research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A monoclinic polymorph of 1,2-bis­­[(1-methyl-1H-tetra­zol-5-yl)sulfan­yl]ethane (BMTTE)

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química Inorgánica, Facultade de Química, Instituto de Investigación Sanitaria Galicia Sur – Universidade de Vigo, Campus Universitario, E-36310 Vigo, Galicia, Spain
*Correspondence e-mail: rcrial@uvigo.es

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 13 September 2017; accepted 19 September 2017; online 25 September 2017)

The synthesis and crystal structure of a monoclinic (P21/c) polymorph of the title compound, C6H10S2N8, are reported. The mol­ecule has pseudo-twofold rotational symmetry, with the tetra­zole rings being inclined to one another by 5.50 (6)°. In the crystal, mol­ecules are linked by C—H⋯N hydrogen bonds, forming chains propagating along [101] and enclosing R22(20) ring motifs. The chains are linked by offset ππ inter­actions involving the tetra­zole rings [inter­centroid distances vary from 3.3567 (7) to 3.4227 (7) Å], forming layers parallel to the ac plane. The crystal structure of the triclinic polymorph (P[\overline{1}]) has been described previously [Li et al. (2011[Li, C.-R., Chen, T. & Xia, Z.-Q. (2011). Acta Cryst. E67, o1669.]). Acta Cryst. E67, o1669].

1. Chemical context

Organic compounds such as the title compound (BMTTE) are frequently used as flexible ligands for the preparation of coordination polymers (Wang et al., 2010[Wang, X., Hu, H. & Tian, A. (2010). Cryst. Growth Des. 10, 4786-4794.]). A triclinic polymorph of the title compound has been described previously by Li et al., (2011[Li, C.-R., Chen, T. & Xia, Z.-Q. (2011). Acta Cryst. E67, o1669.]). Here we describe the spectroscopic characterization and crystal structure of a new monoclinic polymorph of BMTTE, obtained by recrystallization and slow evaporation from a solution in CH3CN. Such compounds have been used in coordination chemistry (Zhao et al., 2008[Zhao, H., Qu, Z. R., Ye, H. Y. & Xiong, R. G. (2008). Chem. Soc. Rev. 37, 84-100.]) and in materials design (Wang et al., 2009[Wang, W. T., Chen, S. P. & Gao, S. L. (2009). Eur. J. Inorg. Chem. pp. 3475-3480.], 2010[Wang, X., Hu, H. & Tian, A. (2010). Cryst. Growth Des. 10, 4786-4794.]).

[Scheme 1]

2. Structural commentary

The mol­ecule structure of the title compound, Fig. 1[link], shows N—N and C—S bond distances and S—C—C—S and C—S—C—C torsion angles similar to the values observed in the triclinic form (Li et al., 2011[Li, C.-R., Chen, T. & Xia, Z.-Q. (2011). Acta Cryst. E67, o1669.]). As shown by the mol­ecular overlap of the two polymorphs (Fig. 2[link]), drawn with Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), there is only a slight difference in their geometry. The tetra­zole rings (N1–N4/C1 and N5–N8/C4) are inclined to one another by 5.50 (6)° in the title polymorph and by 1.9 (2)° in the triclinic polymorph. While there are only small differences in the geometric parameters between the two polymorphic forms, they are enough to produce a different crystal packing.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound, the monoclinic polymorph of BMTTE, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
A mol­ecular structure overlap (Mercury; Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) of the title monoclinic polymorph of BMTTE (blue) and the triclinic polymorph (red; Li et al., 2011[Li, C.-R., Chen, T. & Xia, Z.-Q. (2011). Acta Cryst. E67, o1669.]).

3. Supra­molecular features

In the crystal, mol­ecules are linked by C—H⋯N hydrogen bonds, forming chains propagating along [101] and enclosing R22(20) ring motifs (Fig. 3[link] and Table 1[link]). The chains are linked by offset ππ inter­actions involving the tetra­zole rings, forming layers parallel to the ac plane, as shown in Fig. 4[link]. The numerical details of these inter­actions are: Cg1⋯Cg1i = 3.365 (1) Å, α = 0°, inter­planar distance = 3.2056 (4) Å, offset = 1.024 Å; Cg1⋯Cg2ii = 3.423 (1) Å, α = 5.5 (1)°, inter­planar distances = 3.278 (4) and 3.321 (4) Å, offset = 0.83 Å; and Cg2⋯Cg2iii = 3.4227 (7) Å, α = 0°, inter­planar distance = 3.1346 (4) Å, offset = 1.201 Å; Cg1 and Cg2 are the centroids of the tetra­zole rings N1–N4/C1 and N5–N8/C4, respectively; symmetry codes: (i) −x + 1, −y, −z; (ii) x − 1, y, z; (iii) −x + 2, −y, −z + 1.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯N8i 0.98 2.39 3.3533 (13) 168
C12—H12B⋯N4ii 0.98 2.36 3.3183 (13) 165
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+2, -y, -z+1.
[Figure 3]
Figure 3
A partial view of the crystal packing of the title compound, showing details of the C—H⋯N hydrogen bonds (dashed lines, see Table 1[link]).
[Figure 4]
Figure 4
Crystal packing of the title compound, showing details of the C—H⋯N hydrogen bonds (dashed lines, see Table 1[link]) and examples of the ππ inter­actions (blue double-headed arrows).

As a result of these inter­actions, the mol­ecules are packed very efficiently so that the Kitaigorodskii (1973[Kitaigorodskii, A. I. (1973). Physical Chemistry, Vol. 29, Molecular Crystals and Molecules. New York: Academic Press.]) index is 72%. The crystal packing in the crystal of the triclinic polymorph is very similar, with a Kitaigorodskii index of 69% (PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

4. Database survey

A search of the Cambridge Structural Database (CSD; version 5.38, last update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the skeleton of the title compound gave 11 hits. Apart from the crystal structure of the triclinic polymorph of the title compound (CSD refcode EVAWUU; Li et al., 2011[Li, C.-R., Chen, T. & Xia, Z.-Q. (2011). Acta Cryst. E67, o1669.]), and that of a diphenyl substituted compound, 1,2-bis­(1-phenyl-1H-tetra­zol-5-ylsulfan­yl)ethane (IXAVUY; Wang et al., 2004[Wang, W., Liu, H.-M., Zheng, Y. & Zhang, W.-Q. (2004). Acta Cryst. E60, o1279-o1280.]), all the others involve coordination compounds of BMTTE.

5. Synthesis and crystallization

The title compound, (BMTTE), was synthesized by a slightly modified version of the procedure described by Li et al. (2011[Li, C.-R., Chen, T. & Xia, Z.-Q. (2011). Acta Cryst. E67, o1669.]). 5-Mercapto-1-methyl­tetra­zole (9.29 g, 0.08 mol) was added to a solution of sodium hydroxide (3.26 g, 0.08 mol) in EtOH (110 ml). The mixture was stirred at room temperature for one day. Di­chloro­ethane (3.2 ml, 0.04 mol) in 6 ml of EtOH was then added dropwise and the mixture was refluxed for 18 h. The resulting white solid was filtered, washed with H2O and dried in vacuo (yield 88%; m.p. 417–419 K). Analysis calculated for C6H10S2N8: N 43.38, C 27.90, H 3.90%; Found: N 42.31, C 27.85, H 3.28%. IR (cm−1): 1469m, 1442m (1408m, 1391m) ν(ring); 1276m, 1222m, ω(CH–CH2); 1169m, δ(CH); 1144m, 1078m, 1026m, δ(ring); 728m, 716m, γ(CH); 698s, ν(C—S). 1H NMR (400 MHz, dmso-d6) δ in ppm: 3.93 (s, 6H, Hb), 3.66 (s, 4H, Ha). MS–ESI: m/z (%) = 259 (100) [C6H10S2N8+H+]. Colourless prismatic crystals were obtained by slow evaporation of a solution in aceto­nitrile.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were included in calculated positions and treated as riding: C—H = 0.98–0.99 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C6H10N8S2
Mr 258.34
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 8.2456 (10), 13.7471 (17), 9.6878 (12)
β (°) 92.643 (4)
V3) 1097.0 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.47
Crystal size (mm) 0.25 × 0.22 × 0.19
 
Data collection
Diffractometer Bruker D8 Venture Photon 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX3, SAINT and SADABS. Bruker ASX Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.697, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 23909, 2725, 2620
Rint 0.024
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.057, 1.08
No. of reflections 2725
No. of parameters 148
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.25
Computer programs: APEX3 (Bruker, 2014[Bruker (2014). APEX3, SAINT and SADABS. Bruker ASX Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). APEX3, SAINT and SADABS. Bruker ASX Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

1,2-Bis[(1-methyl-1H-tetrazol-5-yl)sulfanyl]ethane top
Crystal data top
C6H10N8S2Dx = 1.564 Mg m3
Mr = 258.34Melting point: 144 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.2456 (10) ÅCell parameters from 9507 reflections
b = 13.7471 (17) Åθ = 2.5–28.3°
c = 9.6878 (12) ŵ = 0.47 mm1
β = 92.643 (4)°T = 100 K
V = 1097.0 (2) Å3Prism, colourless
Z = 40.25 × 0.22 × 0.19 mm
F(000) = 536
Data collection top
Bruker D8 Venture Photon 100 CMOS
diffractometer
2620 reflections with I > 2σ(I)
φ and ω scansRint = 0.024
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 28.3°, θmin = 2.5°
Tmin = 0.697, Tmax = 0.746h = 1011
23909 measured reflectionsk = 1818
2725 independent reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0262P)2 + 0.493P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2725 reflectionsΔρmax = 0.36 e Å3
148 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: (SHELXL2014; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0376 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.46814 (3)0.19617 (2)0.21662 (2)0.01218 (8)
S20.99483 (3)0.22655 (2)0.31188 (3)0.01382 (8)
N10.32833 (10)0.04027 (6)0.08604 (8)0.01158 (16)
N20.33462 (11)0.05843 (6)0.08543 (9)0.01445 (17)
N30.44707 (11)0.08272 (6)0.17676 (9)0.01511 (18)
N40.51615 (11)0.00275 (6)0.23918 (9)0.01383 (17)
N51.15565 (10)0.07099 (6)0.42528 (8)0.01085 (16)
N61.16663 (10)0.02693 (6)0.41075 (9)0.01411 (17)
N71.06184 (11)0.05083 (6)0.31273 (9)0.01451 (17)
N80.98081 (11)0.02894 (6)0.26071 (9)0.01352 (17)
C10.44014 (11)0.07287 (7)0.18059 (10)0.01056 (18)
C20.66415 (11)0.19192 (7)0.31250 (10)0.01208 (19)
H2A0.66490.23920.38960.014*
H2B0.68180.12620.35200.014*
C30.79982 (12)0.21624 (7)0.21671 (10)0.01285 (19)
H3A0.77470.27840.16870.015*
H3B0.80640.16470.14580.015*
C41.04182 (11)0.10381 (7)0.33269 (10)0.01087 (18)
C110.21707 (12)0.09470 (7)0.00653 (10)0.0147 (2)
H11A0.13600.12770.04760.022*
H11B0.16240.04990.07210.022*
H11C0.27810.14310.05720.022*
C121.25381 (12)0.12395 (7)0.52931 (10)0.0152 (2)
H12A1.33350.16420.48380.023*
H12B1.31050.07760.59140.023*
H12C1.18340.16560.58270.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01044 (12)0.00922 (12)0.01639 (13)0.00092 (8)0.00455 (8)0.00048 (8)
S20.01144 (13)0.00868 (12)0.02066 (14)0.00105 (8)0.00666 (9)0.00047 (8)
N10.0121 (4)0.0099 (4)0.0125 (4)0.0000 (3)0.0017 (3)0.0000 (3)
N20.0164 (4)0.0100 (4)0.0170 (4)0.0008 (3)0.0007 (3)0.0005 (3)
N30.0153 (4)0.0120 (4)0.0178 (4)0.0002 (3)0.0007 (3)0.0006 (3)
N40.0140 (4)0.0111 (4)0.0162 (4)0.0013 (3)0.0020 (3)0.0019 (3)
N50.0110 (4)0.0094 (4)0.0119 (4)0.0003 (3)0.0017 (3)0.0007 (3)
N60.0156 (4)0.0100 (4)0.0168 (4)0.0010 (3)0.0019 (3)0.0010 (3)
N70.0161 (4)0.0115 (4)0.0159 (4)0.0002 (3)0.0007 (3)0.0003 (3)
N80.0150 (4)0.0109 (4)0.0145 (4)0.0013 (3)0.0014 (3)0.0010 (3)
C10.0091 (4)0.0114 (4)0.0111 (4)0.0003 (3)0.0007 (3)0.0007 (3)
C20.0107 (4)0.0114 (4)0.0136 (4)0.0000 (3)0.0051 (3)0.0002 (3)
C30.0108 (4)0.0120 (4)0.0153 (4)0.0006 (3)0.0048 (3)0.0015 (3)
C40.0095 (4)0.0115 (4)0.0114 (4)0.0008 (3)0.0006 (3)0.0004 (3)
C110.0137 (5)0.0152 (5)0.0144 (5)0.0018 (4)0.0056 (4)0.0008 (4)
C120.0152 (5)0.0157 (5)0.0140 (4)0.0022 (4)0.0062 (4)0.0003 (4)
Geometric parameters (Å, º) top
S1—C11.7438 (10)N7—N81.3681 (12)
S1—C21.8276 (10)N8—C41.3290 (12)
S2—C41.7409 (10)C2—C31.5232 (14)
S2—C31.8218 (10)C2—H2A0.9900
N1—C11.3461 (12)C2—H2B0.9900
N1—N21.3578 (12)C3—H3A0.9900
N1—C111.4594 (12)C3—H3B0.9900
N2—N31.2956 (12)C11—H11A0.9800
N3—N41.3663 (12)C11—H11B0.9800
N4—C11.3278 (12)C11—H11C0.9800
N5—C41.3459 (12)C12—H12A0.9800
N5—N61.3569 (12)C12—H12B0.9800
N5—C121.4580 (12)C12—H12C0.9800
N6—N71.2964 (12)
C1—S1—C2100.16 (4)H2A—C2—H2B108.2
C4—S2—C399.77 (5)C2—C3—S2111.39 (7)
C1—N1—N2108.09 (8)C2—C3—H3A109.4
C1—N1—C11129.71 (8)S2—C3—H3A109.4
N2—N1—C11122.19 (8)C2—C3—H3B109.4
N3—N2—N1106.31 (8)S2—C3—H3B109.4
N2—N3—N4111.44 (8)H3A—C3—H3B108.0
C1—N4—N3105.18 (8)N8—C4—N5108.99 (8)
C4—N5—N6108.14 (8)N8—C4—S2127.81 (8)
C4—N5—C12129.88 (8)N5—C4—S2123.14 (7)
N6—N5—C12121.97 (8)N1—C11—H11A109.5
N7—N6—N5106.38 (8)N1—C11—H11B109.5
N6—N7—N8111.37 (8)H11A—C11—H11B109.5
C4—N8—N7105.12 (8)N1—C11—H11C109.5
N4—C1—N1108.98 (9)H11A—C11—H11C109.5
N4—C1—S1128.32 (8)H11B—C11—H11C109.5
N1—C1—S1122.69 (7)N5—C12—H12A109.5
C3—C2—S1109.91 (7)N5—C12—H12B109.5
C3—C2—H2A109.7H12A—C12—H12B109.5
S1—C2—H2A109.7N5—C12—H12C109.5
C3—C2—H2B109.7H12A—C12—H12C109.5
S1—C2—H2B109.7H12B—C12—H12C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···N8i0.982.393.3533 (13)168
C12—H12B···N4ii0.982.363.3183 (13)165
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z+1.
 

Funding information

Funding for this research was provided by: Ministry of Economy, Industry and Competitiveness (Spain) and European Regional Development Fund (EU) (CTQ2015-71211-REDT and CTQ2015-7091-R).

References

First citationBruker (2014). APEX3, SAINT and SADABS. Bruker ASX Inc., Madison, Wisconsin, USA.
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationKitaigorodskii, A. I. (1973). Physical Chemistry, Vol. 29, Molecular Crystals and Molecules. New York: Academic Press.
First citationLi, C.-R., Chen, T. & Xia, Z.-Q. (2011). Acta Cryst. E67, o1669.  CSD CrossRef IUCr Journals
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals
First citation[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationWang, W. T., Chen, S. P. & Gao, S. L. (2009). Eur. J. Inorg. Chem. pp. 3475–3480.  CSD CrossRef
First citationWang, X., Hu, H. & Tian, A. (2010). Cryst. Growth Des. 10, 4786–4794.  CSD CrossRef CAS
First citationWang, W., Liu, H.-M., Zheng, Y. & Zhang, W.-Q. (2004). Acta Cryst. E60, o1279–o1280.  Web of Science CSD CrossRef IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationZhao, H., Qu, Z. R., Ye, H. Y. & Xiong, R. G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds