research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of the dioxane hemisolvates of N-(7-bromo­methyl-1,8-naphthyridin-2-yl)acetamide and bis­­[N-(7-di­bromo­methyl-1,8-naphthyridin-2-yl)acetamide]

CROSSMARK_Color_square_no_text.svg

aInstitut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: monika.mazik@chemie.tu-freiberg.de

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 22 July 2017; accepted 22 August 2017; online 5 September 2017)

The syntheses and crystal structures of N-(7-bromo­methyl-1,8-naphthyridin-2-yl)acetamide dioxane hemisolvate, C11H10BrN3O·0.5C4H8O2, (I), and bis­[N-(7-di­bromo­methyl-1,8-naphthyridin-2-yl)acetamide] dioxane hemisolvate, 2C11H9Br2N3O·0.5C4H8O2, (II), are described. The mol­ecules adopt a conformation with the N—H hydrogen pointing towards the lone electron pair of the adjacent naphthyridine N atom. The crystals of (I) are stabilized by a three-dimensional supra­molecular network comprising N—H⋯N, C—H⋯N and C—H⋯O hydrogen bonds, as well as C—Br⋯π halogen bonds. The crystals of compound (II) are stabilized by a three-dimensional supra­molecular network comprising N—H⋯N, C—H⋯N and C—H⋯O hydrogen bonds, as well as C—H⋯π contacts and C—Br⋯π halogen bonds. The structure of the substituent attached in the 7-position of the naphthyridine skeleton has a fundamental influence on the pattern of inter­molecular noncovalent bonding. While the Br atom of (I) participates in weak C—Br⋯Oguest and C—Br⋯π contacts, the Br atoms of compound (II) are involved in host–host inter­actions via C—Br⋯O=C, C—Br⋯N and C—Br⋯π bonding.

1. Chemical context

In recent decades, 1,8-naphthyridines have attracted increasing inter­est because of their biological and medicinal activities (Ferrarini et al., 1998[Ferrarini, P. L., Manera, C., Mori, C., Badaweh, M. & Saccomanni, G. (1998). Il Farmaco, 53, 741-746.]; Roma et al., 2010[Roma, G., Di Braccio, M., Grossi, G., Piras, D., Ballabeni, V., Tognolini, M., Bertoni, S. & Barocelli, E. (2010). Eur. J. Med. Chem. 45, 352-366.]; Badaweh et al., 2001[Badaweh, M., Ferrarini, P. L., Calderone, V., Manera, C., Martinotti, E., Saccomanni, G. & Testai, L. (2001). Eur. J. Med. Chem. 36, 825-934.]; Litvinov, 2004[Litvinov, V. P. (2004). Russ. Chem. Rev. 73, 637-669.]), as ligands in the synthesis of metal complexes (Tang et al., 2015[Tang, W. H., Liu, Y. H., Peng, S. M. & Liu, S. T. (2015). J. Organomet. Chem. 775, 94-100.]; Matveeva et al., 2013[Matveeva, A. G., Starikova, Z. A., Aysin, R. R., Skazov, R. S., Matveev, S. V., Timoveeva, G. I., Passechnik, M. P. & Nifantèv, E. E. (2013). Polyhedron, 61, 172-180.]; Kolotuchin & Zimmerman, 1998[Kolotuchin, S. V. & Zimmerman, S. C. (1998). J. Am. Chem. Soc. 120, 9092-9093.]) and as building blocks for various supra­molecular systems (Kolotuchin & Zimmerman, 1998[Kolotuchin, S. V. & Zimmerman, S. C. (1998). J. Am. Chem. Soc. 120, 9092-9093.]; Park et al., 2005[Park, T., Mayer, M. F., Nakashima, S. & Zimmerman, S. C. (2005). Synlett, pp. 1435-1436.]; Liang et al., 2012[Liang, F., Lindsay, S. & Zhang, P. (2012). Org. Biomol. Chem. 10, 8654-8659.]). Compound (I)[link] represents a useful precursor for the synthesis of artificial receptor mol­ecules, for example, for carbohydrate receptors bearing naphthyridine units (Mazik & Cavga, 2007[Mazik, M. & Cavga, H. (2007). Eur. J. Org. Chem. pp. 3633-3638.]; Mazik & Sicking, 2001[Mazik, M. & Sicking, W. (2001). Chem. Eur. J. 7, 664-670.]; Cuntze et al., 1995[Cuntze, J., Owens, L., Alcázar, V., Seiler, P. & Diederich, D. (1995). Helv. Chim. Acta, 78, 367-390.]).

2. Structural commentary

The mol­ecular structures of the title compounds, (I)[link] and (II)[link], are illustrated in Figs. 1[link] and 2[link], respectively. The asymmetric unit of compound (I)[link] consists of one mol­ecule of the naphthyridine derivative and one half of a 1,4-dioxane solvent mol­ecule, with the whole mol­ecule being generated by inversion symmetry. The naphthyridine ring of the host mol­ecule is essentially planar [maximum deviations from the mean plane being 0.034 (3) Å for N1 and −0.034 (3) Å for C6]. The plane defined by the acetamido group is inclined at an angle of 18.9 (2)° with respect to the mean plane of the 1,8-naphthyridine moiety. The torsion angle along the atomic sequence N2—C1—C9—Br1 is 83.6 (4)°. The dioxane mol­ecule is connected to the host mol­ecule via C—H⋯O hydrogen bonding (Table 1[link] and Fig. 1[link]).

[Scheme 1]

Table 1
Hydrogen- and halogen-bond geometry (Å, °) for (I)[link]

Cg1 and Cg2 are the centroids of rings N1/C1–C4/C8, and N2/C4–C8, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1 0.95 2.29 2.836 (6) 116
N3—H3A⋯N2i 0.88 (1) 2.18 (1) 3.053 (5) 173 (5)
C1A—H1A1⋯O1ii 0.99 2.55 3.462 (6) 153
C2—H2⋯O1Aiii 0.95 2.54 3.438 (5) 157
C5—H5⋯O1ii 0.95 2.48 3.376 (6) 157
C9—H9A⋯N1iv 0.99 2.47 3.418 (6) 161
C9—Br1⋯Cg1v 1.94 (1) 3.70 (1) 5.563 (5) 161 (1)
C9—Br1⋯Cg2vi 1.94 (1) 3.70 (1) 5.436 (5) 148 (1)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+1, -y+1, -z; (vi) -x+1, -y, -z.
[Figure 1]
Figure 1
A view of the mol­ecular structure of compound (I)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines represent halogen bonds (Table 1[link]).
[Figure 2]
Figure 2
A view of the two independent mol­ecules of compound (II)[link], showing the atom labelling and ring specification. Displacement ellipsoids are drawn at the 50% probability level. For the sake of clarity, the minor-disordered component of the dioxane mol­ecule has been omitted. Dashed lines represent hydrogen bonds (Table 2[link]).

