research communications
Crystal structures of the dioxane hemisolvates of N-(7-bromomethyl-1,8-naphthyridin-2-yl)acetamide and bis[N-(7-dibromomethyl-1,8-naphthyridin-2-yl)acetamide]
aInstitut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: monika.mazik@chemie.tu-freiberg.de
The syntheses and crystal structures of N-(7-bromomethyl-1,8-naphthyridin-2-yl)acetamide dioxane hemisolvate, C11H10BrN3O·0.5C4H8O2, (I), and bis[N-(7-dibromomethyl-1,8-naphthyridin-2-yl)acetamide] dioxane hemisolvate, 2C11H9Br2N3O·0.5C4H8O2, (II), are described. The molecules adopt a conformation with the N—H hydrogen pointing towards the of the adjacent naphthyridine N atom. The crystals of (I) are stabilized by a three-dimensional supramolecular network comprising N—H⋯N, C—H⋯N and C—H⋯O hydrogen bonds, as well as C—Br⋯π halogen bonds. The crystals of compound (II) are stabilized by a three-dimensional supramolecular network comprising N—H⋯N, C—H⋯N and C—H⋯O hydrogen bonds, as well as C—H⋯π contacts and C—Br⋯π halogen bonds. The structure of the substituent attached in the 7-position of the naphthyridine skeleton has a fundamental influence on the pattern of intermolecular noncovalent bonding. While the Br atom of (I) participates in weak C—Br⋯Oguest and C—Br⋯π contacts, the Br atoms of compound (II) are involved in host–host interactions via C—Br⋯O=C, C—Br⋯N and C—Br⋯π bonding.
1. Chemical context
In recent decades, 1,8-naphthyridines have attracted increasing interest because of their biological and medicinal activities (Ferrarini et al., 1998; Roma et al., 2010; Badaweh et al., 2001; Litvinov, 2004), as ligands in the synthesis of metal complexes (Tang et al., 2015; Matveeva et al., 2013; Kolotuchin & Zimmerman, 1998) and as building blocks for various supramolecular systems (Kolotuchin & Zimmerman, 1998; Park et al., 2005; Liang et al., 2012). Compound (I) represents a useful precursor for the synthesis of artificial receptor molecules, for example, for carbohydrate receptors bearing naphthyridine units (Mazik & Cavga, 2007; Mazik & Sicking, 2001; Cuntze et al., 1995).
2. Structural commentary
The molecular structures of the title compounds, (I) and (II), are illustrated in Figs. 1 and 2, respectively. The of compound (I) consists of one molecule of the naphthyridine derivative and one half of a 1,4-dioxane solvent molecule, with the whole molecule being generated by inversion symmetry. The naphthyridine ring of the host molecule is essentially planar [maximum deviations from the mean plane being 0.034 (3) Å for N1 and −0.034 (3) Å for C6]. The plane defined by the acetamido group is inclined at an angle of 18.9 (2)° with respect to the mean plane of the 1,8-naphthyridine moiety. The torsion angle along the atomic sequence N2—C1—C9—Br1 is 83.6 (4)°. The dioxane molecule is connected to the host molecule via C—H⋯O hydrogen bonding (Table 1 and Fig. 1).
The contains two crystallographically independent, but conformationally similar molecules of the 1,8-naphthyridine derivative and one half molecule of a positionally disordered 1,4-dioxane, the whole molecule of the latter is generated by inversion symmetry and is disordered over two positions [occupancy ratio = 0.890 (5):0110 (5)]. The structural features of the host molecule in (II) resemble those found in the reported structure of N-(7-dibromomethyl-5-methyl-1,8-naphthyridin-2-yl)acetamide (Gou et al., 2013). The dihedral angles between the mean planes of the naphthyridine moiety and the acetylamido group are 27.6 (1) and 20.4 (1)°, respectively. The dibromomethyl group is oriented in such a way that the two Br atoms are tilted away from the plane of the respective naphthyridine moiety. The dioxane molecule is connected to the host molecule via C—H⋯O hydrogen bonding (Table 2 and Fig. 2).
of the (II)
|
3. Supramolecular features
In the crystal of compound (I), 1:1 host–guest units related by the 21 screw axis are linked via hydrogen bonding to form infinite supramolecular strands (Fig. 3 and Table 1). In this molecular arrangement, the amino H atom and atom N2 participate in intermolecular N—H⋯N hydrogen bonding, whereas atom N1 is involved in the formation of a weaker C—H⋯N interaction with one of the methylene H atoms of a symmetry-related molecule acting as a donor. These hydrogen bonds create a loop with graph-set motif R22(8). An interstrand interaction is accomplished by Carene—H⋯O and C—H⋯Br hydrogen bonds, as well as weak C—Br⋯π [C—Br⋯Cnaph = 3.527 (2) Å and 170.1 (1)°] contacts, thus creating a three-dimensional supramolecular architecture.
According to the observed stoichiometric ratio of the crystal components in (II), the host molecules contribute in a different way in noncovalent intermolecular bonding. The is constructed of 2:1 host–guest complexes (Fig. 2 and Table 2), in which the independent host molecules form a strongly distorted dimer held together by two N—H⋯N hydrogen bonds and two weak Cmethyl—H⋯N contacts. One of the arene H atoms of this dimeric unit acts as a donor for C—H⋯O hydrogen bonding to the guest molecule. As is shown in Fig. 4 and Table 2, the Br atoms of only one host molecule participate in intermolecular interactions. Atom Br1 is involved in the formation of a weak C—H⋯Br contact. Moreover, the Br1⋯Cg(B) distance of 3.317 (2) Å and the well-defined bonding geometry [C9—Br1⋯Cg(B) = 173.0 (1)°] indicate the presence of an intermolecular Br⋯π halogen bond (Mazik et al., 2010a,b; Koch et al., 2017; Legon, 1999; Megrangolo & Resnati, 2008). The distance of 3.213 (2) Å between atom Br2 and amide atom O1A of an adjacent molecule [symmetry code: (A) x + 1, y − 1, z], which is considerably less than the sum of the van der Waals radii of the respective atoms (3.37 Å), suggests the existence of an attractive Br⋯O halogen bond (Politzer et al., 2007; Koch et al., 2014, 2015). One of the host molecules participates in offset π–π stacking [Cg⋯Cg = 3.709 (2) Å; symmetry code: −x, −y, −z + 1]. The combination of these interactions results in the formation of a three-dimensional supramolecular network.
4. Database survey
The search of the Cambridge Structural Database (Groom et al., 2016; Version 5.38, last update February 2017) for compounds representing 7-substituted 2-(N-acylamino)-1,8-naphthyridines including solvates/hydrates resulted in 14 hits. Of particular interest are the unsolvated crystal structures of N-(7-methyl-1,8-naphthyridin-2-yl)acetamide (Goswami et al., 2007), and N-(7-chloro-1,8-naphthyridin-2-yl)acetamide and N-(7-chloro-1,8-naphthyridin-2-yl)butanoylamide (Ghosh et al., 2010). These two compounds (space group P21/c) reveal molecular assemblies similar to that observed for compound (I), viz. forming infinite chains of hydrogen-bonded molecules, whereas the enhanced steric demand of the butanoyl group of the latter compound favours dimer formation.
5. Synthesis and crystallization
N-(7-Methyl-1,8-naphthyridin-2-yl)acetamide (9.67 g, 48.1 mmol), N-bromosuccinimide (9.07 g, 55.6 mmol) and 2,2′-azobisisobutyronitile (AIBN; 0.10 g, 0.6 mmol), dissolved in 300 ml of dry chloroform, were refluxed for 8 h with vigorous stirring in the presence of light from a 500 W lamp. The succinimide precipitate was filtered off and the organic filtrate washed several times with water. After drying of the filtrate over anhydrous Na2SO4 and removing the solvent, the crude product [a mixture containing N-(7-bromomethyl-1,8-naphthyridin-2-yl)acetamide and N-(7-dibromomethyl-1,8-naphthyridin-2-yl)acetamide] was purified by column chromatography (SiO2, ethyl acetate).
N-(7-Bromomethyl-1,8-naphthyridin-2-yl)acetamide: white solid (2.56 g). 1H NMR (500 MHz, CDCl3): δ 2.29 (s, 3H, CH3), 4.70 (s, 2H, CH2), 7.59 (d, J = 8.3 Hz, 1H, CHAr), 8.16 (d, J = 8.3 Hz, 1H, CHAr), 8.19 (d, J = 8.8 Hz, 1H, Ar), 8.54 (d, J = 8.8 Hz, 1H, CHAr), 8.93 (s, 1H, NH). 13C NMR (125 MHz, CDCl3): δ 25.1, 33.8, 115.6, 119.7, 120.9, 137.7, 139.3, 153.8, 154.0, 160.8, 169.7.
N-(7-Dibromomethyl-1,8-naphthyridin-2-yl)acetamide: white solid (3.20 g). 1H NMR (500 MHz, CDCl3): δ 2.31 (s, 3H, CH3), 6.87 (s, 1H, CH), 7.98 (d, J = 8.4 Hz, 1H, CHAr), 8.21 (d, J = 8.8 Hz, 1H, CHAr), 8.26 (d, J = 8.4 Hz, 1H, CHAr), 8.59 (d, J = 8.8 Hz, 1H, CHAr), 8.97 (s, NH). 13C NMR (125 MHz, CDCl3): δ 25.0, 41.6, 116.2, 119.4, 120.3, 138.6, 139.1, 152.4, 154.6, 161.8, 169.6.
Crystals of (I) and (II) suitable for X-ray analysis were obtained by slow evaporation of the solvent (1,4-dioxane) from solutions of the respective compounds.
6. Refinement
Crystal data, data collection and structure . In both compounds, the N—H H atoms were located from difference Fourier maps and refined freely. C-bound H atoms were placed geometrically and allowed to ride on their attached C atoms, with C—H distances of 0.95–1.00 Å and Uiso(H) = 1.5Ueq(C-methyl), or 1.2Ueq(C) for other H atoms.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989017012208/su5386sup1.cif
contains datablocks I, II, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017012208/su5386Isup4.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989017012208/su5386IIsup5.hkl
For both structures, data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C11H10BrN3O·0.5C4H8O2 | F(000) = 656 |
Mr = 324.19 | Dx = 1.635 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.8863 (10) Å | Cell parameters from 1901 reflections |
b = 7.6256 (7) Å | θ = 3.3–25.6° |
c = 16.5300 (15) Å | µ = 3.12 mm−1 |
β = 106.310 (4)° | T = 100 K |
V = 1317.0 (2) Å3 | Needle, colourless |
Z = 4 | 0.34 × 0.06 × 0.06 mm |
CCD area detector diffractometer | 1965 reflections with I > 2σ(I) |
phi and ω scans | Rint = 0.043 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 25.7°, θmin = 2.0° |
Tmin = 0.417, Tmax = 0.835 | h = −13→9 |
9345 measured reflections | k = −8→9 |
2493 independent reflections | l = −14→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: mixed |
wR(F2) = 0.144 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.074P)2 + 4.7912P] where P = (Fo2 + 2Fc2)/3 |
2493 reflections | (Δ/σ)max < 0.001 |
177 parameters | Δρmax = 0.93 e Å−3 |
1 restraint | Δρmin = −0.85 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.40285 (5) | 0.22955 (7) | 0.01016 (3) | 0.0276 (2) | |
O1 | 0.8581 (3) | 1.1345 (5) | 0.3581 (2) | 0.0284 (9) | |
N1 | 0.6444 (3) | 0.7095 (5) | 0.2424 (2) | 0.0102 (8) | |
N2 | 0.5954 (3) | 0.4391 (5) | 0.1799 (2) | 0.0102 (8) | |
N3 | 0.6749 (3) | 0.9809 (5) | 0.3027 (2) | 0.0112 (8) | |
H3A | 0.598 (2) | 0.977 (7) | 0.310 (3) | 0.019 (14)* | |
C1 | 0.6261 (4) | 0.3046 (6) | 0.1387 (3) | 0.0109 (9) | |
C2 | 0.7405 (4) | 0.2935 (6) | 0.1146 (3) | 0.0135 (9) | |
H2 | 0.7594 | 0.1920 | 0.0870 | 0.016* | |
C3 | 0.8233 (4) | 0.4320 (6) | 0.1320 (3) | 0.0139 (10) | |
H3 | 0.8999 | 0.4294 | 0.1152 | 0.017* | |
C4 | 0.7944 (4) | 0.5784 (6) | 0.1749 (3) | 0.0106 (9) | |
C5 | 0.8705 (4) | 0.7317 (6) | 0.1931 (3) | 0.0134 (9) | |
H5 | 0.9469 | 0.7402 | 0.1763 | 0.016* | |
C6 | 0.8334 (4) | 0.8676 (6) | 0.2351 (3) | 0.0133 (10) | |
H6 | 0.8830 | 0.9719 | 0.2474 | 0.016* | |
C7 | 0.7196 (4) | 0.8491 (6) | 0.2596 (3) | 0.0102 (9) | |
C8 | 0.6797 (4) | 0.5770 (6) | 0.1993 (3) | 0.0083 (9) | |
C9 | 0.5270 (4) | 0.1624 (6) | 0.1145 (3) | 0.0150 (10) | |
H9A | 0.4841 | 0.1468 | 0.1595 | 0.018* | |
H9B | 0.5680 | 0.0501 | 0.1069 | 0.018* | |
C10 | 0.7442 (4) | 1.1158 (6) | 0.3487 (3) | 0.0143 (10) | |
C11 | 0.6664 (5) | 1.2360 (6) | 0.3869 (3) | 0.0176 (10) | |
H11A | 0.7232 | 1.3202 | 0.4242 | 0.026* | |
H11B | 0.6211 | 1.1668 | 0.4195 | 0.026* | |
H11C | 0.6041 | 1.2992 | 0.3420 | 0.026* | |
O1A | 0.8985 (3) | 0.9736 (4) | 0.0366 (2) | 0.0184 (7) | |
C1A | 1.0174 (4) | 1.0481 (6) | 0.0834 (3) | 0.0166 (10) | |
H1A1 | 1.0749 | 0.9539 | 0.1135 | 0.020* | |
H1A2 | 1.0025 | 1.1303 | 0.1260 | 0.020* | |
C2A | 0.9197 (5) | 0.8555 (7) | −0.0259 (3) | 0.0206 (11) | |
H2A1 | 0.8369 | 0.8059 | −0.0594 | 0.025* | |
H2A2 | 0.9751 | 0.7574 | 0.0020 | 0.025* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0237 (3) | 0.0352 (4) | 0.0229 (3) | −0.0019 (2) | 0.0047 (2) | −0.0049 (2) |
O1 | 0.0186 (19) | 0.033 (2) | 0.037 (2) | −0.0123 (16) | 0.0134 (17) | −0.0229 (18) |
N1 | 0.0104 (18) | 0.0098 (18) | 0.0115 (19) | 0.0001 (14) | 0.0051 (15) | 0.0003 (15) |
N2 | 0.0113 (18) | 0.0105 (19) | 0.0100 (19) | −0.0009 (15) | 0.0051 (15) | 0.0007 (15) |
N3 | 0.0088 (18) | 0.0130 (19) | 0.0137 (19) | −0.0012 (15) | 0.0064 (15) | −0.0031 (15) |
C1 | 0.013 (2) | 0.012 (2) | 0.007 (2) | 0.0023 (18) | 0.0016 (17) | 0.0027 (17) |
C2 | 0.016 (2) | 0.015 (2) | 0.010 (2) | 0.0055 (18) | 0.0037 (18) | −0.0025 (18) |
C3 | 0.012 (2) | 0.021 (3) | 0.010 (2) | 0.0032 (19) | 0.0047 (18) | 0.0000 (19) |
C4 | 0.011 (2) | 0.015 (2) | 0.006 (2) | 0.0039 (17) | 0.0027 (17) | 0.0032 (17) |
C5 | 0.009 (2) | 0.019 (2) | 0.013 (2) | 0.0012 (18) | 0.0040 (18) | 0.0026 (18) |
C6 | 0.010 (2) | 0.017 (2) | 0.013 (2) | −0.0019 (18) | 0.0033 (18) | 0.0009 (18) |
C7 | 0.011 (2) | 0.012 (2) | 0.007 (2) | 0.0015 (17) | 0.0012 (17) | 0.0021 (17) |
C8 | 0.010 (2) | 0.013 (2) | 0.002 (2) | 0.0011 (17) | 0.0022 (16) | 0.0006 (17) |
C9 | 0.019 (2) | 0.015 (2) | 0.012 (2) | 0.0000 (19) | 0.0050 (19) | −0.0037 (18) |
C10 | 0.015 (2) | 0.017 (2) | 0.013 (2) | −0.0035 (18) | 0.0070 (19) | −0.0039 (18) |
C11 | 0.020 (3) | 0.017 (3) | 0.017 (2) | −0.0029 (19) | 0.007 (2) | −0.006 (2) |
O1A | 0.0185 (17) | 0.0224 (18) | 0.0162 (17) | 0.0009 (14) | 0.0082 (14) | −0.0020 (14) |
C1A | 0.020 (2) | 0.017 (2) | 0.013 (2) | 0.0031 (19) | 0.004 (2) | −0.0062 (19) |
C2A | 0.021 (3) | 0.021 (3) | 0.020 (3) | −0.005 (2) | 0.007 (2) | −0.002 (2) |
Br1—C9 | 1.938 (5) | C5—C6 | 1.370 (6) |
O1—C10 | 1.214 (5) | C6—H6 | 0.9500 |
N1—C7 | 1.324 (6) | C6—C7 | 1.414 (6) |
N1—C8 | 1.352 (5) | C9—H9A | 0.9900 |
N2—C1 | 1.325 (6) | C9—H9B | 0.9900 |
N2—C8 | 1.373 (6) | C10—C11 | 1.503 (6) |
N3—C10 | 1.372 (6) | C11—H11A | 0.9800 |
N3—C7 | 1.398 (6) | C11—H11B | 0.9800 |
N3—H3A | 0.883 (10) | C11—H11C | 0.9800 |
C1—C9 | 1.502 (6) | O1A—C1A | 1.426 (6) |
C1—C2 | 1.412 (6) | O1A—C2A | 1.438 (6) |
C2—H2 | 0.9500 | C1A—C2Ai | 1.510 (7) |
C2—C3 | 1.366 (6) | C1A—H1A1 | 0.9900 |
C3—H3 | 0.9500 | C1A—H1A2 | 0.9900 |
C3—C4 | 1.405 (6) | C2A—C1Ai | 1.510 (7) |
C4—C8 | 1.416 (6) | C2A—H2A1 | 0.9900 |
C4—C5 | 1.415 (6) | C2A—H2A2 | 0.9900 |
C5—H5 | 0.9500 | ||
C7—N1—C8 | 117.6 (4) | N2—C1—C9 | 115.4 (4) |
C1—N2—C8 | 117.7 (4) | N1—C8—N2 | 115.1 (4) |
C10—N3—C7 | 127.3 (4) | N1—C8—C4 | 123.2 (4) |
C10—N3—H3A | 110 (3) | N2—C8—C4 | 121.6 (4) |
C7—N3—H3A | 122 (3) | Br1—C9—H9A | 110.0 |
N1—C7—N3 | 113.9 (4) | Br1—C9—H9B | 110.0 |
N1—C7—C6 | 123.9 (4) | O1—C10—N3 | 122.8 (4) |
N3—C7—C6 | 122.2 (4) | O1—C10—C11 | 123.4 (4) |
C1—C2—H2 | 120.8 | N3—C10—C11 | 113.7 (4) |
C1—C9—H9A | 110.0 | C10—C11—H11A | 109.5 |
C1—C9—H9B | 110.0 | C10—C11—H11B | 109.5 |
C1—C9—Br1 | 108.4 (3) | H11A—C11—H11B | 109.5 |
C2—C1—C9 | 120.4 (4) | C10—C11—H11C | 109.5 |
C2—C3—C4 | 119.5 (4) | H11A—C11—H11C | 109.5 |
C2—C3—H3 | 120.2 | H11B—C11—H11C | 109.5 |
C3—C2—C1 | 118.4 (4) | C1A—O1A—C2A | 109.6 (3) |
C3—C2—H2 | 120.8 | O1A—C1A—C2Ai | 110.8 (4) |
C3—C4—C5 | 124.3 (4) | O1A—C1A—H1A1 | 109.5 |
C3—C4—C8 | 118.5 (4) | C2Ai—C1A—H1A1 | 109.5 |
C4—C3—H3 | 120.2 | O1A—C1A—H1A2 | 109.5 |
C4—C5—H5 | 120.2 | C2Ai—C1A—H1A2 | 109.5 |
C5—C4—C8 | 117.1 (4) | H1A1—C1A—H1A2 | 108.1 |
C5—C6—C7 | 118.4 (4) | O1A—C2A—C1Ai | 109.9 (4) |
C5—C6—H6 | 120.8 | O1A—C2A—H2A1 | 109.7 |
C6—C5—C4 | 119.7 (4) | C1Ai—C2A—H2A1 | 109.7 |
C6—C5—H5 | 120.2 | O1A—C2A—H2A2 | 109.7 |
C7—C6—H6 | 120.8 | C1Ai—C2A—H2A2 | 109.7 |
H9A—C9—H9B | 108.4 | H2A1—C2A—H2A2 | 108.2 |
N2—C1—C2 | 124.1 (4) | ||
C8—N1—C7—N3 | 178.8 (4) | C5—C4—C8—N1 | −3.6 (6) |
C8—N1—C7—C6 | 0.4 (6) | C5—C4—C8—N2 | 175.9 (4) |
C10—N3—C7—N1 | 160.8 (4) | C6—C5—C4—C3 | 179.7 (4) |
C10—N3—C7—C6 | −20.8 (7) | C6—C5—C4—C8 | 2.0 (6) |
N1—C7—C6—C5 | −1.9 (7) | C7—C6—C5—C4 | 0.5 (6) |
N3—C7—C6—C5 | 179.9 (4) | C7—N1—C8—N2 | −177.2 (4) |
C1—N2—C8—C4 | 1.3 (6) | C7—N1—C8—C4 | 2.4 (6) |
C1—N2—C8—N1 | −179.1 (4) | C7—N3—C10—O1 | −1.0 (8) |
C2—C1—C9—Br1 | −93.8 (4) | C7—N3—C10—C11 | 179.7 (4) |
C3—C2—C1—N2 | −2.4 (7) | C8—C4—C3—C2 | 0.3 (6) |
C3—C2—C1—C9 | 174.8 (4) | C8—N2—C1—C2 | 0.9 (6) |
C3—C4—C8—N1 | 178.5 (4) | C8—N2—C1—C9 | −176.4 (4) |
C3—C4—C8—N2 | −1.9 (6) | N2—C1—C9—Br1 | 83.6 (4) |
C4—C3—C2—C1 | 1.7 (7) | C2A—O1A—C1A—C2Ai | 58.6 (5) |
C5—C4—C3—C2 | −177.3 (4) | C1A—O1A—C2A—C1Ai | −58.0 (5) |
Symmetry code: (i) −x+2, −y+2, −z. |
Cg1 and Cg2 are the centroids of rings N1/C1-C4/C8, and N2/C4-C8, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O1 | 0.95 | 2.29 | 2.836 (6) | 116 |
N3—H3A···N2ii | 0.88 (1) | 2.18 (1) | 3.053 (5) | 173 (5) |
C1A—H1A1···O1iii | 0.99 | 2.55 | 3.462 (6) | 153 |
C2—H2···O1Aiv | 0.95 | 2.54 | 3.438 (5) | 157 |
C5—H5···O1iii | 0.95 | 2.48 | 3.376 (6) | 157 |
C9—H9A···N1v | 0.99 | 2.47 | 3.418 (6) | 161 |
C9—Br1···Cg1vi | 1.94 (1) | 3.70 (1) | 5.563 (5) | 161 (1) |
C9—Br1···Cg2vii | 1.94 (1) | 3.70 (1) | 5.436 (5) | 148 (1) |
Symmetry codes: (ii) −x+1, y+1/2, −z+1/2; (iii) −x+2, y−1/2, −z+1/2; (iv) x, y−1, z; (v) −x+1, y−1/2, −z+1/2; (vi) −x+1, −y+1, −z; (vii) −x+1, −y, −z. |
2C11H9Br2N3O·0.5C4H8O2 | Z = 2 |
Mr = 762.11 | F(000) = 744 |
Triclinic, P1 | Dx = 1.899 Mg m−3 |
a = 9.4065 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.5271 (5) Å | Cell parameters from 9921 reflections |
c = 16.6464 (10) Å | θ = 2.4–29.1° |
α = 88.777 (3)° | µ = 6.08 mm−1 |
β = 81.057 (2)° | T = 100 K |
γ = 64.928 (2)° | Plate, colourless |
V = 1333.15 (13) Å3 | 0.40 × 0.18 × 0.09 mm |
CCD area detector diffractometer | 5247 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.025 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 26.9°, θmin = 2.4° |
Tmin = 0.195, Tmax = 0.611 | h = −11→11 |
32569 measured reflections | k = −12→12 |
5659 independent reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: mixed |
wR(F2) = 0.074 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0205P)2 + 4.6947P] where P = (Fo2 + 2Fc2)/3 |
5659 reflections | (Δ/σ)max = 0.001 |
354 parameters | Δρmax = 0.92 e Å−3 |
6 restraints | Δρmin = −0.80 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.65226 (4) | −0.27545 (4) | 0.46303 (2) | 0.02418 (9) | |
Br2 | 0.50091 (4) | −0.43628 (4) | 0.36111 (2) | 0.01949 (8) | |
O1 | −0.1936 (3) | 0.5684 (2) | 0.70075 (14) | 0.0193 (5) | |
N1 | 0.2448 (3) | −0.0854 (3) | 0.52469 (15) | 0.0117 (5) | |
N2 | 0.0579 (3) | 0.1182 (3) | 0.60845 (15) | 0.0122 (5) | |
N3 | −0.1214 (3) | 0.3074 (3) | 0.70039 (16) | 0.0136 (5) | |
H3 | −0.125 (5) | 0.230 (3) | 0.730 (2) | 0.032 (12)* | |
C1 | 0.3284 (3) | −0.1392 (3) | 0.45189 (18) | 0.0125 (6) | |
C2 | 0.3087 (4) | −0.0548 (4) | 0.38070 (18) | 0.0149 (6) | |
H2 | 0.3725 | −0.1004 | 0.3299 | 0.018* | |
C3 | 0.1948 (4) | 0.0948 (4) | 0.38720 (19) | 0.0155 (6) | |
H3AA | 0.1775 | 0.1550 | 0.3404 | 0.019* | |
C4 | 0.1032 (4) | 0.1593 (3) | 0.46373 (18) | 0.0133 (6) | |
C5 | −0.0132 (4) | 0.3143 (3) | 0.4786 (2) | 0.0157 (6) | |
H5 | −0.0388 | 0.3810 | 0.4346 | 0.019* | |
C6 | −0.0883 (4) | 0.3676 (3) | 0.55553 (19) | 0.0142 (6) | |
H6 | −0.1660 | 0.4717 | 0.5662 | 0.017* | |
C7 | −0.0479 (3) | 0.2642 (3) | 0.61988 (18) | 0.0127 (6) | |
C8 | 0.1333 (3) | 0.0649 (3) | 0.53149 (18) | 0.0113 (5) | |
C9 | 0.4604 (4) | −0.2989 (3) | 0.45387 (18) | 0.0139 (6) | |
H9 | 0.4325 | −0.3480 | 0.5039 | 0.017* | |
C10 | −0.1954 (4) | 0.4554 (3) | 0.73566 (19) | 0.0146 (6) | |
C11 | −0.2752 (4) | 0.4634 (4) | 0.8217 (2) | 0.0192 (6) | |
H11A | −0.1986 | 0.4466 | 0.8588 | 0.029* | |
H11B | −0.3147 | 0.3831 | 0.8283 | 0.029* | |
H11C | −0.3644 | 0.5658 | 0.8345 | 0.029* | |
Br1A | 0.80621 (4) | −0.30529 (4) | 0.21420 (2) | 0.02498 (9) | |
Br2A | 0.76639 (5) | −0.42214 (4) | 0.04563 (2) | 0.03087 (10) | |
O1A | −0.3475 (3) | 0.3086 (3) | 0.21196 (14) | 0.0213 (5) | |
N1A | 0.3820 (3) | −0.1632 (3) | 0.17991 (15) | 0.0114 (5) | |
N2A | 0.1123 (3) | −0.0240 (3) | 0.21618 (14) | 0.0108 (5) | |
N3A | −0.1546 (3) | 0.1001 (3) | 0.26087 (16) | 0.0131 (5) | |
H3A | −0.139 (4) | 0.027 (3) | 0.2972 (17) | 0.018 (9)* | |
C1A | 0.5218 (3) | −0.1707 (3) | 0.14603 (17) | 0.0121 (6) | |
C2A | 0.5460 (4) | −0.0467 (4) | 0.10905 (19) | 0.0168 (6) | |
H2A | 0.6490 | −0.0594 | 0.0843 | 0.020* | |
C3A | 0.4166 (4) | 0.0928 (4) | 0.10975 (19) | 0.0163 (6) | |
H3AB | 0.4288 | 0.1791 | 0.0856 | 0.020* | |
C4A | 0.2652 (4) | 0.1076 (3) | 0.14659 (18) | 0.0123 (6) | |
C5A | 0.1237 (4) | 0.2459 (3) | 0.15230 (19) | 0.0152 (6) | |
H5A | 0.1267 | 0.3378 | 0.1306 | 0.018* | |
C6A | −0.0172 (4) | 0.2474 (3) | 0.18892 (19) | 0.0142 (6) | |
H6A | −0.1130 | 0.3399 | 0.1933 | 0.017* | |
C7A | −0.0175 (3) | 0.1079 (3) | 0.22022 (17) | 0.0121 (6) | |
C8A | 0.2525 (3) | −0.0247 (3) | 0.18011 (17) | 0.0100 (5) | |
C9A | 0.6575 (4) | −0.3261 (3) | 0.15233 (18) | 0.0149 (6) | |
H9A | 0.6132 | −0.3952 | 0.1817 | 0.018* | |
C10A | −0.3099 (4) | 0.1975 (3) | 0.25486 (18) | 0.0137 (6) | |
C11A | −0.4289 (4) | 0.1510 (4) | 0.30498 (19) | 0.0166 (6) | |
H11D | −0.5366 | 0.2314 | 0.3038 | 0.025* | |
H11E | −0.4088 | 0.1389 | 0.3613 | 0.025* | |
H11F | −0.4190 | 0.0524 | 0.2825 | 0.025* | |
O1B | 0.1348 (3) | 0.0280 (3) | 1.00203 (17) | 0.0237 (7) | 0.890 (5) |
C1B | 0.0015 (15) | 0.1333 (9) | 0.9682 (7) | 0.0242 (16) | 0.890 (5) |
H1B1 | 0.0192 | 0.1083 | 0.9090 | 0.029* | 0.890 (5) |
H1B2 | −0.0083 | 0.2401 | 0.9755 | 0.029* | 0.890 (5) |
C2B | 0.150 (2) | −0.1267 (10) | 0.9930 (6) | 0.0223 (10) | 0.890 (5) |
H2B1 | 0.2389 | −0.1990 | 1.0191 | 0.027* | 0.890 (5) |
H2B2 | 0.1721 | −0.1587 | 0.9345 | 0.027* | 0.890 (5) |
O1BA | 0.099 (3) | −0.003 (3) | 0.9249 (13) | 0.0237 (7) | 0.110 (5) |
C1BA | −0.008 (13) | 0.147 (8) | 0.960 (7) | 0.0242 (16) | 0.110 (5) |
H1B3 | −0.0491 | 0.2215 | 0.9175 | 0.029* | 0.110 (5) |
H1B4 | 0.0424 | 0.1879 | 0.9953 | 0.029* | 0.110 (5) |
C2BA | 0.146 (18) | −0.107 (10) | 0.988 (5) | 0.0223 (10) | 0.110 (5) |
H2B3 | 0.1887 | −0.0616 | 1.0262 | 0.027* | 0.110 (5) |
H2B4 | 0.2343 | −0.2048 | 0.9640 | 0.027* | 0.110 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.01616 (16) | 0.02553 (18) | 0.03175 (19) | −0.00758 (13) | −0.01019 (13) | 0.00084 (14) |
Br2 | 0.02109 (16) | 0.01804 (16) | 0.01863 (16) | −0.00768 (12) | −0.00289 (12) | −0.00092 (12) |
O1 | 0.0206 (12) | 0.0118 (10) | 0.0266 (12) | −0.0073 (9) | −0.0054 (9) | 0.0013 (9) |
N1 | 0.0120 (12) | 0.0130 (12) | 0.0119 (12) | −0.0066 (10) | −0.0036 (9) | 0.0025 (9) |
N2 | 0.0119 (12) | 0.0109 (12) | 0.0149 (12) | −0.0055 (10) | −0.0034 (10) | 0.0026 (9) |
N3 | 0.0124 (12) | 0.0104 (12) | 0.0162 (13) | −0.0033 (10) | −0.0022 (10) | 0.0022 (10) |
C1 | 0.0118 (14) | 0.0133 (14) | 0.0137 (14) | −0.0062 (11) | −0.0040 (11) | 0.0020 (11) |
C2 | 0.0164 (15) | 0.0185 (15) | 0.0107 (14) | −0.0078 (12) | −0.0037 (11) | 0.0013 (11) |
C3 | 0.0195 (15) | 0.0183 (15) | 0.0139 (14) | −0.0111 (13) | −0.0083 (12) | 0.0051 (12) |
C4 | 0.0149 (14) | 0.0133 (14) | 0.0157 (15) | −0.0088 (12) | −0.0059 (11) | 0.0026 (11) |
C5 | 0.0167 (15) | 0.0129 (14) | 0.0205 (16) | −0.0079 (12) | −0.0073 (12) | 0.0054 (12) |
C6 | 0.0137 (14) | 0.0102 (13) | 0.0195 (15) | −0.0050 (11) | −0.0059 (12) | 0.0035 (11) |
C7 | 0.0115 (14) | 0.0119 (14) | 0.0168 (15) | −0.0069 (11) | −0.0026 (11) | 0.0019 (11) |
C8 | 0.0109 (13) | 0.0115 (13) | 0.0138 (14) | −0.0065 (11) | −0.0038 (11) | 0.0028 (11) |
C9 | 0.0139 (14) | 0.0137 (14) | 0.0127 (14) | −0.0043 (12) | −0.0030 (11) | 0.0003 (11) |
C10 | 0.0102 (14) | 0.0121 (14) | 0.0207 (16) | −0.0032 (11) | −0.0049 (11) | −0.0011 (12) |
C11 | 0.0179 (16) | 0.0149 (15) | 0.0231 (17) | −0.0059 (12) | −0.0014 (13) | −0.0025 (12) |
Br1A | 0.01866 (17) | 0.02336 (17) | 0.03252 (19) | −0.00674 (13) | −0.01008 (14) | 0.00544 (14) |
Br2A | 0.0356 (2) | 0.02085 (17) | 0.01875 (17) | 0.00176 (15) | 0.00427 (14) | −0.00107 (13) |
O1A | 0.0134 (11) | 0.0211 (12) | 0.0242 (12) | −0.0023 (9) | −0.0046 (9) | 0.0091 (10) |
N1A | 0.0120 (12) | 0.0110 (11) | 0.0096 (11) | −0.0032 (10) | −0.0016 (9) | 0.0005 (9) |
N2A | 0.0104 (12) | 0.0127 (12) | 0.0089 (11) | −0.0043 (10) | −0.0022 (9) | 0.0010 (9) |
N3A | 0.0105 (12) | 0.0112 (12) | 0.0149 (13) | −0.0019 (10) | −0.0028 (10) | 0.0043 (9) |
C1A | 0.0115 (14) | 0.0122 (14) | 0.0101 (13) | −0.0024 (11) | −0.0022 (11) | −0.0005 (10) |
C2A | 0.0136 (15) | 0.0181 (15) | 0.0175 (15) | −0.0068 (12) | 0.0010 (12) | 0.0014 (12) |
C3A | 0.0182 (15) | 0.0141 (14) | 0.0176 (15) | −0.0082 (12) | −0.0021 (12) | 0.0032 (12) |
C4A | 0.0142 (14) | 0.0123 (14) | 0.0109 (13) | −0.0055 (11) | −0.0035 (11) | 0.0000 (11) |
C5A | 0.0177 (15) | 0.0122 (14) | 0.0162 (15) | −0.0064 (12) | −0.0041 (12) | 0.0034 (11) |
C6A | 0.0142 (14) | 0.0087 (13) | 0.0178 (15) | −0.0026 (11) | −0.0044 (12) | −0.0003 (11) |
C7A | 0.0126 (14) | 0.0125 (14) | 0.0104 (13) | −0.0041 (11) | −0.0036 (11) | 0.0002 (11) |
C8A | 0.0111 (13) | 0.0102 (13) | 0.0079 (13) | −0.0033 (11) | −0.0027 (10) | −0.0011 (10) |
C9A | 0.0124 (14) | 0.0149 (14) | 0.0142 (14) | −0.0036 (12) | 0.0006 (11) | −0.0001 (11) |
C10A | 0.0114 (14) | 0.0149 (14) | 0.0112 (14) | −0.0019 (11) | −0.0019 (11) | −0.0023 (11) |
C11A | 0.0116 (14) | 0.0181 (15) | 0.0182 (15) | −0.0048 (12) | −0.0018 (12) | 0.0008 (12) |
O1B | 0.0220 (14) | 0.0322 (15) | 0.0239 (15) | −0.0181 (12) | −0.0031 (11) | −0.0030 (11) |
C1B | 0.034 (3) | 0.025 (2) | 0.019 (4) | −0.0170 (18) | −0.007 (2) | 0.004 (2) |
C2B | 0.0226 (19) | 0.023 (4) | 0.021 (2) | −0.008 (3) | −0.0051 (17) | −0.0025 (18) |
O1BA | 0.0220 (14) | 0.0322 (15) | 0.0239 (15) | −0.0181 (12) | −0.0031 (11) | −0.0030 (11) |
C1BA | 0.034 (3) | 0.025 (2) | 0.019 (4) | −0.0170 (18) | −0.007 (2) | 0.004 (2) |
C2BA | 0.0226 (19) | 0.023 (4) | 0.021 (2) | −0.008 (3) | −0.0051 (17) | −0.0025 (18) |
Br1—C9 | 1.939 (3) | N3A—C7A | 1.391 (4) |
Br2—C9 | 1.929 (3) | N3A—H3A | 0.892 (10) |
O1—C10 | 1.218 (4) | C1A—C2A | 1.407 (4) |
N1—C1 | 1.318 (4) | C1A—C9A | 1.505 (4) |
N1—C8 | 1.364 (4) | C2A—C3A | 1.368 (4) |
N2—C7 | 1.320 (4) | C2A—H2A | 0.9500 |
N2—C8 | 1.357 (4) | C3A—C4A | 1.410 (4) |
N3—C10 | 1.376 (4) | C3A—H3AB | 0.9500 |
N3—C7 | 1.392 (4) | C4A—C8A | 1.411 (4) |
N3—H3 | 0.890 (10) | C4A—C5A | 1.413 (4) |
C1—C2 | 1.410 (4) | C5A—C6A | 1.364 (4) |
C1—C9 | 1.506 (4) | C5A—H5A | 0.9500 |
C2—C3 | 1.366 (4) | C6A—C7A | 1.418 (4) |
C2—H2 | 0.9500 | C6A—H6A | 0.9500 |
C3—C4 | 1.409 (4) | C9A—H9A | 1.0000 |
C3—H3AA | 0.9500 | C10A—C11A | 1.504 (4) |
C4—C5 | 1.415 (4) | C11A—H11D | 0.9800 |
C4—C8 | 1.415 (4) | C11A—H11E | 0.9800 |
C5—C6 | 1.357 (5) | C11A—H11F | 0.9800 |
C5—H5 | 0.9500 | O1B—C1B | 1.423 (8) |
C6—C7 | 1.423 (4) | O1B—C2B | 1.430 (8) |
C6—H6 | 0.9500 | C1B—C2Bi | 1.49 (2) |
C9—H9 | 1.0000 | C1B—H1B1 | 0.9900 |
C10—C11 | 1.498 (5) | C1B—H1B2 | 0.9900 |
C11—H11A | 0.9800 | C2B—C1Bi | 1.49 (2) |
C11—H11B | 0.9800 | C2B—H2B1 | 0.9900 |
C11—H11C | 0.9800 | C2B—H2B2 | 0.9900 |
Br1A—C9A | 1.936 (3) | O1BA—C1BA | 1.419 (10) |
Br2A—C9A | 1.937 (3) | O1BA—C2BA | 1.420 (10) |
O1A—C10A | 1.218 (4) | C1BA—C2BAi | 1.6 (2) |
N1A—C1A | 1.321 (4) | C1BA—H1B3 | 0.9900 |
N1A—C8A | 1.364 (4) | C1BA—H1B4 | 0.9900 |
N2A—C7A | 1.324 (4) | C2BA—C1BAi | 1.6 (2) |
N2A—C8A | 1.359 (4) | C2BA—H2B3 | 0.9900 |
N3A—C10A | 1.377 (4) | C2BA—H2B4 | 0.9900 |
C1—N1—C8 | 117.0 (3) | C4A—C3A—H3AB | 120.2 |
C7—N2—C8 | 118.1 (3) | C3A—C4A—C8A | 118.1 (3) |
C10—N3—C7 | 126.9 (3) | C3A—C4A—C5A | 124.7 (3) |
C10—N3—H3 | 118 (3) | C8A—C4A—C5A | 117.1 (3) |
C7—N3—H3 | 115 (3) | C6A—C5A—C4A | 120.0 (3) |
N1—C1—C2 | 125.1 (3) | C6A—C5A—H5A | 120.0 |
N1—C1—C9 | 112.1 (3) | C4A—C5A—H5A | 120.0 |
C2—C1—C9 | 122.5 (3) | C5A—C6A—C7A | 118.5 (3) |
C3—C2—C1 | 117.9 (3) | C5A—C6A—H6A | 120.7 |
C3—C2—H2 | 121.1 | C7A—C6A—H6A | 120.7 |
C1—C2—H2 | 121.1 | N2A—C7A—N3A | 114.2 (3) |
C2—C3—C4 | 119.6 (3) | N2A—C7A—C6A | 123.4 (3) |
C2—C3—H3AA | 120.2 | N3A—C7A—C6A | 122.4 (3) |
C4—C3—H3AA | 120.2 | N2A—C8A—N1A | 114.9 (3) |
C3—C4—C5 | 124.7 (3) | N2A—C8A—C4A | 123.1 (3) |
C3—C4—C8 | 118.0 (3) | N1A—C8A—C4A | 122.0 (3) |
C5—C4—C8 | 117.2 (3) | C1A—C9A—Br1A | 110.6 (2) |
C6—C5—C4 | 120.0 (3) | C1A—C9A—Br2A | 111.2 (2) |
C6—C5—H5 | 120.0 | Br1A—C9A—Br2A | 110.01 (15) |
C4—C5—H5 | 120.0 | C1A—C9A—H9A | 108.3 |
C5—C6—C7 | 118.5 (3) | Br1A—C9A—H9A | 108.3 |
C5—C6—H6 | 120.7 | Br2A—C9A—H9A | 108.3 |
C7—C6—H6 | 120.7 | O1A—C10A—N3A | 123.5 (3) |
N2—C7—N3 | 114.0 (3) | O1A—C10A—C11A | 123.1 (3) |
N2—C7—C6 | 123.3 (3) | N3A—C10A—C11A | 113.4 (3) |
N3—C7—C6 | 122.6 (3) | C10A—C11A—H11D | 109.5 |
N2—C8—N1 | 114.9 (3) | C10A—C11A—H11E | 109.5 |
N2—C8—C4 | 122.7 (3) | H11D—C11A—H11E | 109.5 |
N1—C8—C4 | 122.3 (3) | C10A—C11A—H11F | 109.5 |
C1—C9—Br2 | 115.1 (2) | H11D—C11A—H11F | 109.5 |
C1—C9—Br1 | 107.8 (2) | H11E—C11A—H11F | 109.5 |
Br2—C9—Br1 | 109.38 (15) | C1B—O1B—C2B | 110.0 (8) |
C1—C9—H9 | 108.1 | O1B—C1B—C2Bi | 112.0 (10) |
Br2—C9—H9 | 108.1 | O1B—C1B—H1B1 | 109.2 |
Br1—C9—H9 | 108.1 | C2Bi—C1B—H1B1 | 109.2 |
O1—C10—N3 | 123.2 (3) | O1B—C1B—H1B2 | 109.2 |
O1—C10—C11 | 123.3 (3) | C2Bi—C1B—H1B2 | 109.2 |
N3—C10—C11 | 113.5 (3) | H1B1—C1B—H1B2 | 107.9 |
C10—C11—H11A | 109.5 | O1B—C2B—C1Bi | 109.4 (10) |
C10—C11—H11B | 109.5 | O1B—C2B—H2B1 | 109.8 |
H11A—C11—H11B | 109.5 | C1Bi—C2B—H2B1 | 109.8 |
C10—C11—H11C | 109.5 | O1B—C2B—H2B2 | 109.8 |
H11A—C11—H11C | 109.5 | C1Bi—C2B—H2B2 | 109.8 |
H11B—C11—H11C | 109.5 | H2B1—C2B—H2B2 | 108.2 |
C1A—N1A—C8A | 117.6 (3) | C1BA—O1BA—C2BA | 109 (8) |
C7A—N2A—C8A | 117.9 (3) | O1BA—C1BA—C2BAi | 100 (9) |
C10A—N3A—C7A | 127.5 (3) | O1BA—C1BA—H1B3 | 111.8 |
C10A—N3A—H3A | 117 (2) | C2BAi—C1BA—H1B3 | 111.8 |
C7A—N3A—H3A | 115 (2) | O1BA—C1BA—H1B4 | 111.8 |
N1A—C1A—C2A | 124.6 (3) | C2BAi—C1BA—H1B4 | 111.8 |
N1A—C1A—C9A | 113.4 (3) | H1B3—C1BA—H1B4 | 109.5 |
C2A—C1A—C9A | 122.1 (3) | O1BA—C2BA—C1BAi | 116 (9) |
C3A—C2A—C1A | 118.0 (3) | O1BA—C2BA—H2B3 | 108.4 |
C3A—C2A—H2A | 121.0 | C1BAi—C2BA—H2B3 | 108.4 |
C1A—C2A—H2A | 121.0 | O1BA—C2BA—H2B4 | 108.3 |
C2A—C3A—C4A | 119.6 (3) | C1BAi—C2BA—H2B4 | 108.3 |
C2A—C3A—H3AB | 120.2 | H2B3—C2BA—H2B4 | 107.4 |
C8—N1—C1—C2 | −1.6 (4) | N1A—C1A—C2A—C3A | 1.6 (5) |
C8—N1—C1—C9 | 173.1 (2) | C9A—C1A—C2A—C3A | −176.7 (3) |
N1—C1—C2—C3 | 0.4 (5) | C1A—C2A—C3A—C4A | −0.3 (5) |
C9—C1—C2—C3 | −173.8 (3) | C2A—C3A—C4A—C8A | −1.4 (4) |
C1—C2—C3—C4 | 0.5 (4) | C2A—C3A—C4A—C5A | 178.9 (3) |
C2—C3—C4—C5 | 177.3 (3) | C3A—C4A—C5A—C6A | 179.6 (3) |
C2—C3—C4—C8 | −0.1 (4) | C8A—C4A—C5A—C6A | −0.1 (4) |
C3—C4—C5—C6 | −176.0 (3) | C4A—C5A—C6A—C7A | −0.3 (4) |
C8—C4—C5—C6 | 1.4 (4) | C8A—N2A—C7A—N3A | −177.6 (2) |
C4—C5—C6—C7 | −0.5 (4) | C8A—N2A—C7A—C6A | 0.0 (4) |
C8—N2—C7—N3 | 178.7 (3) | C10A—N3A—C7A—N2A | −159.0 (3) |
C8—N2—C7—C6 | 0.9 (4) | C10A—N3A—C7A—C6A | 23.4 (5) |
C10—N3—C7—N2 | 157.9 (3) | C5A—C6A—C7A—N2A | 0.4 (5) |
C10—N3—C7—C6 | −24.3 (5) | C5A—C6A—C7A—N3A | 177.8 (3) |
C5—C6—C7—N2 | −0.8 (5) | C7A—N2A—C8A—N1A | 178.3 (2) |
C5—C6—C7—N3 | −178.3 (3) | C7A—N2A—C8A—C4A | −0.5 (4) |
C7—N2—C8—N1 | 177.8 (3) | C1A—N1A—C8A—N2A | −179.7 (3) |
C7—N2—C8—C4 | 0.1 (4) | C1A—N1A—C8A—C4A | −0.8 (4) |
C1—N1—C8—N2 | −175.7 (3) | C3A—C4A—C8A—N2A | −179.2 (3) |
C1—N1—C8—C4 | 2.0 (4) | C5A—C4A—C8A—N2A | 0.5 (4) |
C3—C4—C8—N2 | 176.4 (3) | C3A—C4A—C8A—N1A | 2.0 (4) |
C5—C4—C8—N2 | −1.2 (4) | C5A—C4A—C8A—N1A | −178.2 (3) |
C3—C4—C8—N1 | −1.2 (4) | N1A—C1A—C9A—Br1A | −118.3 (2) |
C5—C4—C8—N1 | −178.8 (3) | C2A—C1A—C9A—Br1A | 60.3 (3) |
N1—C1—C9—Br2 | 143.1 (2) | N1A—C1A—C9A—Br2A | 119.2 (2) |
C2—C1—C9—Br2 | −42.1 (4) | C2A—C1A—C9A—Br2A | −62.3 (3) |
N1—C1—C9—Br1 | −94.6 (3) | C7A—N3A—C10A—O1A | −1.1 (5) |
C2—C1—C9—Br1 | 80.3 (3) | C7A—N3A—C10A—C11A | 177.5 (3) |
C7—N3—C10—O1 | −6.4 (5) | C2B—O1B—C1B—C2Bi | 58.1 (11) |
C7—N3—C10—C11 | 174.9 (3) | C1B—O1B—C2B—C1Bi | −56.6 (11) |
C8A—N1A—C1A—C2A | −1.1 (4) | C2BA—O1BA—C1BA—C2BAi | −58 (10) |
C8A—N1A—C1A—C9A | 177.4 (2) | C1BA—O1BA—C2BA—C1BAi | 68 (11) |
Symmetry code: (i) −x, −y, −z+2. |
Cg1, Cg2 and Cg4 are the centroids of rings N1/C1-C4/C8, N2/C4-C8 and N2A/C4A-C8A, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O1 | 0.95 | 2.37 | 2.886 (4) | 113 |
C6A—H6A···O1A | 0.95 | 2.32 | 2.871 (5) | 116 |
N3—H3···N2Aii | 0.89 (3) | 2.10 (3) | 2.985 (4) | 171 (4) |
N3A—H3A···N2ii | 0.89 (3) | 2.09 (3) | 2.950 (4) | 163 (3) |
C2—H2···N1A | 0.95 | 2.56 | 3.397 (4) | 147 |
C2A—H2A···O1Biii | 0.95 | 2.42 | 3.344 (5) | 163 |
C11—H11B···N1Aii | 0.98 | 2.44 | 3.411 (5) | 169 |
C11A—H11D···O1iv | 0.98 | 2.46 | 3.437 (5) | 179 |
C11A—H11E···N1ii | 0.98 | 2.54 | 3.459 (4) | 156 |
C3—H3AA···Cg4 | 0.95 | 2.82 | 3.548 (3) | 134 |
C2BA—H2B3···Cg4v | 0.99 | 2.96 | 3.82 (9) | 145 |
C9—Br1···Cg1iii | 1.94 (1) | 3.62 (1) | 5.270 (4) | 141 (1) |
C9—Br1···Cg2iii | 1.94 (1) | 3.32 (1) | 5.247 (4) | 173 (1) |
Symmetry codes: (ii) −x, −y, −z+1; (iii) −x+1, −y, −z+1; (iv) −x−1, −y+1, −z+1; (v) x, y, z+1. |
Acknowledgements
Financial support of the Deutsche Forschungsgemeinschaft is gratefully acknowledged.
References
Badaweh, M., Ferrarini, P. L., Calderone, V., Manera, C., Martinotti, E., Saccomanni, G. & Testai, L. (2001). Eur. J. Med. Chem. 36, 825–934.
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cuntze, J., Owens, L., Alcázar, V., Seiler, P. & Diederich, D. (1995). Helv. Chim. Acta, 78, 367–390. CSD CrossRef CAS Web of Science
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals
Ferrarini, P. L., Manera, C., Mori, C., Badaweh, M. & Saccomanni, G. (1998). Il Farmaco, 53, 741–746. Web of Science PubMed CAS
Ghosh, K., Sen, T. & Fröhlich, R. (2010). J. Incl. Phenom. Macrocycl. Chem. 68, 193–199. Web of Science CSD CrossRef CAS
Goswami, S., Dey, S., Gallagher, J. F., Lough, A. J., García-Granda, S., Torre-Fernández, L., Alkorta, I. & Elguero, J. (2007). J. Mol. Struct. 846, 97–107. Web of Science CSD CrossRef CAS
Gou, G.-Z., Kou, J.-F., Zhou, Q.-D. & Chi, S.-M. (2013). Acta Cryst. E69, o153–o154. CSD CrossRef IUCr Journals
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals
Koch, N., Seichter, W. & Mazik, M. (2014). Acta Cryst. E70, o393–o394. CSD CrossRef IUCr Journals
Koch, N., Seichter, W. & Mazik, M. (2015). Tetrahedron, 71, 8965–8974. Web of Science CSD CrossRef CAS
Koch, N., Seichter, W. & Mazik, M. (2017). CrystEngComm, 19, 3817–3833. Web of Science CSD CrossRef CAS
Kolotuchin, S. V. & Zimmerman, S. C. (1998). J. Am. Chem. Soc. 120, 9092–9093. Web of Science CrossRef CAS
Legon, A. C. (1999). Angew. Chem. Int. Ed. 38, 2686–2714. CrossRef CAS
Liang, F., Lindsay, S. & Zhang, P. (2012). Org. Biomol. Chem. 10, 8654–8659. Web of Science CrossRef CAS PubMed
Litvinov, V. P. (2004). Russ. Chem. Rev. 73, 637–669. CrossRef CAS
Matveeva, A. G., Starikova, Z. A., Aysin, R. R., Skazov, R. S., Matveev, S. V., Timoveeva, G. I., Passechnik, M. P. & Nifantèv, E. E. (2013). Polyhedron, 61, 172–180. Web of Science CSD CrossRef CAS
Mazik, M., Buthe, A. C. & Jones, P. G. (2010a). Tetrahedron, 66, 385–389. Web of Science CSD CrossRef CAS
Mazik, M. & Cavga, H. (2007). Eur. J. Org. Chem. pp. 3633–3638. Web of Science CSD CrossRef
Mazik, M., Hartman, A. & Jones, P. G. (2010b). Eur. J. Org. Chem. pp. 458–463. Web of Science CSD CrossRef
Mazik, M. & Sicking, W. (2001). Chem. Eur. J. 7, 664–670. Web of Science CrossRef PubMed CAS
Megrangolo, P. & Resnati, G. (2008). Editors. Halogen Bonding Fundamentals and Applications. Berlin: Springer.
Park, T., Mayer, M. F., Nakashima, S. & Zimmerman, S. C. (2005). Synlett, pp. 1435–1436.
Politzer, P., Lane, P., Conch, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311. Web of Science CrossRef PubMed CAS
Roma, G., Di Braccio, M., Grossi, G., Piras, D., Ballabeni, V., Tognolini, M., Bertoni, S. & Barocelli, E. (2010). Eur. J. Med. Chem. 45, 352–366. Web of Science CrossRef PubMed CAS
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Tang, W. H., Liu, Y. H., Peng, S. M. & Liu, S. T. (2015). J. Organomet. Chem. 775, 94–100. Web of Science CSD CrossRef CAS
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.