diterpenoids have been isolated, including the title compound, 7β-hy­droxy­royleanone. Herein, we present the crystal structure of 7β-hy­droxy­royleanone carried out in order to establish unambiguously the stereochemical features of this natural product.

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The structure contains two hy­droxy groups, located at atoms C11 and C15, two ketone groups at C14 and C17, and two double bonds, C12=C13 and C15=C16. There are two intra­molecular hydrogen bonds, viz. O2—H2⋯O1 and O4—H4⋯O3, which stabilize the mol­ecular conformation. Ring A (atoms C1–C6) has a chair conformation [puckering parameters: amplitude (Q) = 0.552 (2) Å, θ = 4.9 (2)° and φ = 292 (3)°], while ring B (C1/C2/C10–C13) has an envelope conformation, with atom C2 as the flap [puckering parameters: Q = 0.558 (2) Å, θ = 125.1 (2)° and φ = 256.2 (3)°]. Benzo­quinone ring C (C12–C17) has a screw-boat conformation [puckering parameters: Q = 0.097 (2) Å, θ = 66.3 (12)° and φ = 29.7 (14)°]. The mean planes of the various rings are inclined to one another in the following manner: A/B = 22.97 (10)°, A/C = 34.52 (10)° and B/C = 12.84 (9)°.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling and 50% probability displacement ellipsoids. Intra­molecular O—H⋯O hydrogen bonds are shown as blue dashed lines (see Table 1[link]).

The crystal structure of the 10R stereoisomer of the title compound, isolated from the roots of Premna obtusifolia (Verbenaceae), has been reported twice (see §4[link], Database survey). It crystallized in the chiral space group P212121, and the absolute structure was determined as (4bS,8aS,10R) by resonant scattering using Cu Kα radiation (Razak et al., 2010[Razak, I. A., Salae, A. W., Chantrapromma, S., Karalai, C. & Fun, H.-K. (2010). Acta Cryst. E66, o1566-o1567.]). Comparing the two compounds indicates that the configuration of the three stereocentres in the title compound are (4bS,8aS,10S).

3. Supra­molecular features

In the crystal, two strong O—H⋯O hydrogen bonds, namely O2—H2A⋯O3i and O4—H4⋯O1ii, both approximately running along the b axis, are formed via the hy­droxy group and the carbonyl groups (Fig. 2[link] and Table 1[link]). Furthermore, a weak C11—H11⋯O1ii hydrogen bond occurs from a ring C atom to a carbonyl group, also running along the b-axis direction. These inter­actions result in the formation of chains propagating along the b-axis direction (Fig. 2[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.82 2.10 2.579 (2) 117
O4—H4⋯O3 0.82 2.37 2.814 (2) 115
O2—H2A⋯O3i 0.82 2.39 3.153 (2) 155
O4—H4⋯O1ii 0.82 2.33 2.901 (2) 127
C11—H11⋯O1ii 0.98 2.47 3.120 (2) 124
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z.
[Figure 2]
Figure 2
A view along the c axis of the crystal packing of the title compound, with hydrogen bonds shown as dashed lines. Only H atoms involved in these inter­actions have been included.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.27, last update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the octa­hydro­phenanthrene-1,4-dione skeleton revealed 14 entries. These include two reports of a compound similar to the title compound, but with no hy­droxy group in position 10, i.e. CSD refcodes HACGUN (Eugster et al., 1993[Eugster, C. H., Ruedi, P., Tanudjaja, T., Bieri, J. H., Prewo, R. & Linden, A. (1993). Private communication. CCDC, Cambridge, England.]) and HACGUN01 (Fun et al., 2011[Fun, H.-K., Chantrapromma, S., Salae, A. W., Razak, I. A. & Karalai, C. (2011). Acta Cryst. E67, o1032-o1033.]), and two reports of the stereoisomer of the title compound, with the hy­droxy group in position 10 having an R configuration, i.e. QICLIX (Chen et al., 2000[Chen, X., Liao, R.-A., Weng, L.-H., Xie, Q.-L. & Deng, F.-J. (2000). Chin. J. Struct. Chem. 19, 122-125.]) and QICLIX01 (Razak et al., 2010[Razak, I. A., Salae, A. W., Chantrapromma, S., Karalai, C. & Fun, H.-K. (2010). Acta Cryst. E66, o1566-o1567.]).