The asymmetric unit of the inclusion compound (II)[link] contains two crystallographically independent, but conformationally similar mol­ecules of the 1,8-naphthyridine derivative and one half mol­ecule of a positionally disordered 1,4-dioxane, the whole mol­ecule of the latter is generated by inversion symmetry and is disordered over two positions [occupancy ratio = 0.890 (5):0110 (5)]. The structural features of the host mol­ecule in (II)[link] resemble those found in the reported structure of N-(7-di­bromo­methyl-5-methyl-1,8-naphthyridin-2-yl)acetamide (Gou et al., 2013[Gou, G.-Z., Kou, J.-F., Zhou, Q.-D. & Chi, S.-M. (2013). Acta Cryst. E69, o153-o154.]). The dihedral angles between the mean planes of the naphthyridine moiety and the acetyl­amido group are 27.6 (1) and 20.4 (1)°, respectively. The di­bromo­methyl group is oriented in such a way that the two Br atoms are tilted away from the plane of the respective naphthyridine moiety. The dioxane mol­ecule is connected to the host mol­ecule via C—H⋯O hydrogen bonding (Table 2[link] and Fig. 2[link]).

Table 2
Hydrogen- and halogen-bond geometry (Å, °) for (II)[link]

Cg1, Cg2 and Cg4 are the centroids of rings N1/C1–C4/C8, N2/C4–C8 and N2A/C4A–C8A, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1 0.95 2.37 2.886 (4) 113
C6A—H6A⋯O1A 0.95 2.32 2.871 (5) 116
N3—H3⋯N2Ai 0.89 (3) 2.10 (3) 2.985 (4) 171 (4)
N3A—H3A⋯N2i 0.89 (3) 2.09 (3) 2.950 (4) 163 (3)
C2—H2⋯N1A 0.95 2.56 3.397 (4) 147
C2A—H2A⋯O1Bii 0.95 2.42 3.344 (5) 163
C11—H11B⋯N1Ai 0.98 2.44 3.411 (5) 169
C11A—H11D⋯O1iii 0.98 2.46 3.437 (5) 179
C11A—H11E⋯N1i 0.98 2.54 3.459 (4) 156
C3—H3AACg4 0.95 2.82 3.548 (3) 134
C2BA—H2B3⋯Cg4iv 0.99 2.96 3.82 (9) 145
C9—Br1⋯Cg1ii 1.94 (1) 3.62 (1) 5.270 (4) 141 (1)
C9—Br1⋯Cg2ii 1.94 (1) 3.32 (1) 5.247 (4) 173 (1)
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y, -z+1; (iii) -x-1, -y+1, -z+1; (iv) x, y, z+1.

3. Supra­molecular features

In the crystal of compound (I)[link], 1:1 host–guest units related by the 21 screw axis are linked via hydrogen bonding to form infinite supra­molecular strands (Fig. 3[link] and Table 1[link]). In this mol­ecular arrangement, the amino H atom and atom N2 participate in inter­molecular N—H⋯N hydrogen bonding, whereas atom N1 is involved in the formation of a weaker C—H⋯N inter­action with one of the methyl­ene H atoms of a symmetry-related mol­ecule acting as a donor. These hydrogen bonds create a loop with graph-set motif R22(8). An inter­strand inter­action is accomplished by Carene—H⋯O and C—H⋯Br hydrogen bonds, as well as weak C—Br⋯π [C—Br⋯Cnaph = 3.527 (2) Å and 170.1 (1)°] contacts, thus creating a three-dimensional supra­molecular architecture.

[Figure 3]
Figure 3
A view of the crystal packing of compound (I)[link] (a) normal to the 101 plane and (b) along the b axis. Dashed lines represent hydrogen bonds.

According to the observed stoichiometric ratio of the crystal components in (II)[link], the host mol­ecules contribute in a different way in noncovalent inter­molecular bonding. The crystal structure is constructed of 2:1 host–guest complexes (Fig. 2[link] and Table 2[link]), in which the independent host mol­ecules form a strongly distorted dimer held together by two N—H⋯N hydrogen bonds and two weak Cmeth­yl—H⋯N contacts. One of the arene H atoms of this dimeric unit acts as a donor for C—H⋯O hydrogen bonding to the guest mol­ecule. As is shown in Fig. 4[link] and Table 2[link], the Br atoms of only one host mol­ecule participate in inter­molecular inter­actions. Atom Br1 is involved in the formation of a weak C—H⋯Br contact. Moreover, the Br1⋯Cg(B) distance of 3.317 (2) Å and the well-defined bonding geometry [C9—Br1⋯Cg(B) = 173.0 (1)°] indicate the presence of an inter­molecular Br⋯π halogen bond (Mazik et al., 2010a[Mazik, M., Buthe, A. C. & Jones, P. G. (2010a). Tetrahedron, 66, 385-389.],b[Mazik, M., Hartman, A. & Jones, P. G. (2010b). Eur. J. Org. Chem. pp. 458-463.]; Koch et al., 2017[Koch, N., Seichter, W. & Mazik, M. (2017). CrystEngComm, 19, 3817-3833.]; Legon, 1999[Legon, A. C. (1999). Angew. Chem. Int. Ed. 38, 2686-2714.]; Megrangolo & Resnati, 2008[Megrangolo, P. & Resnati, G. (2008). Editors. Halogen Bonding Fundamentals and Applications. Berlin: Springer.]). The distance of 3.213 (2) Å between atom Br2 and amide atom O1A of an adjacent mol­ecule [symmetry code: (A) x + 1, y − 1, z], which is considerably less than the sum of the van der Waals radii of the respective atoms (3.37 Å), suggests the existence of an attractive Br⋯O halogen bond (Politzer et al., 2007[Politzer, P., Lane, P., Conch, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]; Koch et al., 2014[Koch, N., Seichter, W. & Mazik, M. (2014). Acta Cryst. E70, o393-o394.], 2015[Koch, N., Seichter, W. & Mazik, M. (2015). Tetrahedron, 71, 8965-8974.]). One of the host mol­ecules participates in offset ππ stacking [CgCg = 3.709 (2) Å; symmetry code: −x, −y, −z + 1]. The combination of these inter­actions results in the formation of a three-dimensional supra­molecular network.

[Figure 4]
Figure 4
A view of the crystal packing of compound (II)[link]. For the sake of clarity, the minor component of the disordered dioxane mol­ecule has been omitted. Dashed lines represent hydrogen and halogen bonds.

4. Database survey

The search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; Version 5.38, last update February 2017) for com­pounds representing 7-substituted 2-(N-acyl­amino)-1,8-naphthyridines including solvates/hydrates resulted in 14 hits. Of particular inter­est are the unsolvated crystal structures of N-(7-methyl-1,8-naphthyridin-2-yl)acetamide (Goswami et al., 2007[Goswami, S., Dey, S., Gallagher, J. F., Lough, A. J., García-Granda, S., Torre-Fernández, L., Alkorta, I. & Elguero, J. (2007). J. Mol. Struct. 846, 97-107.]), and N-(7-chloro-1,8-naphthyridin-2-yl)acetamide and N-(7-chloro-1,8-naphthyridin-2-yl)butanoyl­amide (Ghosh et al., 2010[Ghosh, K., Sen, T. & Fröhlich, R. (2010). J. Incl. Phenom. Macrocycl. Chem. 68, 193-199.]). These two compounds (space group P21/c) reveal mol­ecular assemblies similar to that observed for compound (I)[link], viz. forming infinite chains of hydrogen-bonded mol­ecules, whereas the enhanced steric demand of the butanoyl group of the latter compound favours dimer formation.

5. Synthesis and crystallization

N-(7-Methyl-1,8-naphthyridin-2-yl)acetamide (9.67 g, 48.1 mmol), N-bromosuccinimide (9.07 g, 55.6 mmol) and 2,2′-azobisisobutyronitile (AIBN; 0.10 g, 0.6 mmol), dissolved in 300 ml of dry chloro­form, were refluxed for 8 h with vigorous stirring in the presence of light from a 500 W lamp. The succinimide precipitate was filtered off and the organic filtrate washed several times with water. After drying of the filtrate over anhydrous Na2SO4 and removing the solvent, the crude product [a mixture containing N-(7-bromo­methyl-1,8-naphthyridin-2-yl)acetamide and N-(7-di­bromo­methyl-1,8-naphthyridin-2-yl)acetamide] was purified by column chro­matography (SiO2, eluent: ethyl acetate).

N-(7-Bromo­methyl-1,8-naphthyridin-2-yl)acetamide: white solid (2.56 g). 1H NMR (500 MHz, CDCl3): δ 2.29 (s, 3H, CH3), 4.70 (s, 2H, CH2), 7.59 (d, J = 8.3 Hz, 1H, CHAr), 8.16 (d, J = 8.3 Hz, 1H, CHAr), 8.19 (d, J = 8.8 Hz, 1H, Ar), 8.54 (d, J = 8.8 Hz, 1H, CHAr), 8.93 (s, 1H, NH). 13C NMR (125 MHz, CDCl3): δ 25.1, 33.8, 115.6, 119.7, 120.9, 137.7, 139.3, 153.8, 154.0, 160.8, 169.7.

N-(7-Di­bromo­methyl-1,8-naphthyridin-2-yl)acetamide: white solid (3.20 g). 1H NMR (500 MHz, CDCl3): δ 2.31 (s, 3H, CH3), 6.87 (s, 1H, CH), 7.98 (d, J = 8.4 Hz, 1H, CHAr), 8.21 (d, J = 8.8 Hz, 1H, CHAr), 8.26 (d, J = 8.4 Hz, 1H, CHAr), 8.59 (d, J = 8.8 Hz, 1H, CHAr), 8.97 (s, NH). 13C NMR (125 MHz, CDCl3): δ 25.0, 41.6, 116.2, 119.4, 120.3, 138.6, 139.1, 152.4, 154.6, 161.8, 169.6.

Crystals of (I)[link] and (II)[link] suitable for X-ray analysis were obtained by slow evaporation of the solvent (1,4-dioxane) from solutions of the respective compounds.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. In both compounds, the N—H H atoms were located from difference Fourier maps and refined freely. C-bound H atoms were placed geometrically and allowed to ride on their attached C atoms, with C—H distances of 0.95–1.00 Å and Uiso(H) = 1.5Ueq(C-meth­yl), or 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C11H10BrN3O·0.5C4H8O2 2C11H9Br2N3O·0.5C4H8O2
Mr 324.19 762.11
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 100 100
a, b, c (Å) 10.8863 (10), 7.6256 (7), 16.5300 (15) 9.4065 (5), 9.5271 (5), 16.6464 (10)
α, β, γ (°) 90, 106.310 (4), 90 88.777 (3), 81.057 (2), 64.928 (2)
V3) 1317.0 (2) 1333.15 (13)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 3.12 6.08
Crystal size (mm) 0.34 × 0.06 × 0.06 0.40 × 0.18 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD area detector Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.417, 0.835 0.195, 0.611
No. of measured, independent and observed [I > 2σ(I)] reflections 9345, 2493, 1965 32569, 5659, 5247
Rint 0.043 0.025
(sin θ/λ)max−1) 0.610 0.636
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.144, 1.03 0.029, 0.074, 1.12
No. of reflections 2493 5659
No. of parameters 177 354
No. of restraints 1 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.93, −0.85 0.92, −0.80
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

N-(7-Bromomethyl-1,8-naphthyridin-2-yl)acetamide dioxane hemisolvate (I) top
Crystal data top
C11H10BrN3O·0.5C4H8O2F(000) = 656
Mr = 324.19Dx = 1.635 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.8863 (10) ÅCell parameters from 1901 reflections
b = 7.6256 (7) Åθ = 3.3–25.6°
c = 16.5300 (15) ŵ = 3.12 mm1
β = 106.310 (4)°T = 100 K
V = 1317.0 (2) Å3Needle, colourless
Z = 40.34 × 0.06 × 0.06 mm
Data collection top
CCD area detector
diffractometer
1965 reflections with I > 2σ(I)
phi and ω scansRint = 0.043
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 25.7°, θmin = 2.0°
Tmin = 0.417, Tmax = 0.835h = 139
9345 measured reflectionsk = 89
2493 independent reflectionsl = 1420
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: mixed
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.074P)2 + 4.7912P]
where P = (Fo2 + 2Fc2)/3
2493 reflections(Δ/σ)max < 0.001
177 parametersΔρmax = 0.93 e Å3
1 restraintΔρmin = 0.85 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.40285 (5)0.22955 (7)0.01016 (3)0.0276 (2)
O10.8581 (3)1.1345 (5)0.3581 (2)0.0284 (9)
N10.6444 (3)0.7095 (5)0.2424 (2)0.0102 (8)
N20.5954 (3)0.4391 (5)0.1799 (2)0.0102 (8)
N30.6749 (3)0.9809 (5)0.3027 (2)0.0112 (8)
H3A0.598 (2)0.977 (7)0.310 (3)0.019 (14)*
C10.6261 (4)0.3046 (6)0.1387 (3)0.0109 (9)
C20.7405 (4)0.2935 (6)0.1146 (3)0.0135 (9)
H20.75940.19200.08700.016*
C30.8233 (4)0.4320 (6)0.1320 (3)0.0139 (10)
H30.89990.42940.11520.017*
C40.7944 (4)0.5784 (6)0.1749 (3)0.0106 (9)
C50.8705 (4)0.7317 (6)0.1931 (3)0.0134 (9)
H50.94690.74020.17630.016*
C60.8334 (4)0.8676 (6)0.2351 (3)0.0133 (10)
H60.88300.97190.24740.016*
C70.7196 (4)0.8491 (6)0.2596 (3)0.0102 (9)
C80.6797 (4)0.5770 (6)0.1993 (3)0.0083 (9)
C90.5270 (4)0.1624 (6)0.1145 (3)0.0150 (10)
H9A0.48410.14680.15950.018*
H9B0.56800.05010.10690.018*
C100.7442 (4)1.1158 (6)0.3487 (3)0.0143 (10)
C110.6664 (5)1.2360 (6)0.3869 (3)0.0176 (10)
H11A0.72321.32020.42420.026*
H11B0.62111.16680.41950.026*
H11C0.60411.29920.34200.026*
O1A0.8985 (3)0.9736 (4)0.0366 (2)0.0184 (7)
C1A1.0174 (4)1.0481 (6)0.0834 (3)0.0166 (10)
H1A11.07490.95390.11350.020*
H1A21.00251.13030.12600.020*
C2A0.9197 (5)0.8555 (7)0.0259 (3)0.0206 (11)
H2A10.83690.80590.05940.025*
H2A20.97510.75740.00200.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0237 (3)0.0352 (4)0.0229 (3)0.0019 (2)0.0047 (2)0.0049 (2)
O10.0186 (19)0.033 (2)0.037 (2)0.0123 (16)0.0134 (17)0.0229 (18)
N10.0104 (18)0.0098 (18)0.0115 (19)0.0001 (14)0.0051 (15)0.0003 (15)
N20.0113 (18)0.0105 (19)0.0100 (19)0.0009 (15)0.0051 (15)0.0007 (15)
N30.0088 (18)0.0130 (19)0.0137 (19)0.0012 (15)0.0064 (15)0.0031 (15)
C10.013 (2)0.012 (2)0.007 (2)0.0023 (18)0.0016 (17)0.0027 (17)
C20.016 (2)0.015 (2)0.010 (2)0.0055 (18)0.0037 (18)0.0025 (18)
C30.012 (2)0.021 (3)0.010 (2)0.0032 (19)0.0047 (18)0.0000 (19)
C40.011 (2)0.015 (2)0.006 (2)0.0039 (17)0.0027 (17)0.0032 (17)
C50.009 (2)0.019 (2)0.013 (2)0.0012 (18)0.0040 (18)0.0026 (18)
C60.010 (2)0.017 (2)0.013 (2)0.0019 (18)0.0033 (18)0.0009 (18)
C70.011 (2)0.012 (2)0.007 (2)0.0015 (17)0.0012 (17)0.0021 (17)
C80.010 (2)0.013 (2)0.002 (2)0.0011 (17)0.0022 (16)0.0006 (17)
C90.019 (2)0.015 (2)0.012 (2)0.0000 (19)0.0050 (19)0.0037 (18)
C100.015 (2)0.017 (2)0.013 (2)0.0035 (18)0.0070 (19)0.0039 (18)
C110.020 (3)0.017 (3)0.017 (2)0.0029 (19)0.007 (2)0.006 (2)
O1A0.0185 (17)0.0224 (18)0.0162 (17)0.0009 (14)0.0082 (14)0.0020 (14)
C1A0.020 (2)0.017 (2)0.013 (2)0.0031 (19)0.004 (2)0.0062 (19)
C2A0.021 (3)0.021 (3)0.020 (3)0.005 (2)0.007 (2)0.002 (2)
Geometric parameters (Å, º) top
Br1—C91.938 (5)C5—C61.370 (6)
O1—C101.214 (5)C6—H60.9500
N1—C71.324 (6)C6—C71.414 (6)
N1—C81.352 (5)C9—H9A0.9900
N2—C11.325 (6)C9—H9B0.9900
N2—C81.373 (6)C10—C111.503 (6)
N3—C101.372 (6)C11—H11A0.9800
N3—C71.398 (6)C11—H11B0.9800
N3—H3A0.883 (10)C11—H11C0.9800
C1—C91.502 (6)O1A—C1A1.426 (6)
C1—C21.412 (6)O1A—C2A1.438 (6)
C2—H20.9500C1A—C2Ai1.510 (7)
C2—C31.366 (6)C1A—H1A10.9900
C3—H30.9500C1A—H1A20.9900
C3—C41.405 (6)C2A—C1Ai1.510 (7)
C4—C81.416 (6)C2A—H2A10.9900
C4—C51.415 (6)C2A—H2A20.9900
C5—H50.9500
C7—N1—C8117.6 (4)N2—C1—C9115.4 (4)
C1—N2—C8117.7 (4)N1—C8—N2115.1 (4)
C10—N3—C7127.3 (4)N1—C8—C4123.2 (4)
C10—N3—H3A110 (3)N2—C8—C4121.6 (4)
C7—N3—H3A122 (3)Br1—C9—H9A110.0
N1—C7—N3113.9 (4)Br1—C9—H9B110.0
N1—C7—C6123.9 (4)O1—C10—N3122.8 (4)
N3—C7—C6122.2 (4)O1—C10—C11123.4 (4)
C1—C2—H2120.8N3—C10—C11113.7 (4)
C1—C9—H9A110.0C10—C11—H11A109.5
C1—C9—H9B110.0C10—C11—H11B109.5
C1—C9—Br1108.4 (3)H11A—C11—H11B109.5
C2—C1—C9120.4 (4)C10—C11—H11C109.5
C2—C3—C4119.5 (4)H11A—C11—H11C109.5
C2—C3—H3120.2H11B—C11—H11C109.5
C3—C2—C1118.4 (4)C1A—O1A—C2A109.6 (3)
C3—C2—H2120.8O1A—C1A—C2Ai110.8 (4)
C3—C4—C5124.3 (4)O1A—C1A—H1A1109.5
C3—C4—C8118.5 (4)C2Ai—C1A—H1A1109.5
C4—C3—H3120.2O1A—C1A—H1A2109.5
C4—C5—H5120.2C2Ai—C1A—H1A2109.5
C5—C4—C8117.1 (4)H1A1—C1A—H1A2108.1
C5—C6—C7118.4 (4)O1A—C2A—C1Ai109.9 (4)
C5—C6—H6120.8O1A—C2A—H2A1109.7
C6—C5—C4119.7 (4)C1Ai—C2A—H2A1109.7
C6—C5—H5120.2O1A—C2A—H2A2109.7
C7—C6—H6120.8C1Ai—C2A—H2A2109.7
H9A—C9—H9B108.4H2A1—C2A—H2A2108.2
N2—C1—C2124.1 (4)
C8—N1—C7—N3178.8 (4)C5—C4—C8—N13.6 (6)
C8—N1—C7—C60.4 (6)C5—C4—C8—N2175.9 (4)
C10—N3—C7—N1160.8 (4)C6—C5—C4—C3179.7 (4)
C10—N3—C7—C620.8 (7)C6—C5—C4—C82.0 (6)
N1—C7—C6—C51.9 (7)C7—C6—C5—C40.5 (6)
N3—C7—C6—C5179.9 (4)C7—N1—C8—N2177.2 (4)
C1—N2—C8—C41.3 (6)C7—N1—C8—C42.4 (6)
C1—N2—C8—N1179.1 (4)C7—N3—C10—O11.0 (8)
C2—C1—C9—Br193.8 (4)C7—N3—C10—C11179.7 (4)
C3—C2—C1—N22.4 (7)C8—C4—C3—C20.3 (6)
C3—C2—C1—C9174.8 (4)C8—N2—C1—C20.9 (6)
C3—C4—C8—N1178.5 (4)C8—N2—C1—C9176.4 (4)
C3—C4—C8—N21.9 (6)N2—C1—C9—Br183.6 (4)
C4—C3—C2—C11.7 (7)C2A—O1A—C1A—C2Ai58.6 (5)
C5—C4—C3—C2177.3 (4)C1A—O1A—C2A—C1Ai58.0 (5)
Symmetry code: (i) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings N1/C1-C4/C8, and N2/C4-C8, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.952.292.836 (6)116
N3—H3A···N2ii0.88 (1)2.18 (1)3.053 (5)173 (5)
C1A—H1A1···O1iii0.992.553.462 (6)153
C2—H2···O1Aiv0.952.543.438 (5)157
C5—H5···O1iii0.952.483.376 (6)157
C9—H9A···N1v0.992.473.418 (6)161
C9—Br1···Cg1vi1.94 (1)3.70 (1)5.563 (5)161 (1)
C9—Br1···Cg2vii1.94 (1)3.70 (1)5.436 (5)148 (1)
Symmetry codes: (ii) x+1, y+1/2, z+1/2; (iii) x+2, y1/2, z+1/2; (iv) x, y1, z; (v) x+1, y1/2, z+1/2; (vi) x+1, y+1, z; (vii) x+1, y, z.
Bis[N-(7-dibromomethyl-1,8-naphthyridin-2-yl)acetamide] dioxane hemisolvate (II) top
Crystal data top
2C11H9Br2N3O·0.5C4H8O2Z = 2
Mr = 762.11F(000) = 744
Triclinic, P1Dx = 1.899 Mg m3
a = 9.4065 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5271 (5) ÅCell parameters from 9921 reflections
c = 16.6464 (10) Åθ = 2.4–29.1°
α = 88.777 (3)°µ = 6.08 mm1
β = 81.057 (2)°T = 100 K
γ = 64.928 (2)°Plate, colourless
V = 1333.15 (13) Å30.40 × 0.18 × 0.09 mm
Data collection top
CCD area detector
diffractometer
5247 reflections with I > 2σ(I)
φ and ω scansRint = 0.025
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 26.9°, θmin = 2.4°
Tmin = 0.195, Tmax = 0.611h = 1111
32569 measured reflectionsk = 1212
5659 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: mixed
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0205P)2 + 4.6947P]
where P = (Fo2 + 2Fc2)/3
5659 reflections(Δ/σ)max = 0.001
354 parametersΔρmax = 0.92 e Å3
6 restraintsΔρmin = 0.80 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.65226 (4)0.27545 (4)0.46303 (2)0.02418 (9)
Br20.50091 (4)0.43628 (4)0.36111 (2)0.01949 (8)
O10.1936 (3)0.5684 (2)0.70075 (14)0.0193 (5)
N10.2448 (3)0.0854 (3)0.52469 (15)0.0117 (5)
N20.0579 (3)0.1182 (3)0.60845 (15)0.0122 (5)
N30.1214 (3)0.3074 (3)0.70039 (16)0.0136 (5)
H30.125 (5)0.230 (3)0.730 (2)0.032 (12)*
C10.3284 (3)0.1392 (3)0.45189 (18)0.0125 (6)
C20.3087 (4)0.0548 (4)0.38070 (18)0.0149 (6)
H20.37250.10040.32990.018*
C30.1948 (4)0.0948 (4)0.38720 (19)0.0155 (6)
H3AA0.17750.15500.34040.019*
C40.1032 (4)0.1593 (3)0.46373 (18)0.0133 (6)
C50.0132 (4)0.3143 (3)0.4786 (2)0.0157 (6)
H50.03880.38100.43460.019*
C60.0883 (4)0.3676 (3)0.55553 (19)0.0142 (6)
H60.16600.47170.56620.017*
C70.0479 (3)0.2642 (3)0.61988 (18)0.0127 (6)
C80.1333 (3)0.0649 (3)0.53149 (18)0.0113 (5)
C90.4604 (4)0.2989 (3)0.45387 (18)0.0139 (6)
H90.43250.34800.50390.017*
C100.1954 (4)0.4554 (3)0.73566 (19)0.0146 (6)
C110.2752 (4)0.4634 (4)0.8217 (2)0.0192 (6)
H11A0.19860.44660.85880.029*
H11B0.31470.38310.82830.029*
H11C0.36440.56580.83450.029*
Br1A0.80621 (4)0.30529 (4)0.21420 (2)0.02498 (9)
Br2A0.76639 (5)0.42214 (4)0.04563 (2)0.03087 (10)
O1A0.3475 (3)0.3086 (3)0.21196 (14)0.0213 (5)
N1A0.3820 (3)0.1632 (3)0.17991 (15)0.0114 (5)
N2A0.1123 (3)0.0240 (3)0.21618 (14)0.0108 (5)
N3A0.1546 (3)0.1001 (3)0.26087 (16)0.0131 (5)
H3A0.139 (4)0.027 (3)0.2972 (17)0.018 (9)*
C1A0.5218 (3)0.1707 (3)0.14603 (17)0.0121 (6)
C2A0.5460 (4)0.0467 (4)0.10905 (19)0.0168 (6)
H2A0.64900.05940.08430.020*
C3A0.4166 (4)0.0928 (4)0.10975 (19)0.0163 (6)
H3AB0.42880.17910.08560.020*
C4A0.2652 (4)0.1076 (3)0.14659 (18)0.0123 (6)
C5A0.1237 (4)0.2459 (3)0.15230 (19)0.0152 (6)
H5A0.12670.33780.13060.018*
C6A0.0172 (4)0.2474 (3)0.18892 (19)0.0142 (6)
H6A0.11300.33990.19330.017*
C7A0.0175 (3)0.1079 (3)0.22022 (17)0.0121 (6)
C8A0.2525 (3)0.0247 (3)0.18011 (17)0.0100 (5)
C9A0.6575 (4)0.3261 (3)0.15233 (18)0.0149 (6)
H9A0.61320.39520.18170.018*
C10A0.3099 (4)0.1975 (3)0.25486 (18)0.0137 (6)
C11A0.4289 (4)0.1510 (4)0.30498 (19)0.0166 (6)
H11D0.53660.23140.30380.025*
H11E0.40880.13890.36130.025*
H11F0.41900.05240.28250.025*
O1B0.1348 (3)0.0280 (3)1.00203 (17)0.0237 (7)0.890 (5)
C1B0.0015 (15)0.1333 (9)0.9682 (7)0.0242 (16)0.890 (5)
H1B10.01920.10830.90900.029*0.890 (5)
H1B20.00830.24010.97550.029*0.890 (5)
C2B0.150 (2)0.1267 (10)0.9930 (6)0.0223 (10)0.890 (5)
H2B10.23890.19901.01910.027*0.890 (5)
H2B20.17210.15870.93450.027*0.890 (5)
O1BA0.099 (3)0.003 (3)0.9249 (13)0.0237 (7)0.110 (5)
C1BA0.008 (13)0.147 (8)0.960 (7)0.0242 (16)0.110 (5)
H1B30.04910.22150.91750.029*0.110 (5)
H1B40.04240.18790.99530.029*0.110 (5)
C2BA0.146 (18)0.107 (10)0.988 (5)0.0223 (10)0.110 (5)
H2B30.18870.06161.02620.027*0.110 (5)
H2B40.23430.20480.96400.027*0.110 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01616 (16)0.02553 (18)0.03175 (19)0.00758 (13)0.01019 (13)0.00084 (14)
Br20.02109 (16)0.01804 (16)0.01863 (16)0.00768 (12)0.00289 (12)0.00092 (12)
O10.0206 (12)0.0118 (10)0.0266 (12)0.0073 (9)0.0054 (9)0.0013 (9)
N10.0120 (12)0.0130 (12)0.0119 (12)0.0066 (10)0.0036 (9)0.0025 (9)
N20.0119 (12)0.0109 (12)0.0149 (12)0.0055 (10)0.0034 (10)0.0026 (9)
N30.0124 (12)0.0104 (12)0.0162 (13)0.0033 (10)0.0022 (10)0.0022 (10)
C10.0118 (14)0.0133 (14)0.0137 (14)0.0062 (11)0.0040 (11)0.0020 (11)
C20.0164 (15)0.0185 (15)0.0107 (14)0.0078 (12)0.0037 (11)0.0013 (11)
C30.0195 (15)0.0183 (15)0.0139 (14)0.0111 (13)0.0083 (12)0.0051 (12)
C40.0149 (14)0.0133 (14)0.0157 (15)0.0088 (12)0.0059 (11)0.0026 (11)
C50.0167 (15)0.0129 (14)0.0205 (16)0.0079 (12)0.0073 (12)0.0054 (12)
C60.0137 (14)0.0102 (13)0.0195 (15)0.0050 (11)0.0059 (12)0.0035 (11)
C70.0115 (14)0.0119 (14)0.0168 (15)0.0069 (11)0.0026 (11)0.0019 (11)
C80.0109 (13)0.0115 (13)0.0138 (14)0.0065 (11)0.0038 (11)0.0028 (11)
C90.0139 (14)0.0137 (14)0.0127 (14)0.0043 (12)0.0030 (11)0.0003 (11)
C100.0102 (14)0.0121 (14)0.0207 (16)0.0032 (11)0.0049 (11)0.0011 (12)
C110.0179 (16)0.0149 (15)0.0231 (17)0.0059 (12)0.0014 (13)0.0025 (12)
Br1A0.01866 (17)0.02336 (17)0.03252 (19)0.00674 (13)0.01008 (14)0.00544 (14)
Br2A0.0356 (2)0.02085 (17)0.01875 (17)0.00176 (15)0.00427 (14)0.00107 (13)
O1A0.0134 (11)0.0211 (12)0.0242 (12)0.0023 (9)0.0046 (9)0.0091 (10)
N1A0.0120 (12)0.0110 (11)0.0096 (11)0.0032 (10)0.0016 (9)0.0005 (9)
N2A0.0104 (12)0.0127 (12)0.0089 (11)0.0043 (10)0.0022 (9)0.0010 (9)
N3A0.0105 (12)0.0112 (12)0.0149 (13)0.0019 (10)0.0028 (10)0.0043 (9)
C1A0.0115 (14)0.0122 (14)0.0101 (13)0.0024 (11)0.0022 (11)0.0005 (10)
C2A0.0136 (15)0.0181 (15)0.0175 (15)0.0068 (12)0.0010 (12)0.0014 (12)
C3A0.0182 (15)0.0141 (14)0.0176 (15)0.0082 (12)0.0021 (12)0.0032 (12)
C4A0.0142 (14)0.0123 (14)0.0109 (13)0.0055 (11)0.0035 (11)0.0000 (11)
C5A0.0177 (15)0.0122 (14)0.0162 (15)0.0064 (12)0.0041 (12)0.0034 (11)
C6A0.0142 (14)0.0087 (13)0.0178 (15)0.0026 (11)0.0044 (12)0.0003 (11)
C7A0.0126 (14)0.0125 (14)0.0104 (13)0.0041 (11)0.0036 (11)0.0002 (11)
C8A0.0111 (13)0.0102 (13)0.0079 (13)0.0033 (11)0.0027 (10)0.0011 (10)
C9A0.0124 (14)0.0149 (14)0.0142 (14)0.0036 (12)0.0006 (11)0.0001 (11)
C10A0.0114 (14)0.0149 (14)0.0112 (14)0.0019 (11)0.0019 (11)0.0023 (11)
C11A0.0116 (14)0.0181 (15)0.0182 (15)0.0048 (12)0.0018 (12)0.0008 (12)
O1B0.0220 (14)0.0322 (15)0.0239 (15)0.0181 (12)0.0031 (11)0.0030 (11)
C1B0.034 (3)0.025 (2)0.019 (4)0.0170 (18)0.007 (2)0.004 (2)
C2B0.0226 (19)0.023 (4)0.021 (2)0.008 (3)0.0051 (17)0.0025 (18)
O1BA0.0220 (14)0.0322 (15)0.0239 (15)0.0181 (12)0.0031 (11)0.0030 (11)
C1BA0.034 (3)0.025 (2)0.019 (4)0.0170 (18)0.007 (2)0.004 (2)
C2BA0.0226 (19)0.023 (4)0.021 (2)0.008 (3)0.0051 (17)0.0025 (18)
Geometric parameters (Å, º) top
Br1—C91.939 (3)N3A—C7A1.391 (4)
Br2—C91.929 (3)N3A—H3A0.892 (10)
O1—C101.218 (4)C1A—C2A1.407 (4)
N1—C11.318 (4)C1A—C9A1.505 (4)
N1—C81.364 (4)C2A—C3A1.368 (4)
N2—C71.320 (4)C2A—H2A0.9500
N2—C81.357 (4)C3A—C4A1.410 (4)
N3—C101.376 (4)C3A—H3AB0.9500
N3—C71.392 (4)C4A—C8A1.411 (4)
N3—H30.890 (10)C4A—C5A1.413 (4)
C1—C21.410 (4)C5A—C6A1.364 (4)
C1—C91.506 (4)C5A—H5A0.9500
C2—C31.366 (4)C6A—C7A1.418 (4)
C2—H20.9500C6A—H6A0.9500
C3—C41.409 (4)C9A—H9A1.0000
C3—H3AA0.9500C10A—C11A1.504 (4)
C4—C51.415 (4)C11A—H11D0.9800
C4—C81.415 (4)C11A—H11E0.9800
C5—C61.357 (5)C11A—H11F0.9800
C5—H50.9500O1B—C1B1.423 (8)
C6—C71.423 (4)O1B—C2B1.430 (8)
C6—H60.9500C1B—C2Bi1.49 (2)
C9—H91.0000C1B—H1B10.9900
C10—C111.498 (5)C1B—H1B20.9900
C11—H11A0.9800C2B—C1Bi1.49 (2)
C11—H11B0.9800C2B—H2B10.9900
C11—H11C0.9800C2B—H2B20.9900
Br1A—C9A1.936 (3)O1BA—C1BA1.419 (10)
Br2A—C9A1.937 (3)O1BA—C2BA1.420 (10)
O1A—C10A1.218 (4)C1BA—C2BAi1.6 (2)
N1A—C1A1.321 (4)C1BA—H1B30.9900
N1A—C8A1.364 (4)C1BA—H1B40.9900
N2A—C7A1.324 (4)C2BA—C1BAi1.6 (2)
N2A—C8A1.359 (4)C2BA—H2B30.9900
N3A—C10A1.377 (4)C2BA—H2B40.9900
C1—N1—C8117.0 (3)C4A—C3A—H3AB120.2
C7—N2—C8118.1 (3)C3A—C4A—C8A118.1 (3)
C10—N3—C7126.9 (3)C3A—C4A—C5A124.7 (3)
C10—N3—H3118 (3)C8A—C4A—C5A117.1 (3)
C7—N3—H3115 (3)C6A—C5A—C4A120.0 (3)
N1—C1—C2125.1 (3)C6A—C5A—H5A120.0
N1—C1—C9112.1 (3)C4A—C5A—H5A120.0
C2—C1—C9122.5 (3)C5A—C6A—C7A118.5 (3)
C3—C2—C1117.9 (3)C5A—C6A—H6A120.7
C3—C2—H2121.1C7A—C6A—H6A120.7
C1—C2—H2121.1N2A—C7A—N3A114.2 (3)
C2—C3—C4119.6 (3)N2A—C7A—C6A123.4 (3)
C2—C3—H3AA120.2N3A—C7A—C6A122.4 (3)
C4—C3—H3AA120.2N2A—C8A—N1A114.9 (3)
C3—C4—C5124.7 (3)N2A—C8A—C4A123.1 (3)
C3—C4—C8118.0 (3)N1A—C8A—C4A122.0 (3)
C5—C4—C8117.2 (3)C1A—C9A—Br1A110.6 (2)
C6—C5—C4120.0 (3)C1A—C9A—Br2A111.2 (2)
C6—C5—H5120.0Br1A—C9A—Br2A110.01 (15)
C4—C5—H5120.0C1A—C9A—H9A108.3
C5—C6—C7118.5 (3)Br1A—C9A—H9A108.3
C5—C6—H6120.7Br2A—C9A—H9A108.3
C7—C6—H6120.7O1A—C10A—N3A123.5 (3)
N2—C7—N3114.0 (3)O1A—C10A—C11A123.1 (3)
N2—C7—C6123.3 (3)N3A—C10A—C11A113.4 (3)
N3—C7—C6122.6 (3)C10A—C11A—H11D109.5
N2—C8—N1114.9 (3)C10A—C11A—H11E109.5
N2—C8—C4122.7 (3)H11D—C11A—H11E109.5
N1—C8—C4122.3 (3)C10A—C11A—H11F109.5
C1—C9—Br2115.1 (2)H11D—C11A—H11F109.5
C1—C9—Br1107.8 (2)H11E—C11A—H11F109.5
Br2—C9—Br1109.38 (15)C1B—O1B—C2B110.0 (8)
C1—C9—H9108.1O1B—C1B—C2Bi112.0 (10)
Br2—C9—H9108.1O1B—C1B—H1B1109.2
Br1—C9—H9108.1C2Bi—C1B—H1B1109.2
O1—C10—N3123.2 (3)O1B—C1B—H1B2109.2
O1—C10—C11123.3 (3)C2Bi—C1B—H1B2109.2
N3—C10—C11113.5 (3)H1B1—C1B—H1B2107.9
C10—C11—H11A109.5O1B—C2B—C1Bi109.4 (10)
C10—C11—H11B109.5O1B—C2B—H2B1109.8
H11A—C11—H11B109.5C1Bi—C2B—H2B1109.8
C10—C11—H11C109.5O1B—C2B—H2B2109.8
H11A—C11—H11C109.5C1Bi—C2B—H2B2109.8
H11B—C11—H11C109.5H2B1—C2B—H2B2108.2
C1A—N1A—C8A117.6 (3)C1BA—O1BA—C2BA109 (8)
C7A—N2A—C8A117.9 (3)O1BA—C1BA—C2BAi100 (9)
C10A—N3A—C7A127.5 (3)O1BA—C1BA—H1B3111.8
C10A—N3A—H3A117 (2)C2BAi—C1BA—H1B3111.8
C7A—N3A—H3A115 (2)O1BA—C1BA—H1B4111.8
N1A—C1A—C2A124.6 (3)C2BAi—C1BA—H1B4111.8
N1A—C1A—C9A113.4 (3)H1B3—C1BA—H1B4109.5
C2A—C1A—C9A122.1 (3)O1BA—C2BA—C1BAi116 (9)
C3A—C2A—C1A118.0 (3)O1BA—C2BA—H2B3108.4
C3A—C2A—H2A121.0C1BAi—C2BA—H2B3108.4
C1A—C2A—H2A121.0O1BA—C2BA—H2B4108.3
C2A—C3A—C4A119.6 (3)C1BAi—C2BA—H2B4108.3
C2A—C3A—H3AB120.2H2B3—C2BA—H2B4107.4
C8—N1—C1—C21.6 (4)N1A—C1A—C2A—C3A1.6 (5)
C8—N1—C1—C9173.1 (2)C9A—C1A—C2A—C3A176.7 (3)
N1—C1—C2—C30.4 (5)C1A—C2A—C3A—C4A0.3 (5)
C9—C1—C2—C3173.8 (3)C2A—C3A—C4A—C8A1.4 (4)
C1—C2—C3—C40.5 (4)C2A—C3A—C4A—C5A178.9 (3)
C2—C3—C4—C5177.3 (3)C3A—C4A—C5A—C6A179.6 (3)
C2—C3—C4—C80.1 (4)C8A—C4A—C5A—C6A0.1 (4)
C3—C4—C5—C6176.0 (3)C4A—C5A—C6A—C7A0.3 (4)
C8—C4—C5—C61.4 (4)C8A—N2A—C7A—N3A177.6 (2)
C4—C5—C6—C70.5 (4)C8A—N2A—C7A—C6A0.0 (4)
C8—N2—C7—N3178.7 (3)C10A—N3A—C7A—N2A159.0 (3)
C8—N2—C7—C60.9 (4)C10A—N3A—C7A—C6A23.4 (5)
C10—N3—C7—N2157.9 (3)C5A—C6A—C7A—N2A0.4 (5)
C10—N3—C7—C624.3 (5)C5A—C6A—C7A—N3A177.8 (3)
C5—C6—C7—N20.8 (5)C7A—N2A—C8A—N1A178.3 (2)
C5—C6—C7—N3178.3 (3)C7A—N2A—C8A—C4A0.5 (4)
C7—N2—C8—N1177.8 (3)C1A—N1A—C8A—N2A179.7 (3)
C7—N2—C8—C40.1 (4)C1A—N1A—C8A—C4A0.8 (4)
C1—N1—C8—N2175.7 (3)C3A—C4A—C8A—N2A179.2 (3)
C1—N1—C8—C42.0 (4)C5A—C4A—C8A—N2A0.5 (4)
C3—C4—C8—N2176.4 (3)C3A—C4A—C8A—N1A2.0 (4)
C5—C4—C8—N21.2 (4)C5A—C4A—C8A—N1A178.2 (3)
C3—C4—C8—N11.2 (4)N1A—C1A—C9A—Br1A118.3 (2)
C5—C4—C8—N1178.8 (3)C2A—C1A—C9A—Br1A60.3 (3)
N1—C1—C9—Br2143.1 (2)N1A—C1A—C9A—Br2A119.2 (2)
C2—C1—C9—Br242.1 (4)C2A—C1A—C9A—Br2A62.3 (3)
N1—C1—C9—Br194.6 (3)C7A—N3A—C10A—O1A1.1 (5)
C2—C1—C9—Br180.3 (3)C7A—N3A—C10A—C11A177.5 (3)
C7—N3—C10—O16.4 (5)C2B—O1B—C1B—C2Bi58.1 (11)
C7—N3—C10—C11174.9 (3)C1B—O1B—C2B—C1Bi56.6 (11)
C8A—N1A—C1A—C2A1.1 (4)C2BA—O1BA—C1BA—C2BAi58 (10)
C8A—N1A—C1A—C9A177.4 (2)C1BA—O1BA—C2BA—C1BAi68 (11)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg4 are the centroids of rings N1/C1-C4/C8, N2/C4-C8 and N2A/C4A-C8A, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.952.372.886 (4)113
C6A—H6A···O1A0.952.322.871 (5)116
N3—H3···N2Aii0.89 (3)2.10 (3)2.985 (4)171 (4)
N3A—H3A···N2ii0.89 (3)2.09 (3)2.950 (4)163 (3)
C2—H2···N1A0.952.563.397 (4)147
C2A—H2A···O1Biii0.952.423.344 (5)163
C11—H11B···N1Aii0.982.443.411 (5)169
C11A—H11D···O1iv0.982.463.437 (5)179
C11A—H11E···N1ii0.982.543.459 (4)156
C3—H3AA···Cg40.952.823.548 (3)134
C2BA—H2B3···Cg4v0.992.963.82 (9)145
C9—Br1···Cg1iii1.94 (1)3.62 (1)5.270 (4)141 (1)
C9—Br1···Cg2iii1.94 (1)3.32 (1)5.247 (4)173 (1)
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y, z+1; (iv) x1, y+1, z+1; (v) x, y, z+1.
 

Acknowledgements

Financial support of the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References

First citationBadaweh, M., Ferrarini, P. L., Calderone, V., Manera, C., Martinotti, E., Saccomanni, G. & Testai, L. (2001). Eur. J. Med. Chem. 36, 825–934.
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCuntze, J., Owens, L., Alcázar, V., Seiler, P. & Diederich, D. (1995). Helv. Chim. Acta, 78, 367–390.  CSD CrossRef CAS Web of Science
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationFerrarini, P. L., Manera, C., Mori, C., Badaweh, M. & Saccomanni, G. (1998). Il Farmaco, 53, 741–746.  Web of Science PubMed CAS
First citationGhosh, K., Sen, T. & Fröhlich, R. (2010). J. Incl. Phenom. Macrocycl. Chem. 68, 193–199.  Web of Science CSD CrossRef CAS
First citationGoswami, S., Dey, S., Gallagher, J. F., Lough, A. J., García-Granda, S., Torre-Fernández, L., Alkorta, I. & Elguero, J. (2007). J. Mol. Struct. 846, 97–107.  Web of Science CSD CrossRef CAS
First citationGou, G.-Z., Kou, J.-F., Zhou, Q.-D. & Chi, S.-M. (2013). Acta Cryst. E69, o153–o154.  CSD CrossRef IUCr Journals
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationKoch, N., Seichter, W. & Mazik, M. (2014). Acta Cryst. E70, o393–o394.  CSD CrossRef IUCr Journals
First citationKoch, N., Seichter, W. & Mazik, M. (2015). Tetrahedron, 71, 8965–8974.  Web of Science CSD CrossRef CAS
First citationKoch, N., Seichter, W. & Mazik, M. (2017). CrystEngComm, 19, 3817–3833.  Web of Science CSD CrossRef CAS
First citationKolotuchin, S. V. & Zimmerman, S. C. (1998). J. Am. Chem. Soc. 120, 9092–9093.  Web of Science CrossRef CAS
First citationLegon, A. C. (1999). Angew. Chem. Int. Ed. 38, 2686–2714.  CrossRef CAS
First citationLiang, F., Lindsay, S. & Zhang, P. (2012). Org. Biomol. Chem. 10, 8654–8659.  Web of Science CrossRef CAS PubMed
First citationLitvinov, V. P. (2004). Russ. Chem. Rev. 73, 637–669.  CrossRef CAS
First citationMatveeva, A. G., Starikova, Z. A., Aysin, R. R., Skazov, R. S., Matveev, S. V., Timoveeva, G. I., Passechnik, M. P. & Nifantèv, E. E. (2013). Polyhedron, 61, 172–180.  Web of Science CSD CrossRef CAS
First citationMazik, M., Buthe, A. C. & Jones, P. G. (2010a). Tetrahedron, 66, 385–389.  Web of Science CSD CrossRef CAS
First citationMazik, M. & Cavga, H. (2007). Eur. J. Org. Chem. pp. 3633–3638.  Web of Science CSD CrossRef
First citationMazik, M., Hartman, A. & Jones, P. G. (2010b). Eur. J. Org. Chem. pp. 458–463.  Web of Science CSD CrossRef
First citationMazik, M. & Sicking, W. (2001). Chem. Eur. J. 7, 664–670.  Web of Science CrossRef PubMed CAS
First citationMegrangolo, P. & Resnati, G. (2008). Editors. Halogen Bonding Fundamentals and Applications. Berlin: Springer.
First citationPark, T., Mayer, M. F., Nakashima, S. & Zimmerman, S. C. (2005). Synlett, pp. 1435–1436.
First citationPolitzer, P., Lane, P., Conch, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS
First citationRoma, G., Di Braccio, M., Grossi, G., Piras, D., Ballabeni, V., Tognolini, M., Bertoni, S. & Barocelli, E. (2010). Eur. J. Med. Chem. 45, 352–366.  Web of Science CrossRef PubMed CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationTang, W. H., Liu, Y. H., Peng, S. M. & Liu, S. T. (2015). J. Organomet. Chem. 775, 94–100.  Web of Science CSD CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds