research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of an AgI inter­calation compound: catena-poly[[silver(I)-μ-N-(pyridin-3-ylmeth­yl)pyridin-3-amine-κ2N:N′] hexa­fluorido­phosphate aceto­nitrile disolvate]

CROSSMARK_Color_square_no_text.svg

aDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea, bDivision of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea, and cResearch institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: kangy@kangwon.ac.kr, kmpark@gnu.ac.kr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 13 September 2017; accepted 19 September 2017; online 25 September 2017)

The asymmetric unit in the title compound, [Ag(C11H11N3)]PF6·2CH3CN or {[AgL]·PF6·2CH3CN}n, L = N-(pyridin-3-ylmeth­yl)pyridin-3-amine, comprises one AgI atom, one L ligand, two aceto­nitrile solvent mol­ecules and one PF6 anion disordered over two orientations in a 0.567 (11):0.433 (11) ratio. Each AgI atom is coordinated by two pyridine N atoms from two L ligands in a slightly distorted linear coordination geometry [N—Ag—N = 170.55 (8)°]. Each L ligand bridges two AgI ions, resulting in the formation of a zigzag chain propagating along the [101] direction. In the crystal, Ag⋯Ag contacts [3.3023 (5) Å] and inter­molecular ππ stacking inter­actions [centroid-to-centroid distance = 3.5922 (15) Å] between the pyridine rings link these chains into a corrugated layer parallel to the ([\overline{1}]01) plane. The layers are stacked with a separation of 10.4532 (5) Å, and aceto­nitrile solvent mol­ecules and PF6 anions as guests are inter­calated between the layers. The layers are connected through several N/C—H⋯F hydrogen bonds and P—F⋯π inter­actions [F⋯ring centroid = 3.241 (8) Å] between the layer and the inter­calated guests and between the inter­calated guests, forming a three-dimensional supra­molecular network.

1. Chemical context

Silver coordination polymers based on dipyridyl-type ligands have been widely exploited due to the intriguing topologies and the fascinating properties caused by a variety of coordination geometries and d10 electronic configurations of the AgI ion (Leong & Vittal, 2011[Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688-764.]; Moulton & Zaworotko, 2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]; Wang et al., 2012[Wang, C., Zhang, T. & Lin, W. (2012). Chem. Rev. 112, 1084-1104.]). In particular, AgI ions have a preference for a linear two-coordinate geometry and can serve to link bridging dipyridyl-type ligands to form polymeric chains. Based on this concept, we have focused our attention on the development of one-dimensional AgI coordination polymers with dipyridyl-type ligands. Up to date, we have reported several AgI coord­ination polymers with inter­esting topologies involving zigzag (Moon et al., 2016[Moon, S.-H., Kang, D. & Park, K.-M. (2016). Acta Cryst. E72, 1513-1516.]), helical (Moon et al., 2014[Moon, B., Jeon, Y., Moon, S.-H. & Park, K.-M. (2014). Acta Cryst. E70, 507-509.], 2015[Moon, S.-H., Kang, Y. & Park, K.-M. (2015). Acta Cryst. E71, 1287-1289.]) and double helical (Lee et al., 2015[Lee, E., Ju, H., Moon, S.-H., Lee, S. S. & Park, K.-M. (2015). Bull. Korean Chem. Soc. 36, 1532-1535.]) structures. In an extension of our research, the title compound was prepared by the reaction of silver(I) hexa­fluorido­phosphate with a dipyridyl type-ligand, namely N-(pyridin-3-ylmeth­yl)pyridin-3-amine (L), synthesized according to a literature procedure (Lee et al., 2013[Lee, E., Ryu, H., Moon, S.-H. & Park, K.-M. (2013). Bull. Korean Chem. Soc. 34, 3477-3480.]). Herein, we report on the crystal structure of the title compound in which lattice solvent mol­ecules and anions as guests are inter­calated between the layers formed by inter­molecular inter­actions between zigzag –(Ag–L)n– chains.