5. Isolation and crystallization

The title compound was isolated from the pollen of Taxodium ascendens, collected in Wuhan, China, in April 2013 (SC0123). The air-dried pollen (1.8 kg) was extracted with 95% ethanol and then partitioned successively with petroleum ether (PE), ethyl acetate (EtOAc) and n-butyl alcohol (n-BuOH) to give a PE extract (80 g), an EtOAc extract (120 g) and a n-BuOH extract (100 g). The PE extract (80 g) was subjected to normal-phase silica-gel column chromatography (300–400 mesh) with a gradient solvent system of petroleum ether–acetone (1.0–0.1 v/v, containing 0.1% formic acid) to give eight major fractions, denoted F1–F8. Fraction F4 (6 g) was sequentially subjected to normal-phase silica-gel column chromatography (300–400 mesh) with an isocratic elution (petroleum ether–acetone, 2:1 v/v, containing 0.1% formic acid) to give three major fractions, denoted F4.1, F4.2 and F4.3. Fraction F4.3 was purified by semipreparative HPLC (CNCH3/H2O, 10:90→100:0, 40 min, containing 0.1% formic acid in both phase), to give an orange solid, which was recrystallized from the mixed solvents of CH2Cl2–MeOH (5:2 v/v), affording orange block-like crystals suitable for X-ray diffraction analysis. The 1H and 13C NMR data of 7β-hy­droxy­royleanone have been reported elsewhere (Chang & Zhu, 2001[Chang, J. & Zhu, N. S. (2001). Nat. Prod. Res. Dev. 13, 27-29.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were positioned with idealized geometry and refined using a riding model, with O—H = 0.82 Å and C—H = 0.94–0.98 Å, and with Uiso(H) = 1.5Ueq(O,C) for hydroxy and methyl groups, and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C20H28O4
Mr 332.42
Crystal system, space group Monoclinic, P21
Temperature (K) 296
a, b, c (Å) 10.2570 (18), 7.6151 (13), 11.503 (2)
β (°) 101.110 (3)
V3) 881.6 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.15 × 0.12 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 6669, 3463, 3163
Rint 0.024
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.083, 1.03
No. of reflections 3319
No. of parameters 225
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.11
Absolute structure Flack x determined using 1341 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.2 (3)
Computer programs: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

(4bS,8aS,10S)-3,10-Dihydroxy-2-isopropyl-4b,8,8-trimethyl-4b,5,6,7,8,8a,9,10-octahydrophenanthrene-1,4-dione top
Crystal data top
C20H28O4F(000) = 360
Mr = 332.42Dx = 1.252 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.2570 (18) ÅCell parameters from 5396 reflections
b = 7.6151 (13) Åθ = 2.4–31.8°
c = 11.503 (2) ŵ = 0.09 mm1
β = 101.110 (3)°T = 296 K
V = 881.6 (3) Å3Block, orange
Z = 20.15 × 0.12 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.024
φ and ω scansθmax = 26.0°, θmin = 1.8°
6669 measured reflectionsh = 1212
3463 independent reflectionsk = 98
3163 reflections with I > 2σ(I)l = 1414
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.1205P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.083(Δ/σ)max = 0.018
S = 1.03Δρmax = 0.18 e Å3
3319 reflectionsΔρmin = 0.11 e Å3
225 parametersExtinction correction: (SHELXL2014; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.042 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 1341 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.2 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.18336 (18)0.9032 (3)0.38131 (16)0.0325 (4)
C20.12043 (19)1.0797 (3)0.33060 (16)0.0330 (4)
H20.07081.12100.39010.040*
C30.0151 (2)1.0710 (3)0.21358 (18)0.0436 (5)
C40.0879 (2)0.9310 (4)0.2287 (2)0.0558 (6)
H4A0.14160.97550.28300.067*
H4B0.14640.91240.15270.067*
C50.0293 (2)0.7561 (3)0.2744 (2)0.0552 (6)
H5A0.01620.70420.21630.066*
H5B0.10030.67730.28520.066*
C60.0680 (2)0.7766 (3)0.3915 (2)0.0449 (5)
H6A0.10430.66250.41750.054*
H6B0.02100.82090.45090.054*
C70.2771 (2)0.8148 (3)0.30881 (19)0.0468 (5)
H7A0.34320.89760.29540.070*
H7B0.22670.77600.23410.070*
H7C0.31980.71580.35190.070*
C80.0733 (3)1.0359 (5)0.1025 (2)0.0652 (7)
H8A0.10340.91640.10320.098*
H8B0.14671.11370.10150.098*
H8C0.00611.05550.03310.098*
C90.0575 (3)1.2484 (4)0.1956 (3)0.0632 (7)
H9A0.00091.33580.17390.095*
H9B0.08411.28260.26790.095*
H9C0.13471.23760.13380.095*
C100.2287 (2)1.2171 (3)0.33153 (17)0.0393 (4)
H10A0.29761.17030.29320.047*
H10B0.19141.32040.28810.047*
C110.28762 (18)1.2668 (2)0.45820 (17)0.0329 (4)
H110.22801.35010.48660.040*
C120.30669 (18)1.1084 (2)0.53977 (16)0.0304 (4)
C130.26614 (18)0.9456 (2)0.50399 (16)0.0304 (4)
C140.3121 (2)0.8004 (3)0.58809 (17)0.0346 (4)
C150.38257 (19)0.8399 (3)0.71053 (17)0.0354 (4)
C160.40798 (19)1.0040 (3)0.75146 (17)0.0347 (4)
C170.36998 (17)1.1471 (3)0.66582 (17)0.0319 (4)
C180.4710 (2)1.0503 (3)0.87781 (17)0.0434 (5)
H180.47791.17850.88250.052*
C190.3826 (3)0.9924 (4)0.9633 (2)0.0596 (7)
H19A0.29561.04220.93900.089*
H19B0.42031.03211.04180.089*
H19C0.37610.86670.96290.089*
C200.6116 (2)0.9766 (4)0.9132 (2)0.0596 (7)
H20A0.60800.85060.91400.089*
H20B0.65111.01860.99070.089*
H20C0.66401.01430.85710.089*
O10.29606 (19)0.6460 (2)0.56208 (14)0.0538 (4)
O20.41656 (17)0.6964 (2)0.77776 (13)0.0485 (4)
H2A0.39120.60820.73910.073*
O30.38668 (15)1.30061 (19)0.69666 (13)0.0441 (4)
O40.41202 (14)1.3502 (2)0.45960 (14)0.0458 (4)
H40.42861.41700.51650.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0336 (9)0.0310 (10)0.0314 (9)0.0013 (7)0.0025 (7)0.0020 (7)
C20.0350 (9)0.0332 (10)0.0304 (8)0.0038 (8)0.0052 (7)0.0013 (7)
C30.0406 (11)0.0488 (13)0.0373 (10)0.0060 (9)0.0025 (8)0.0032 (9)
C40.0404 (11)0.0618 (17)0.0577 (14)0.0007 (11)0.0090 (10)0.0018 (12)
C50.0486 (13)0.0476 (15)0.0628 (14)0.0103 (10)0.0057 (11)0.0022 (11)
C60.0455 (11)0.0353 (12)0.0499 (12)0.0063 (9)0.0008 (9)0.0018 (9)
C70.0472 (12)0.0483 (14)0.0435 (11)0.0137 (10)0.0048 (9)0.0089 (10)
C80.0711 (16)0.087 (2)0.0342 (11)0.0040 (15)0.0019 (10)0.0009 (13)
C90.0588 (15)0.0589 (18)0.0639 (15)0.0147 (12)0.0083 (12)0.0115 (13)
C100.0454 (11)0.0375 (11)0.0343 (9)0.0008 (9)0.0059 (8)0.0086 (9)
C110.0348 (9)0.0251 (10)0.0386 (9)0.0002 (7)0.0062 (7)0.0025 (7)
C120.0296 (8)0.0283 (10)0.0331 (9)0.0036 (7)0.0057 (7)0.0015 (7)
C130.0319 (9)0.0274 (10)0.0312 (9)0.0035 (7)0.0042 (7)0.0006 (7)
C140.0409 (10)0.0244 (10)0.0370 (9)0.0001 (8)0.0038 (7)0.0002 (8)
C150.0421 (10)0.0280 (10)0.0343 (9)0.0038 (8)0.0030 (8)0.0053 (7)
C160.0376 (9)0.0330 (11)0.0315 (9)0.0003 (8)0.0017 (7)0.0000 (8)
C170.0303 (8)0.0276 (10)0.0374 (9)0.0008 (7)0.0058 (7)0.0008 (8)
C180.0539 (12)0.0355 (11)0.0351 (10)0.0038 (9)0.0058 (8)0.0008 (9)
C190.0685 (16)0.0722 (19)0.0364 (11)0.0044 (13)0.0059 (10)0.0088 (11)
C200.0518 (13)0.0643 (17)0.0538 (13)0.0058 (12)0.0119 (11)0.0043 (12)
O10.0789 (11)0.0247 (8)0.0491 (9)0.0005 (8)0.0098 (8)0.0004 (7)
O20.0687 (10)0.0291 (8)0.0405 (8)0.0007 (7)0.0074 (7)0.0059 (6)
O30.0557 (9)0.0269 (8)0.0456 (8)0.0017 (6)0.0004 (7)0.0048 (6)
O40.0443 (8)0.0421 (9)0.0517 (8)0.0115 (7)0.0111 (6)0.0015 (7)
Geometric parameters (Å, º) top
C1—C131.535 (2)C10—C111.514 (3)
C1—C71.543 (3)C10—H10A0.9700
C1—C61.547 (3)C10—H10B0.9700
C1—C21.555 (3)C11—O41.423 (2)
C2—C101.525 (3)C11—C121.517 (3)
C2—C31.556 (3)C11—H110.9800
C2—H20.9800C12—C131.347 (3)
C3—C41.534 (4)C12—C171.499 (3)
C3—C81.534 (3)C13—C141.485 (3)
C3—C91.538 (4)C14—O11.217 (3)
C4—C51.514 (4)C14—C151.485 (3)
C4—H4A0.9700C15—C161.343 (3)
C4—H4B0.9700C15—O21.345 (2)
C5—C61.522 (3)C16—C171.470 (3)
C5—H5A0.9700C16—C181.514 (3)
C5—H5B0.9700C17—O31.224 (2)
C6—H6A0.9700C18—C191.526 (3)
C6—H6B0.9700C18—C201.527 (3)
C7—H7A0.9600C18—H180.9800
C7—H7B0.9600C19—H19A0.9600
C7—H7C0.9600C19—H19B0.9600
C8—H8A0.9600C19—H19C0.9600
C8—H8B0.9600C20—H20A0.9600
C8—H8C0.9600C20—H20B0.9600
C9—H9A0.9600C20—H20C0.9600
C9—H9B0.9600O2—H2A0.8200
C9—H9C0.9600O4—H40.8200
C13—C1—C7107.26 (15)H9A—C9—H9C109.5
C13—C1—C6110.93 (16)H9B—C9—H9C109.5
C7—C1—C6109.52 (18)C11—C10—C2109.46 (15)
C13—C1—C2106.21 (15)C11—C10—H10A109.8
C7—C1—C2115.53 (17)C2—C10—H10A109.8
C6—C1—C2107.36 (15)C11—C10—H10B109.8
C10—C2—C1109.97 (15)C2—C10—H10B109.8
C10—C2—C3114.73 (16)H10A—C10—H10B108.2
C1—C2—C3117.15 (16)O4—C11—C10108.25 (15)
C10—C2—H2104.5O4—C11—C12109.85 (15)
C1—C2—H2104.5C10—C11—C12112.14 (16)
C3—C2—H2104.5O4—C11—H11108.9
C4—C3—C8111.1 (2)C10—C11—H11108.9
C4—C3—C9107.4 (2)C12—C11—H11108.8
C8—C3—C9107.3 (2)C13—C12—C17121.81 (17)
C4—C3—C2108.08 (18)C13—C12—C11123.18 (16)
C8—C3—C2114.31 (18)C17—C12—C11114.97 (16)
C9—C3—C2108.44 (19)C12—C13—C14116.48 (16)
C5—C4—C3114.45 (19)C12—C13—C1123.93 (17)
C5—C4—H4A108.6C14—C13—C1119.50 (16)
C3—C4—H4A108.6O1—C14—C13123.26 (19)
C5—C4—H4B108.6O1—C14—C15116.57 (18)
C3—C4—H4B108.6C13—C14—C15120.16 (17)
H4A—C4—H4B107.6C16—C15—O2122.88 (17)
C4—C5—C6111.5 (2)C16—C15—C14123.19 (18)
C4—C5—H5A109.3O2—C15—C14113.92 (17)
C6—C5—H5A109.3C15—C16—C17116.50 (17)
C4—C5—H5B109.3C15—C16—C18124.83 (19)
C6—C5—H5B109.3C17—C16—C18118.67 (18)
H5A—C5—H5B108.0O3—C17—C16120.63 (18)
C5—C6—C1112.19 (18)O3—C17—C12118.58 (17)
C5—C6—H6A109.2C16—C17—C12120.78 (17)
C1—C6—H6A109.2C16—C18—C19110.77 (18)
C5—C6—H6B109.2C16—C18—C20112.1 (2)
C1—C6—H6B109.2C19—C18—C20111.7 (2)
H6A—C6—H6B107.9C16—C18—H18107.3
C1—C7—H7A109.5C19—C18—H18107.3
C1—C7—H7B109.5C20—C18—H18107.3
H7A—C7—H7B109.5C18—C19—H19A109.5
C1—C7—H7C109.5C18—C19—H19B109.5
H7A—C7—H7C109.5H19A—C19—H19B109.5
H7B—C7—H7C109.5C18—C19—H19C109.5
C3—C8—H8A109.5H19A—C19—H19C109.5
C3—C8—H8B109.5H19B—C19—H19C109.5
H8A—C8—H8B109.5C18—C20—H20A109.5
C3—C8—H8C109.5C18—C20—H20B109.5
H8A—C8—H8C109.5H20A—C20—H20B109.5
H8B—C8—H8C109.5C18—C20—H20C109.5
C3—C9—H9A109.5H20A—C20—H20C109.5
C3—C9—H9B109.5H20B—C20—H20C109.5
H9A—C9—H9B109.5C15—O2—H2A109.5
C3—C9—H9C109.5C11—O4—H4109.5
C13—C1—C2—C1054.86 (19)C11—C12—C13—C16.7 (3)
C7—C1—C2—C1063.9 (2)C7—C1—C13—C12105.6 (2)
C6—C1—C2—C10173.59 (16)C6—C1—C13—C12134.8 (2)
C13—C1—C2—C3171.78 (16)C2—C1—C13—C1218.5 (2)
C7—C1—C2—C369.5 (2)C7—C1—C13—C1470.9 (2)
C6—C1—C2—C353.1 (2)C6—C1—C13—C1448.6 (2)
C10—C2—C3—C4178.36 (19)C2—C1—C13—C14164.98 (16)
C1—C2—C3—C450.4 (2)C12—C13—C14—O1171.2 (2)
C10—C2—C3—C857.4 (3)C1—C13—C14—O15.6 (3)
C1—C2—C3—C873.8 (3)C12—C13—C14—C158.3 (3)
C10—C2—C3—C962.3 (2)C1—C13—C14—C15174.92 (17)
C1—C2—C3—C9166.5 (2)O1—C14—C15—C16179.6 (2)
C8—C3—C4—C576.0 (3)C13—C14—C15—C160.1 (3)
C9—C3—C4—C5166.9 (2)O1—C14—C15—O21.6 (3)
C2—C3—C4—C550.1 (3)C13—C14—C15—O2178.92 (17)
C3—C4—C5—C656.2 (3)O2—C15—C16—C17177.42 (18)
C4—C5—C6—C158.2 (3)C14—C15—C16—C173.9 (3)
C13—C1—C6—C5170.39 (19)O2—C15—C16—C183.1 (3)
C7—C1—C6—C571.4 (2)C14—C15—C16—C18175.61 (19)
C2—C1—C6—C554.8 (2)C15—C16—C17—O3178.2 (2)
C1—C2—C10—C1168.9 (2)C18—C16—C17—O31.4 (3)
C3—C2—C10—C11156.51 (17)C15—C16—C17—C120.2 (3)
C2—C10—C11—O4162.26 (16)C18—C16—C17—C12179.73 (17)
C2—C10—C11—C1240.9 (2)C13—C12—C17—O3169.35 (19)
O4—C11—C12—C13125.08 (19)C11—C12—C17—O38.4 (2)
C10—C11—C12—C134.7 (3)C13—C12—C17—C169.0 (3)
O4—C11—C12—C1757.2 (2)C11—C12—C17—C16173.16 (16)
C10—C11—C12—C17177.58 (16)C15—C16—C18—C1963.3 (3)
C17—C12—C13—C1412.5 (3)C17—C16—C18—C19116.2 (2)
C11—C12—C13—C14169.93 (16)C15—C16—C18—C2062.2 (3)
C17—C12—C13—C1170.90 (16)C17—C16—C18—C20118.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.822.102.579 (2)117
O4—H4···O30.822.372.814 (2)115
O2—H2A···O3i0.822.393.153 (2)155
O4—H4···O1ii0.822.332.901 (2)127
C11—H11···O1ii0.982.473.120 (2)124
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
 

Funding information

Funding for this research was provided by: Natural Science Foundation of Qinghai Province (grant No. 2016-ZJ-908); National Natural Science Foundation of China grant (grant No. 81573561).

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBurmistrova, O., Simoes, M. F., Rijo, P., Quintana, J., Bermejo, J. & Estevez, F. (2013). J. Nat. Prod. 76, 1413–1423.  Web of Science CrossRef CAS PubMed
First citationChang, J. & Zhu, N. S. (2001). Nat. Prod. Res. Dev. 13, 27–29.  CAS
First citationChen, X., Liao, R.-A., Weng, L.-H., Xie, Q.-L. & Deng, F.-J. (2000). Chin. J. Struct. Chem. 19, 122–125.  CAS
First citationEugster, C. H., Ruedi, P., Tanudjaja, T., Bieri, J. H., Prewo, R. & Linden, A. (1993). Private communication. CCDC, Cambridge, England.
First citationFun, H.-K., Chantrapromma, S., Salae, A. W., Razak, I. A. & Karalai, C. (2011). Acta Cryst. E67, o1032–o1033.  Web of Science CSD CrossRef IUCr Journals
First citationGonzalez, M. A. (2015). Nat. Prod. Rep. 32, 684–704.  Web of Science CAS PubMed
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationKolak, U., Kabouche, A., Öztürk, M., Kabouche, Z., Topçu, G. & Ulubelen, A. (2009). Phytochem. Anal. 20, 320–327.  Web of Science CrossRef PubMed CAS
First citationKusumoto, N., Ashitani, T., Hayasaka, Y., Murayama, T., Ogiyama, K. & Takahashi, K. (2009). J. Chem. Ecol. 35, 635–642.  Web of Science CrossRef PubMed CAS
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals
First citationRazak, I. A., Salae, A. W., Chantrapromma, S., Karalai, C. & Fun, H.-K. (2010). Acta Cryst. E66, o1566–o1567.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSi, Y., Zhang, C.-K., Yao, X.-H. & Tu, Z.-B. (2001). J. Wuhan Bot. Res. 19, 517–520.
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationTanaka, R. (2001). Bioorg. Med. Chem. 9, 1911–1921.  Web of Science CrossRef PubMed
First citationTopçu, G. & Gören, A. C. (2007). Rec. Nat. Prod. 1, 1–16.
First citationTopçu, G., Kolak, U., Ozturk, M., Boga, M., Hatipoglu, S. D., Bahadori, F., Culhaoglu, B. & Dirmenci, T. (2013). Nat. Prod. J, 3, 3–9.
First citationYang, Z., Kitano, Y., Chiba, K., Shibata, N., Kurokawa, H., Doi, Y., Arakawa, Y. & Tada, M. (2001). Bioorg. Med. Chem. 9, 347–356.  Web of Science CrossRef PubMed CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds