research communications
A monoclinic polymorph of 1,2-bis[(1-methyl-1H-tetrazol-5-yl)sulfanyl]ethane (BMTTE)
aDepartamento de Química Inorgánica, Facultade de Química, Instituto de Investigación Sanitaria Galicia Sur – Universidade de Vigo, Campus Universitario, E-36310 Vigo, Galicia, Spain
*Correspondence e-mail: rcrial@uvigo.es
The synthesis and P21/c) polymorph of the title compound, C6H10S2N8, are reported. The molecule has pseudo-twofold rotational symmetry, with the tetrazole rings being inclined to one another by 5.50 (6)°. In the crystal, molecules are linked by C—H⋯N hydrogen bonds, forming chains propagating along [101] and enclosing R22(20) ring motifs. The chains are linked by offset π–π interactions involving the tetrazole rings [intercentroid distances vary from 3.3567 (7) to 3.4227 (7) Å], forming layers parallel to the ac plane. The of the triclinic polymorph (P) has been described previously [Li et al. (2011). Acta Cryst. E67, o1669].
of a monoclinic (Keywords: crystal structure; polymorph; tetrazole-containing compounds; hydrogen bonding; π–π interactions.
CCDC reference: 1575392
1. Chemical context
Organic compounds such as the title compound (BMTTE) are frequently used as flexible ligands for the preparation of coordination polymers (Wang et al., 2010). A triclinic polymorph of the title compound has been described previously by Li et al., (2011). Here we describe the spectroscopic characterization and of a new monoclinic polymorph of BMTTE, obtained by recrystallization and slow evaporation from a solution in CH3CN. Such compounds have been used in coordination chemistry (Zhao et al., 2008) and in materials design (Wang et al., 2009, 2010).
2. Structural commentary
The molecule structure of the title compound, Fig. 1, shows N—N and C—S bond distances and S—C—C—S and C—S—C—C torsion angles similar to the values observed in the triclinic form (Li et al., 2011). As shown by the molecular overlap of the two polymorphs (Fig. 2), drawn with Mercury (Macrae et al., 2008), there is only a slight difference in their geometry. The tetrazole rings (N1–N4/C1 and N5–N8/C4) are inclined to one another by 5.50 (6)° in the title polymorph and by 1.9 (2)° in the triclinic polymorph. While there are only small differences in the geometric parameters between the two polymorphic forms, they are enough to produce a different crystal packing.
3. Supramolecular features
In the crystal, molecules are linked by C—H⋯N hydrogen bonds, forming chains propagating along [101] and enclosing R22(20) ring motifs (Fig. 3 and Table 1). The chains are linked by offset π–π interactions involving the tetrazole rings, forming layers parallel to the ac plane, as shown in Fig. 4. The numerical details of these interactions are: Cg1⋯Cg1i = 3.365 (1) Å, α = 0°, interplanar distance = 3.2056 (4) Å, offset = 1.024 Å; Cg1⋯Cg2ii = 3.423 (1) Å, α = 5.5 (1)°, interplanar distances = 3.278 (4) and 3.321 (4) Å, offset = 0.83 Å; and Cg2⋯Cg2iii = 3.4227 (7) Å, α = 0°, interplanar distance = 3.1346 (4) Å, offset = 1.201 Å; Cg1 and Cg2 are the centroids of the tetrazole rings N1–N4/C1 and N5–N8/C4, respectively; symmetry codes: (i) −x + 1, −y, −z; (ii) x − 1, y, z; (iii) −x + 2, −y, −z + 1.
|
As a result of these interactions, the molecules are packed very efficiently so that the Kitaigorodskii (1973) index is 72%. The crystal packing in the crystal of the triclinic polymorph is very similar, with a Kitaigorodskii index of 69% (PLATON; Spek, 2009).
4. Database survey
A search of the Cambridge Structural Database (CSD; version 5.38, last update May 2017; Groom et al., 2016) for the skeleton of the title compound gave 11 hits. Apart from the of the triclinic polymorph of the title compound (CSD refcode EVAWUU; Li et al., 2011), and that of a diphenyl substituted compound, 1,2-bis(1-phenyl-1H-tetrazol-5-ylsulfanyl)ethane (IXAVUY; Wang et al., 2004), all the others involve coordination compounds of BMTTE.
5. Synthesis and crystallization
The title compound, (BMTTE), was synthesized by a slightly modified version of the procedure described by Li et al. (2011). 5-Mercapto-1-methyltetrazole (9.29 g, 0.08 mol) was added to a solution of sodium hydroxide (3.26 g, 0.08 mol) in EtOH (110 ml). The mixture was stirred at room temperature for one day. Dichloroethane (3.2 ml, 0.04 mol) in 6 ml of EtOH was then added dropwise and the mixture was refluxed for 18 h. The resulting white solid was filtered, washed with H2O and dried in vacuo (yield 88%; m.p. 417–419 K). Analysis calculated for C6H10S2N8: N 43.38, C 27.90, H 3.90%; Found: N 42.31, C 27.85, H 3.28%. IR (cm−1): 1469m, 1442m (1408m, 1391m) ν(ring); 1276m, 1222m, ω(CH–CH2); 1169m, δ(CH); 1144m, 1078m, 1026m, δ(ring); 728m, 716m, γ(CH); 698s, ν(C—S). 1H NMR (400 MHz, dmso-d6) δ in ppm: 3.93 (s, 6H, Hb), 3.66 (s, 4H, Ha). MS–ESI: m/z (%) = 259 (100) [C6H10S2N8+H+]. Colourless prismatic crystals were obtained by slow evaporation of a solution in acetonitrile.
6. Refinement
Crystal data, data collection and structure . The C-bound H atoms were included in calculated positions and treated as riding: C—H = 0.98–0.99 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.
details are summarized in Table 2Supporting information
CCDC reference: 1575392
https://doi.org/10.1107/S205698901701341X/su5392sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901701341X/su5392Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901701341X/su5392Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S205698901701341X/su5392Isup4.cml
Data collection: APEX3 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C6H10N8S2 | Dx = 1.564 Mg m−3 |
Mr = 258.34 | Melting point: 144 K |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.2456 (10) Å | Cell parameters from 9507 reflections |
b = 13.7471 (17) Å | θ = 2.5–28.3° |
c = 9.6878 (12) Å | µ = 0.47 mm−1 |
β = 92.643 (4)° | T = 100 K |
V = 1097.0 (2) Å3 | Prism, colourless |
Z = 4 | 0.25 × 0.22 × 0.19 mm |
F(000) = 536 |
Bruker D8 Venture Photon 100 CMOS diffractometer | 2620 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.024 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 28.3°, θmin = 2.5° |
Tmin = 0.697, Tmax = 0.746 | h = −10→11 |
23909 measured reflections | k = −18→18 |
2725 independent reflections | l = −12→12 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.022 | H-atom parameters constrained |
wR(F2) = 0.057 | w = 1/[σ2(Fo2) + (0.0262P)2 + 0.493P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
2725 reflections | Δρmax = 0.36 e Å−3 |
148 parameters | Δρmin = −0.25 e Å−3 |
0 restraints | Extinction correction: (SHELXL2014; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0376 (18) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.46814 (3) | 0.19617 (2) | 0.21662 (2) | 0.01218 (8) | |
S2 | 0.99483 (3) | 0.22655 (2) | 0.31188 (3) | 0.01382 (8) | |
N1 | 0.32833 (10) | 0.04027 (6) | 0.08604 (8) | 0.01158 (16) | |
N2 | 0.33462 (11) | −0.05843 (6) | 0.08543 (9) | 0.01445 (17) | |
N3 | 0.44707 (11) | −0.08272 (6) | 0.17676 (9) | 0.01511 (18) | |
N4 | 0.51615 (11) | −0.00275 (6) | 0.23918 (9) | 0.01383 (17) | |
N5 | 1.15565 (10) | 0.07099 (6) | 0.42528 (8) | 0.01085 (16) | |
N6 | 1.16663 (10) | −0.02693 (6) | 0.41075 (9) | 0.01411 (17) | |
N7 | 1.06184 (11) | −0.05083 (6) | 0.31273 (9) | 0.01451 (17) | |
N8 | 0.98081 (11) | 0.02894 (6) | 0.26071 (9) | 0.01352 (17) | |
C1 | 0.44014 (11) | 0.07287 (7) | 0.18059 (10) | 0.01056 (18) | |
C2 | 0.66415 (11) | 0.19192 (7) | 0.31250 (10) | 0.01208 (19) | |
H2A | 0.6649 | 0.2392 | 0.3896 | 0.014* | |
H2B | 0.6818 | 0.1262 | 0.3520 | 0.014* | |
C3 | 0.79982 (12) | 0.21624 (7) | 0.21671 (10) | 0.01285 (19) | |
H3A | 0.7747 | 0.2784 | 0.1687 | 0.015* | |
H3B | 0.8064 | 0.1647 | 0.1458 | 0.015* | |
C4 | 1.04182 (11) | 0.10381 (7) | 0.33269 (10) | 0.01087 (18) | |
C11 | 0.21707 (12) | 0.09470 (7) | −0.00653 (10) | 0.0147 (2) | |
H11A | 0.1360 | 0.1277 | 0.0476 | 0.022* | |
H11B | 0.1624 | 0.0499 | −0.0721 | 0.022* | |
H11C | 0.2781 | 0.1431 | −0.0572 | 0.022* | |
C12 | 1.25381 (12) | 0.12395 (7) | 0.52931 (10) | 0.0152 (2) | |
H12A | 1.3335 | 0.1642 | 0.4838 | 0.023* | |
H12B | 1.3105 | 0.0776 | 0.5914 | 0.023* | |
H12C | 1.1834 | 0.1656 | 0.5827 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01044 (12) | 0.00922 (12) | 0.01639 (13) | 0.00092 (8) | −0.00455 (8) | 0.00048 (8) |
S2 | 0.01144 (13) | 0.00868 (12) | 0.02066 (14) | −0.00105 (8) | −0.00666 (9) | 0.00047 (8) |
N1 | 0.0121 (4) | 0.0099 (4) | 0.0125 (4) | 0.0000 (3) | −0.0017 (3) | 0.0000 (3) |
N2 | 0.0164 (4) | 0.0100 (4) | 0.0170 (4) | 0.0008 (3) | 0.0007 (3) | −0.0005 (3) |
N3 | 0.0153 (4) | 0.0120 (4) | 0.0178 (4) | 0.0002 (3) | −0.0007 (3) | 0.0006 (3) |
N4 | 0.0140 (4) | 0.0111 (4) | 0.0162 (4) | 0.0013 (3) | −0.0020 (3) | 0.0019 (3) |
N5 | 0.0110 (4) | 0.0094 (4) | 0.0119 (4) | 0.0003 (3) | −0.0017 (3) | 0.0007 (3) |
N6 | 0.0156 (4) | 0.0100 (4) | 0.0168 (4) | 0.0010 (3) | 0.0019 (3) | 0.0010 (3) |
N7 | 0.0161 (4) | 0.0115 (4) | 0.0159 (4) | −0.0002 (3) | 0.0007 (3) | −0.0003 (3) |
N8 | 0.0150 (4) | 0.0109 (4) | 0.0145 (4) | −0.0013 (3) | −0.0014 (3) | −0.0010 (3) |
C1 | 0.0091 (4) | 0.0114 (4) | 0.0111 (4) | 0.0003 (3) | −0.0007 (3) | 0.0007 (3) |
C2 | 0.0107 (4) | 0.0114 (4) | 0.0136 (4) | 0.0000 (3) | −0.0051 (3) | 0.0002 (3) |
C3 | 0.0108 (4) | 0.0120 (4) | 0.0153 (4) | −0.0006 (3) | −0.0048 (3) | 0.0015 (3) |
C4 | 0.0095 (4) | 0.0115 (4) | 0.0114 (4) | −0.0008 (3) | −0.0006 (3) | 0.0004 (3) |
C11 | 0.0137 (5) | 0.0152 (5) | 0.0144 (5) | 0.0018 (4) | −0.0056 (4) | 0.0008 (4) |
C12 | 0.0152 (5) | 0.0157 (5) | 0.0140 (4) | −0.0022 (4) | −0.0062 (4) | −0.0003 (4) |
S1—C1 | 1.7438 (10) | N7—N8 | 1.3681 (12) |
S1—C2 | 1.8276 (10) | N8—C4 | 1.3290 (12) |
S2—C4 | 1.7409 (10) | C2—C3 | 1.5232 (14) |
S2—C3 | 1.8218 (10) | C2—H2A | 0.9900 |
N1—C1 | 1.3461 (12) | C2—H2B | 0.9900 |
N1—N2 | 1.3578 (12) | C3—H3A | 0.9900 |
N1—C11 | 1.4594 (12) | C3—H3B | 0.9900 |
N2—N3 | 1.2956 (12) | C11—H11A | 0.9800 |
N3—N4 | 1.3663 (12) | C11—H11B | 0.9800 |
N4—C1 | 1.3278 (12) | C11—H11C | 0.9800 |
N5—C4 | 1.3459 (12) | C12—H12A | 0.9800 |
N5—N6 | 1.3569 (12) | C12—H12B | 0.9800 |
N5—C12 | 1.4580 (12) | C12—H12C | 0.9800 |
N6—N7 | 1.2964 (12) | ||
C1—S1—C2 | 100.16 (4) | H2A—C2—H2B | 108.2 |
C4—S2—C3 | 99.77 (5) | C2—C3—S2 | 111.39 (7) |
C1—N1—N2 | 108.09 (8) | C2—C3—H3A | 109.4 |
C1—N1—C11 | 129.71 (8) | S2—C3—H3A | 109.4 |
N2—N1—C11 | 122.19 (8) | C2—C3—H3B | 109.4 |
N3—N2—N1 | 106.31 (8) | S2—C3—H3B | 109.4 |
N2—N3—N4 | 111.44 (8) | H3A—C3—H3B | 108.0 |
C1—N4—N3 | 105.18 (8) | N8—C4—N5 | 108.99 (8) |
C4—N5—N6 | 108.14 (8) | N8—C4—S2 | 127.81 (8) |
C4—N5—C12 | 129.88 (8) | N5—C4—S2 | 123.14 (7) |
N6—N5—C12 | 121.97 (8) | N1—C11—H11A | 109.5 |
N7—N6—N5 | 106.38 (8) | N1—C11—H11B | 109.5 |
N6—N7—N8 | 111.37 (8) | H11A—C11—H11B | 109.5 |
C4—N8—N7 | 105.12 (8) | N1—C11—H11C | 109.5 |
N4—C1—N1 | 108.98 (9) | H11A—C11—H11C | 109.5 |
N4—C1—S1 | 128.32 (8) | H11B—C11—H11C | 109.5 |
N1—C1—S1 | 122.69 (7) | N5—C12—H12A | 109.5 |
C3—C2—S1 | 109.91 (7) | N5—C12—H12B | 109.5 |
C3—C2—H2A | 109.7 | H12A—C12—H12B | 109.5 |
S1—C2—H2A | 109.7 | N5—C12—H12C | 109.5 |
C3—C2—H2B | 109.7 | H12A—C12—H12C | 109.5 |
S1—C2—H2B | 109.7 | H12B—C12—H12C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11B···N8i | 0.98 | 2.39 | 3.3533 (13) | 168 |
C12—H12B···N4ii | 0.98 | 2.36 | 3.3183 (13) | 165 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+2, −y, −z+1. |
Funding information
Funding for this research was provided by: Ministry of Economy, Industry and Competitiveness (Spain) and European Regional Development Fund (EU) (CTQ2015-71211-REDT and CTQ2015-7091-R).
References
Bruker (2014). APEX3, SAINT and SADABS. Bruker ASX Inc., Madison, Wisconsin, USA.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals
Kitaigorodskii, A. I. (1973). Physical Chemistry, Vol. 29, Molecular Crystals and Molecules. New York: Academic Press.
Li, C.-R., Chen, T. & Xia, Z.-Q. (2011). Acta Cryst. E67, o1669. CSD CrossRef IUCr Journals
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals
Wang, W. T., Chen, S. P. & Gao, S. L. (2009). Eur. J. Inorg. Chem. pp. 3475–3480. CSD CrossRef
Wang, X., Hu, H. & Tian, A. (2010). Cryst. Growth Des. 10, 4786–4794. CSD CrossRef CAS
Wang, W., Liu, H.-M., Zheng, Y. & Zhang, W.-Q. (2004). Acta Cryst. E60, o1279–o1280. Web of Science CSD CrossRef IUCr Journals
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals
Zhao, H., Qu, Z. R., Ye, H. Y. & Xiong, R. G. (2008). Chem. Soc. Rev. 37, 84–100. Web of Science CrossRef PubMed
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.