[Scheme 1]

2. Structural commentary

The mol­ecular components of the title structure are shown in Fig. 1[link]. The asymmetric unit comprises one AgI atom, one L ligand, two aceto­nitrile solvent mol­ecules, and one hexa­fluorido­phosphate anion disordered over two orientations in a 0.567 (11):0.433 (11) ratio. The silver(I) atom is coordinated by two pyridine N atoms (N1 and N2) from two symmetry-related L ligands, leading to the formation of an infinite zigzag chain propagating along the [101] direction. Thus, the AgI atom is two-coordinated in a slightly distorted linear coordination geometry [N1i—Ag1—N2 = 170.55 (8)°; symmetry code: (i) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; Table 1[link]]. This distortion from linear geometry may be caused by Ag⋯N inter­actions between the AgI ion and two aceto­nitrile N atoms [Ag1⋯N4 = 2.792 (4), Ag1⋯N5 = 2.815 (4) Å; black dashed lines in Fig. 1[link]]. The two pyridine rings coordinated to the AgI center are tilted slightly, by 6.29 (15)° with respect to each other. In the chain, the AgI atoms are separated by 11.1009 (3) Å along the L linker which adopts a stretched trans conformation with the C2—N3—C6—C7 torsion angles being 174.7 (3)°.

Table 1
Selected geometric parameters (Å, °)

Ag1—N1i 2.163 (2) Ag1—N2 2.166 (2)
       
N1i—Ag1—N2 170.55 (8)    
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
View of the mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Disordered F atoms of the PF6 anion have been omitted for clarity. Black and yellow dashed lines represent Ag⋯N inter­actions and inter­molecular C/N—H⋯F hydrogen bonds, respectively. [Symmetry codes: (i) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (ii) x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}].]

3. Supra­molecular features

The neighbouring zigzag chains are connected by Ag⋯Ag contacts [Ag1⋯Ag1 = 3.3023 (5) Å; red dashed lines in Fig. 2[link]] and inter­molecular π-π-stacking inter­actions between the pyridine rings [Cg1⋯Cg2ii = 3.5922 (15) Å; yellow dashed lines in Fig. 2[link]; Cg1 and Cg2 are the centroids of the N1/C1–C5 and N2/C7–C11 rings, respectively; symmetry code: (ii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]], resulting in the formation of a corrugated layer spreading out along the ([\overline{1}]01) plane (Fig. 2[link]). Adjacent layers are stacked on each other with a separation of 10.4532 (5) Å. Aceto­nitrile mol­ecules and PF6 anions as guests are inter­calated between the layers (Fig. 3[link]). The layers are further connected by several inter­molecular N/C—H⋯F hydrogen bonds (Table 2[link]; yellow dashed lines in Figs. 1[link] and 3[link]) and P—F⋯π inter­actions [F3⋯Cg2 = 3.241 (8) Å; sky-blue dashed line in Fig. 1[link]] between the layer and the anions and between the aceto­nitrile solvent mol­ecules and the anions, forming a three-dimensional supra­molecular network.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯F3 0.84 (3) 2.49 (3) 3.208 (8) 144 (3)
N3—H3A⋯F5 0.84 (3) 2.46 (3) 3.273 (10) 162 (3)
N3—H3A⋯F5′ 0.84 (3) 2.18 (3) 2.999 (10) 167 (3)
C8—H8⋯N4ii 0.95 2.63 3.478 (5) 149
C10—H10⋯F2iii 0.95 2.39 3.176 (9) 140
C13—H13A⋯F2′iii 0.98 2.54 3.487 (13) 163
C13—H13B⋯F6i 0.98 2.53 3.365 (10) 144
C13—H13B⋯F1′i 0.98 2.59 3.57 (2) 171
C15—H15A⋯F1 0.98 2.52 3.441 (9) 157
C15—H15A⋯F3′ 0.98 2.42 3.356 (13) 160
C15—H15B⋯F2iv 0.98 2.23 3.088 (10) 146
C15—H15B⋯F5′iv 0.98 2.57 3.509 (11) 160
C15—H15C⋯F1iii 0.98 2.36 3.329 (8) 168
C15—H15C⋯F1′iii 0.98 2.09 3.037 (9) 161
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The two-dimensional network formed through Ag⋯Ag contacts (red dashed lines) and inter­molecular ππ stacking inter­actions (yellow dashed lines). Aceto­nitrile solvent mol­ecules, the PF6 anions and H atoms have been omitted for clarity.
[Figure 3]
Figure 3
Inter­layer stacking showing the inter­calation of aceto­nitrile mol­ecules and PF6 anions between the layers. Red, black and yellow dashed lines represent Ag⋯Ag contacts, Ag⋯N inter­actions and N/C—H⋯F hydrogen bonds, respectively. Disordered F atoms of the PF6 anions and H atoms not involved in inter­molecular inter­actions have been omitted for clarity.

4. Synthesis and crystallization

The L ligand was synthesized according to a literature method (Lee et al., 2013[Lee, E., Ryu, H., Moon, S.-H. & Park, K.-M. (2013). Bull. Korean Chem. Soc. 34, 3477-3480.]). Slow evaporation of an aceto­nitrile solution of the L ligand with AgPF6 in the molar ratio 1:1 afforded colourless block-like X-ray quality single crystals of the title compound.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The PF6 anion is disordered over two orientations in a 0.567 (11):0.433 (11) ratio. The amine H atom was located from a difference-Fourier map and freely refined [N—H = 0.84 (3) Å]. All other H atoms were positioned geometrically and refined as riding: C—H = 0.95 Å for Csp2—H, 0.99 Å for methyl­ene C—H and 0.98 Å for methyl C—H with Uiso(H) = 1.5Ueq (C-meth­yl) and 1.2Ueq(C) for other C-bound H atoms.

Table 3
Experimental details

Crystal data
Chemical formula [Ag(C11H11N3)]PF6·2C2H3N
Mr 520.17
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 12.8997 (4), 7.5361 (3), 20.9747 (7)
β (°) 102.9900 (6)
V3) 1986.84 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.16
Crystal size (mm) 0.35 × 0.25 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.666, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 11824, 4316, 3527
Rint 0.020
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.081, 1.10
No. of reflections 4316
No. of parameters 312
No. of restraints 18
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.12, −0.66
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

catena-Poly[[silver(I)-µ-N-(pyridin-3-ylmethyl)pyridine-3-amine-κ2N:N'] hexafluoridophosphate acetonitrile disolvate] top
Crystal data top
[Ag(C11H11N3)]PF6·2C2H3NF(000) = 1032
Mr = 520.17Dx = 1.739 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.8997 (4) ÅCell parameters from 5825 reflections
b = 7.5361 (3) Åθ = 2.9–28.0°
c = 20.9747 (7) ŵ = 1.16 mm1
β = 102.9900 (6)°T = 173 K
V = 1986.84 (12) Å3Block, colorless
Z = 40.35 × 0.25 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
3527 reflections with I > 2σ(I)
φ and ω scansRint = 0.020
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 27.0°, θmin = 1.7°
Tmin = 0.666, Tmax = 0.746h = 1016
11824 measured reflectionsk = 99
4316 independent reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: mixed
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0297P)2 + 2.2488P]
where P = (Fo2 + 2Fc2)/3
4316 reflections(Δ/σ)max = 0.001
312 parametersΔρmax = 1.12 e Å3
18 restraintsΔρmin = 0.66 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.57809 (2)0.34509 (3)0.48065 (2)0.04382 (9)
N10.09170 (18)0.3315 (3)0.06343 (10)0.0313 (5)
N20.55270 (18)0.4849 (3)0.38820 (10)0.0317 (5)
N30.3023 (2)0.4904 (4)0.19724 (12)0.0385 (6)
H3A0.352 (3)0.439 (4)0.1850 (15)0.035 (8)*
C10.1875 (2)0.3614 (4)0.10237 (12)0.0305 (6)
H10.24780.30530.09240.037*
C20.2022 (2)0.4724 (3)0.15729 (12)0.0282 (5)
C30.1127 (2)0.5557 (4)0.17056 (13)0.0315 (6)
H30.11920.63310.20700.038*
C40.0141 (2)0.5233 (4)0.12960 (13)0.0347 (6)
H40.04770.57840.13790.042*
C50.0059 (2)0.4111 (4)0.07669 (13)0.0328 (6)
H50.06200.38970.04900.039*
C60.3223 (2)0.6106 (4)0.25170 (13)0.0363 (6)
H6A0.27210.58530.28000.044*
H6B0.30970.73380.23540.044*
C70.4343 (2)0.5940 (3)0.29117 (12)0.0288 (5)
C80.4549 (2)0.5027 (3)0.34988 (12)0.0294 (5)
H80.39680.45000.36380.035*
C90.6343 (2)0.5596 (4)0.36808 (14)0.0355 (6)
H90.70410.54740.39460.043*
C100.6207 (2)0.6531 (4)0.31048 (14)0.0400 (7)
H100.68010.70410.29760.048*
C110.5193 (2)0.6720 (4)0.27147 (13)0.0374 (6)
H110.50820.73740.23180.045*
P10.52792 (8)0.16310 (12)0.15620 (5)0.0532 (2)
F10.6049 (5)0.0241 (8)0.2082 (3)0.0812 (19)0.567 (11)
F20.6355 (6)0.2633 (12)0.1590 (6)0.106 (3)0.567 (11)
F30.5178 (6)0.2625 (10)0.2228 (4)0.106 (3)0.567 (11)
F40.4273 (13)0.060 (3)0.1615 (8)0.133 (6)0.567 (11)
F50.4615 (6)0.3036 (14)0.1156 (4)0.100 (3)0.567 (11)
F60.5453 (8)0.0508 (11)0.0998 (4)0.119 (3)0.567 (11)
F1'0.5583 (12)0.0286 (12)0.1587 (9)0.149 (7)0.433 (11)
F2'0.6253 (9)0.2192 (19)0.1252 (6)0.106 (4)0.433 (11)
F3'0.5773 (14)0.211 (2)0.2223 (5)0.184 (7)0.433 (11)
F4'0.4247 (14)0.101 (3)0.1739 (9)0.128 (7)0.433 (11)
F5'0.4867 (8)0.3671 (11)0.1435 (6)0.086 (3)0.433 (11)
F6'0.4650 (11)0.1392 (17)0.0770 (4)0.125 (5)0.433 (11)
N40.6922 (3)0.6394 (5)0.53962 (16)0.0733 (10)
C120.7722 (3)0.6996 (5)0.53960 (16)0.0538 (9)
C130.8750 (3)0.7783 (6)0.5397 (2)0.0756 (12)
H13A0.89180.76040.49690.113*
H13B0.92980.72190.57360.113*
H13C0.87270.90570.54870.113*
N50.7553 (3)0.1622 (7)0.45595 (18)0.0922 (14)
C140.7749 (3)0.1581 (5)0.40711 (19)0.0566 (9)
C150.7958 (4)0.1556 (6)0.3423 (2)0.0749 (12)
H15A0.72870.14100.30980.112*
H15B0.84350.05660.33880.112*
H15C0.82950.26750.33430.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.05358 (16)0.04805 (15)0.02636 (12)0.01328 (11)0.00167 (9)0.01001 (10)
N10.0354 (12)0.0327 (12)0.0226 (10)0.0052 (10)0.0003 (9)0.0008 (9)
N20.0343 (12)0.0324 (12)0.0246 (11)0.0031 (10)0.0010 (9)0.0005 (9)
N30.0288 (12)0.0498 (15)0.0335 (12)0.0031 (11)0.0000 (10)0.0170 (11)
C10.0309 (14)0.0348 (14)0.0245 (12)0.0000 (11)0.0037 (10)0.0022 (10)
C20.0296 (13)0.0307 (13)0.0227 (12)0.0005 (11)0.0026 (10)0.0000 (10)
C30.0349 (14)0.0309 (14)0.0273 (13)0.0024 (11)0.0039 (11)0.0011 (10)
C40.0310 (14)0.0341 (14)0.0373 (15)0.0061 (11)0.0040 (11)0.0072 (12)
C50.0276 (13)0.0356 (14)0.0295 (13)0.0035 (11)0.0055 (10)0.0081 (11)
C60.0337 (15)0.0436 (16)0.0268 (13)0.0037 (12)0.0034 (11)0.0095 (11)
C70.0325 (14)0.0291 (13)0.0221 (12)0.0020 (11)0.0005 (10)0.0053 (10)
C80.0316 (14)0.0283 (13)0.0273 (12)0.0023 (11)0.0042 (10)0.0036 (10)
C90.0292 (14)0.0393 (16)0.0347 (14)0.0019 (12)0.0005 (11)0.0060 (12)
C100.0355 (15)0.0484 (17)0.0369 (15)0.0087 (13)0.0101 (12)0.0023 (13)
C110.0451 (16)0.0419 (16)0.0246 (13)0.0021 (13)0.0066 (11)0.0027 (11)
P10.0471 (5)0.0444 (5)0.0736 (6)0.0043 (4)0.0254 (5)0.0012 (4)
F10.086 (4)0.064 (3)0.087 (4)0.018 (3)0.007 (3)0.016 (3)
F20.052 (3)0.092 (5)0.175 (8)0.015 (3)0.027 (5)0.043 (5)
F30.103 (5)0.094 (4)0.119 (5)0.022 (4)0.022 (4)0.057 (4)
F40.115 (10)0.173 (10)0.102 (7)0.101 (9)0.007 (6)0.010 (6)
F50.069 (4)0.118 (6)0.110 (6)0.038 (4)0.014 (4)0.051 (5)
F60.159 (7)0.143 (7)0.065 (4)0.024 (6)0.044 (4)0.022 (4)
F1'0.171 (11)0.056 (5)0.24 (2)0.039 (6)0.097 (12)0.046 (7)
F2'0.049 (5)0.153 (10)0.123 (8)0.030 (6)0.036 (5)0.007 (7)
F3'0.183 (14)0.256 (18)0.076 (7)0.038 (13)0.048 (8)0.028 (8)
F4'0.083 (9)0.215 (18)0.105 (10)0.012 (9)0.063 (8)0.054 (10)
F5'0.077 (5)0.063 (4)0.129 (7)0.016 (3)0.047 (5)0.005 (4)
F6'0.154 (10)0.152 (10)0.059 (4)0.049 (8)0.002 (5)0.006 (5)
N40.084 (3)0.080 (3)0.0521 (19)0.026 (2)0.0085 (17)0.0043 (17)
C120.067 (2)0.051 (2)0.0397 (18)0.0057 (18)0.0052 (16)0.0009 (15)
C130.068 (3)0.068 (3)0.088 (3)0.002 (2)0.013 (2)0.013 (2)
N50.067 (2)0.156 (4)0.057 (2)0.044 (3)0.0217 (18)0.025 (2)
C140.0406 (18)0.071 (2)0.060 (2)0.0125 (17)0.0159 (16)0.0091 (19)
C150.092 (3)0.071 (3)0.074 (3)0.001 (2)0.044 (3)0.003 (2)
Geometric parameters (Å, º) top
Ag1—N1i2.163 (2)C9—H90.9500
Ag1—N22.166 (2)C10—C111.385 (4)
Ag1—Ag1ii3.3023 (5)C10—H100.9500
N1—C11.338 (3)C11—H110.9500
N1—C51.341 (4)P1—F3'1.435 (10)
N1—Ag1iii2.163 (2)P1—F1'1.495 (8)
N2—C81.342 (3)P1—F51.501 (6)
N2—C91.343 (4)P1—F61.512 (5)
N3—C21.379 (3)P1—F4'1.532 (14)
N3—C61.435 (3)P1—F41.539 (12)
N3—H3A0.84 (3)P1—F21.570 (7)
C1—C21.401 (3)P1—F2'1.596 (11)
C1—H10.9500P1—F31.617 (6)
C2—C31.396 (4)P1—F5'1.629 (9)
C3—C41.387 (4)P1—F11.669 (5)
C3—H30.9500P1—F6'1.687 (8)
C4—C51.380 (4)N4—C121.127 (5)
C4—H40.9500C12—C131.452 (6)
C5—H50.9500C13—H13A0.9800
C6—C71.500 (4)C13—H13B0.9800
C6—H6A0.9900C13—H13C0.9800
C6—H6B0.9900N5—C141.110 (5)
C7—C81.383 (4)C14—C151.445 (5)
C7—C111.387 (4)C15—H15A0.9800
C8—H80.9500C15—H15B0.9800
C9—C101.375 (4)C15—H15C0.9800
N1i—Ag1—N2170.55 (8)C10—C11—H11120.5
N1i—Ag1—Ag1ii100.46 (6)C7—C11—H11120.5
N2—Ag1—Ag1ii84.17 (6)F3'—P1—F1'98.8 (9)
C1—N1—C5119.3 (2)F5—P1—F696.7 (5)
C1—N1—Ag1iii119.39 (18)F3'—P1—F4'93.7 (10)
C5—N1—Ag1iii121.31 (17)F1'—P1—F4'86.1 (10)
C8—N2—C9117.9 (2)F5—P1—F490.8 (9)
C8—N2—Ag1121.18 (18)F6—P1—F492.8 (7)
C9—N2—Ag1120.91 (17)F5—P1—F294.0 (5)
C2—N3—C6121.4 (2)F6—P1—F290.7 (5)
C2—N3—H3A117 (2)F4—P1—F2173.7 (8)
C6—N3—H3A121 (2)F3'—P1—F2'96.2 (8)
N1—C1—C2122.6 (2)F1'—P1—F2'92.7 (6)
N1—C1—H1118.7F4'—P1—F2'170.1 (8)
C2—C1—H1118.7F5—P1—F391.0 (4)
N3—C2—C3122.6 (2)F6—P1—F3172.3 (4)
N3—C2—C1119.6 (2)F4—P1—F386.5 (6)
C3—C2—C1117.8 (2)F2—P1—F389.3 (5)
C4—C3—C2118.8 (2)F3'—P1—F5'88.8 (8)
C4—C3—H3120.6F1'—P1—F5'172.5 (8)
C2—C3—H3120.6F4'—P1—F5'93.3 (11)
C5—C4—C3120.0 (3)F2'—P1—F5'86.6 (6)
C5—C4—H4120.0F5—P1—F1173.5 (4)
C3—C4—H4120.0F6—P1—F189.4 (4)
N1—C5—C4121.5 (2)F4—P1—F191.3 (9)
N1—C5—H5119.2F2—P1—F183.5 (4)
C4—C5—H5119.2F3—P1—F182.9 (3)
N3—C6—C7111.4 (2)F3'—P1—F6'171.5 (8)
N3—C6—H6A109.3F1'—P1—F6'89.8 (8)
C7—C6—H6A109.3F4'—P1—F6'87.3 (8)
N3—C6—H6B109.3F2'—P1—F6'82.9 (5)
C7—C6—H6B109.3F5'—P1—F6'82.7 (5)
H6A—C6—H6B108.0N4—C12—C13179.6 (5)
C8—C7—C11118.0 (2)C12—C13—H13A109.5
C8—C7—C6120.1 (3)C12—C13—H13B109.5
C11—C7—C6121.9 (2)H13A—C13—H13B109.5
N2—C8—C7123.4 (2)C12—C13—H13C109.5
N2—C8—H8118.3H13A—C13—H13C109.5
C7—C8—H8118.3H13B—C13—H13C109.5
N2—C9—C10122.4 (3)N5—C14—C15177.5 (4)
N2—C9—H9118.8C14—C15—H15A109.5
C10—C9—H9118.8C14—C15—H15B109.5
C9—C10—C11119.3 (3)H15A—C15—H15B109.5
C9—C10—H10120.3C14—C15—H15C109.5
C11—C10—H10120.3H15A—C15—H15C109.5
C10—C11—C7119.0 (3)H15B—C15—H15C109.5
C5—N1—C1—C20.5 (4)N3—C6—C7—C8102.6 (3)
Ag1iii—N1—C1—C2179.21 (19)N3—C6—C7—C1179.0 (3)
C6—N3—C2—C36.3 (4)C9—N2—C8—C70.1 (4)
C6—N3—C2—C1176.2 (3)Ag1—N2—C8—C7178.53 (19)
N1—C1—C2—N3176.7 (3)C11—C7—C8—N20.6 (4)
N1—C1—C2—C30.9 (4)C6—C7—C8—N2179.0 (2)
N3—C2—C3—C4176.8 (3)C8—N2—C9—C100.3 (4)
C1—C2—C3—C40.7 (4)Ag1—N2—C9—C10178.3 (2)
C2—C3—C4—C50.3 (4)N2—C9—C10—C110.1 (4)
C1—N1—C5—C40.0 (4)C9—C10—C11—C70.8 (4)
Ag1iii—N1—C5—C4179.7 (2)C8—C7—C11—C101.0 (4)
C3—C4—C5—N10.1 (4)C6—C7—C11—C10179.4 (3)
C2—N3—C6—C7174.7 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···F30.84 (3)2.49 (3)3.208 (8)144 (3)
N3—H3A···F50.84 (3)2.46 (3)3.273 (10)162 (3)
N3—H3A···F50.84 (3)2.18 (3)2.999 (10)167 (3)
C8—H8···N4ii0.952.633.478 (5)149
C10—H10···F2iv0.952.393.176 (9)140
C13—H13A···F2iv0.982.543.487 (13)163
C13—H13B···F6i0.982.533.365 (10)144
C13—H13B···F1i0.982.593.57 (2)171
C15—H15A···F10.982.523.441 (9)157
C15—H15A···F30.982.423.356 (13)160
C15—H15B···F2v0.982.233.088 (10)146
C15—H15B···F5v0.982.573.509 (11)160
C15—H15C···F1iv0.982.363.329 (8)168
C15—H15C···F1iv0.982.093.037 (9)161
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iv) x+3/2, y+1/2, z+1/2; (v) x+3/2, y1/2, z+1/2.
 

Funding information

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A3A01020410 and NRF-2016R1D1A1B01012630).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationLee, E., Ju, H., Moon, S.-H., Lee, S. S. & Park, K.-M. (2015). Bull. Korean Chem. Soc. 36, 1532–1535.  Web of Science CrossRef CAS
First citationLee, E., Ryu, H., Moon, S.-H. & Park, K.-M. (2013). Bull. Korean Chem. Soc. 34, 3477–3480.  Web of Science CSD CrossRef CAS
First citationLeong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764.  Web of Science CrossRef CAS PubMed
First citationMoon, B., Jeon, Y., Moon, S.-H. & Park, K.-M. (2014). Acta Cryst. E70, 507–509.  CSD CrossRef IUCr Journals
First citationMoon, S.-H., Kang, Y. & Park, K.-M. (2015). Acta Cryst. E71, 1287–1289.  Web of Science CSD CrossRef IUCr Journals
First citationMoon, S.-H., Kang, D. & Park, K.-M. (2016). Acta Cryst. E72, 1513–1516.  CSD CrossRef IUCr Journals
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationWang, C., Zhang, T. & Lin, W. (2012). Chem. Rev. 112, 1084–1104.  Web of Science CrossRef CAS PubMed
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds